Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
/*
 * linux/fs/hfs/binsert.c
 *
 * Copyright (C) 1995-1997  Paul H. Hargrove
 * This file may be distributed under the terms of the GNU Public License.
 *
 * This file contains the code to insert records in a B-tree.
 *
 * "XXX" in a comment is a note to myself to consider changing something.
 *
 * In function preconditions the term "valid" applied to a pointer to
 * a structure means that the pointer is non-NULL and the structure it
 * points to has all fields initialized to consistent values.
 */

#include "hfs_btree.h"

/*================ File-local functions ================*/

/* btree locking functions */
static inline void hfs_btree_lock(struct hfs_btree *tree)
{
  while (tree->lock) 
    hfs_sleep_on(&tree->wait);
  tree->lock = 1;
}

static inline void hfs_btree_unlock(struct hfs_btree *tree)
{
  tree->lock = 0;
  hfs_wake_up(&tree->wait);
}

/*
 * binsert_nonfull()
 *
 * Description:
 *   Inserts a record in a given bnode known to have sufficient space.
 * Input Variable(s):
 *   struct hfs_brec* brec: pointer to the brec for the insertion
 *   struct hfs_belem* belem: the element in the search path to insert in
 *   struct hfs_bkey* key: pointer to the key for the record to insert
 *   void* data: pointer to the record to insert
 *   hfs_u16 keysize: size of the key to insert
 *   hfs_u16 datasize: size of the record to insert
 * Output Variable(s):
 *   NONE
 * Returns:
 *   NONE
 * Preconditions:
 *   'brec' points to a valid (struct hfs_brec).
 *   'belem' points to a valid (struct hfs_belem) in 'brec', the node
 *    of which has enough free space to insert 'key' and 'data'.
 *   'key' is a pointer to a valid (struct hfs_bkey) of length 'keysize'
 *    which, in sorted order, belongs at the location indicated by 'brec'.
 *   'data' is non-NULL an points to appropriate data of length 'datasize'
 * Postconditions:
 *   The record has been inserted in the position indicated by 'brec'.
 */
static void binsert_nonfull(struct hfs_brec *brec, struct hfs_belem *belem,
			    const struct hfs_bkey *key, const void *data,
			    hfs_u8 keysize, hfs_u16 datasize)
{
	int i, rec, nrecs, size, tomove;
	hfs_u8 *start;
	struct hfs_bnode *bnode = belem->bnr.bn;

	rec = ++(belem->record);
	size = ROUND(keysize+1) + datasize;
	nrecs = bnode->ndNRecs + 1;
	tomove = bnode_offset(bnode, nrecs) - bnode_offset(bnode, rec);
	
	/* adjust the record table */
	for (i = nrecs; i >= rec; --i) {
		hfs_put_hs(bnode_offset(bnode,i) + size, RECTBL(bnode,i+1));
	}

	/* make room */
	start = bnode_key(bnode, rec);
	memmove(start + size, start, tomove);

	/* copy in the key and the data*/
	*start = keysize;
	keysize = ROUND(keysize+1);
	memcpy(start + 1, (hfs_u8 *)key + 1, keysize-1);
	memcpy(start + keysize, data, datasize);

	/* update record count */
	++bnode->ndNRecs;
}

/*
 * add_root()
 *
 * Description:
 *   Adds a new root to a B*-tree, increasing its height.
 * Input Variable(s):
 *   struct hfs_btree *tree: the tree to add a new root to
 *   struct hfs_bnode *left: the new root's first child or NULL
 *   struct hfs_bnode *right: the new root's second child or NULL
 * Output Variable(s):
 *   NONE
 * Returns:
 *   void
 * Preconditions:
 *   'tree' points to a valid (struct hfs_btree).
 *   'left' and 'right' point to valid (struct hfs_bnode)s, which
 *    resulted from splitting the old root node, or are both NULL
 *    if there was no root node before.
 * Postconditions:
 *   Upon success a new root node is added to 'tree' with either
 *    two children ('left' and 'right') or none.
 */
static void add_root(struct hfs_btree *tree,
		     struct hfs_bnode *left,
		     struct hfs_bnode *right)
{
	struct hfs_bnode_ref bnr;
	struct hfs_bnode *root;
	struct hfs_bkey *key;
	int keylen = tree->bthKeyLen;

	if (left && !right) {
		hfs_warn("add_root: LEFT but no RIGHT\n");
		return;
	}

	bnr = hfs_bnode_alloc(tree);
	if (!(root = bnr.bn)) {
		return;
	}

	root->sticky = HFS_STICKY;
	tree->root = root;
	tree->bthRoot = root->node;
	++tree->bthDepth;

	root->ndNHeight = tree->bthDepth;
	root->ndFLink = 0;
	root->ndBLink = 0;

	if (!left) {
		/* tree was empty */
		root->ndType  = ndLeafNode;
		root->ndNRecs = 0;

		tree->bthFNode = root->node;
		tree->bthLNode = root->node;
	} else {
		root->ndType  = ndIndxNode;
		root->ndNRecs = 2;

		hfs_put_hs(sizeof(struct NodeDescriptor) + ROUND(1+keylen) +
			   sizeof(hfs_u32), RECTBL(root, 2));
		key = bnode_key(root, 1);
		key->KeyLen = keylen;
		memcpy(key->value,
		       ((struct hfs_bkey *)bnode_key(left, 1))->value, keylen);
		hfs_put_hl(left->node, bkey_record(key));
		
		hfs_put_hs(sizeof(struct NodeDescriptor) + 2*ROUND(1+keylen) +
			   2*sizeof(hfs_u32), RECTBL(root, 3));
		key = bnode_key(root, 2);
		key->KeyLen = keylen;
		memcpy(key->value,
		       ((struct hfs_bkey *)bnode_key(right, 1))->value, keylen);
		hfs_put_hl(right->node, bkey_record(key));

		/* the former root (left) is now just a normal node */
		left->sticky = HFS_NOT_STICKY;
		if ((left->next = bhash(tree, left->node))) {
			left->next->prev = left;
		}
		bhash(tree, left->node) = left;
	}
	hfs_bnode_relse(&bnr);
	tree->dirt = 1;
}

/*
 * insert_empty_bnode()
 *
 * Description:
 *   Adds an empty node to the right of 'left'.
 * Input Variable(s):
 *   struct hfs_btree *tree: the tree to add a node to
 *   struct hfs_bnode *left: the node to add a node after
 * Output Variable(s):
 *   NONE
 * Returns:
 *   struct hfs_bnode_ref *: reference to the new bnode.
 * Preconditions:
 *   'tree' points to a valid (struct hfs_btree) with at least 1 free node.
 *   'left' points to a valid (struct hfs_bnode) belonging to 'tree'.
 * Postconditions:
 *   If NULL is returned then 'tree' and 'left' are unchanged.
 *   Otherwise a node with 0 records is inserted in the tree to the right
 *   of the node 'left'.  The 'ndFLink' of 'left' and the 'ndBLink' of
 *   the former right-neighbor of 'left' (if one existed) point to the
 *   new node.	If 'left' had no right neighbor and is a leaf node the
 *   the 'bthLNode' of 'tree' points to the new node.  The free-count and
 *   bitmap for 'tree' are kept current by hfs_bnode_alloc() which supplies
 *   the required node.
 */
static struct hfs_bnode_ref insert_empty_bnode(struct hfs_btree *tree,
					       struct hfs_bnode *left)
{
	struct hfs_bnode_ref retval;
	struct hfs_bnode_ref right;

	retval = hfs_bnode_alloc(tree);
	if (!retval.bn) {
		hfs_warn("hfs_binsert: out of bnodes?.\n");
		goto done;
	}
	retval.bn->sticky = HFS_NOT_STICKY;
	if ((retval.bn->next = bhash(tree, retval.bn->node))) {
		retval.bn->next->prev = retval.bn;
	}
	bhash(tree, retval.bn->node) = retval.bn;

	if (left->ndFLink) {
		right = hfs_bnode_find(tree, left->ndFLink, HFS_LOCK_WRITE);
		if (!right.bn) {
			hfs_warn("hfs_binsert: corrupt btree.\n");
			hfs_bnode_bitop(tree, retval.bn->node, 0);
			hfs_bnode_relse(&retval);
			goto done;
		}
		right.bn->ndBLink = retval.bn->node;
		hfs_bnode_relse(&right);
	} else if (left->ndType == ndLeafNode) {
		tree->bthLNode = retval.bn->node;
		tree->dirt = 1;
	}

	retval.bn->ndFLink   = left->ndFLink;
	retval.bn->ndBLink   = left->node;
	retval.bn->ndType    = left->ndType;
	retval.bn->ndNHeight = left->ndNHeight;
	retval.bn->ndNRecs   = 0;

	left->ndFLink = retval.bn->node;

 done:
	return retval;
}

/*
 * split()
 *
 * Description:
 *   Splits an over full node during insertion.
 *   Picks the split point that results in the most-nearly equal
 *   space usage in the new and old nodes.
 * Input Variable(s):
 *   struct hfs_belem *elem: the over full node.
 *   int size: the number of bytes to be used by the new record and its key.
 * Output Variable(s):
 *   struct hfs_belem *elem: changed to indicate where the new record
 *    should be inserted.
 * Returns:
 *   struct hfs_bnode_ref: reference to the new bnode.
 * Preconditions:
 *   'elem' points to a valid path element corresponding to the over full node.
 *   'size' is positive.
 * Postconditions:
 *   The records in the node corresponding to 'elem' are redistributed across
 *   the old and new nodes so that after inserting the new record, the space
 *   usage in these two nodes is as equal as possible.
 *   'elem' is updated so that a call to binsert_nonfull() will insert the
 *   new record in the correct location.
 */
static inline struct hfs_bnode_ref split(struct hfs_belem *elem, int size)
{
	struct hfs_bnode *bnode = elem->bnr.bn;
	int nrecs, cutoff, index, tmp, used, in_right;
	struct hfs_bnode_ref right;

	right = insert_empty_bnode(bnode->tree, bnode);
	if (right.bn) {
		nrecs = bnode->ndNRecs;
		cutoff = (size + bnode_end(bnode) -
			      sizeof(struct NodeDescriptor) +
			      (nrecs+1)*sizeof(hfs_u16))/2;
		used = 0;
		in_right = 1;
		/* note that this only works because records sizes are even */
		for (index=1; index <= elem->record; ++index) {
			tmp = (sizeof(hfs_u16) + bnode_rsize(bnode, index))/2;
			used += tmp;
			if (used > cutoff) {
				goto found;
			}
			used += tmp;
		}
		tmp = (size + sizeof(hfs_u16))/2;
		used += tmp;
		if (used > cutoff) {
			goto found;
		}
		in_right = 0;
		used += tmp;
		for (; index <= nrecs; ++index) {
			tmp = (sizeof(hfs_u16) + bnode_rsize(bnode, index))/2;
			used += tmp;
			if (used > cutoff) {
				goto found;
			}
			used += tmp;
		}
		/* couldn't find the split point! */
		hfs_bnode_relse(&right);
	}
	return right;

found:
	if (in_right) {
		elem->bnr = right;
		elem->record -= index-1;
	}
	hfs_bnode_shift_right(bnode, right.bn, index);

	return right;
}

/*
 * binsert()
 *
 * Description:
 *   Inserts a record in a tree known to have enough room, even if the
 *   insertion requires the splitting of nodes.
 * Input Variable(s):
 *    struct hfs_brec *brec: partial path to the node to insert in
 *    const struct hfs_bkey *key: key for the new record
 *    const void *data: data for the new record
 *    hfs_u8 keysize: size of the key
 *    hfs_u16 datasize: size of the data
 *    int reserve: number of nodes reserved in case of splits
 * Output Variable(s):
 *    *brec = NULL
 * Returns:
 *    int: 0 on success, error code on failure
 * Preconditions:
 *    'brec' points to a valid (struct hfs_brec) corresponding to a
 *     record in a leaf node, after which a record is to be inserted,
 *     or to "record 0" of the leaf node if the record is to be inserted
 *     before all existing records in the node.	 The (struct hfs_brec)
 *     includes all ancestors of the leaf node that are needed to
 *     complete the insertion including the parents of any nodes that
 *     will be split.
 *    'key' points to a valid (struct hfs_bkey) which is appropriate
 *     to this tree, and which belongs at the insertion point.
 *    'data' points data appropriate for the indicated node.
 *    'keysize' gives the size in bytes of the key.
 *    'datasize' gives the size in bytes of the data.
 *    'reserve' gives the number of nodes that have been reserved in the
 *     tree to allow for splitting of nodes.
 * Postconditions:
 *    All 'reserve'd nodes have been either used or released.
 *    *brec = NULL
 *    On success the key and data have been inserted at the indicated
 *    location in the tree, all appropriate fields of the in-core data
 *    structures have been changed and updated versions of the on-disk
 *    data structures have been scheduled for write-back to disk.
 *    On failure the B*-tree is probably invalid both on disk and in-core.
 *
 *    XXX: Some attempt at repair might be made in the event of failure,
 *    or the fs should be remounted read-only so things don't get worse.
 */
static int binsert(struct hfs_brec *brec, const struct hfs_bkey *key,
		   const void *data, hfs_u8 keysize, hfs_u16 datasize,
		   int reserve)
{
	struct hfs_bnode_ref left, right, other;
	struct hfs_btree *tree = brec->tree;
	struct hfs_belem *belem = brec->bottom;
	int tmpsize = 1 + tree->bthKeyLen;
	struct hfs_bkey *tmpkey = hfs_malloc(tmpsize);
	hfs_u32 node;
	
	while ((belem >= brec->top) && (belem->flags & HFS_BPATH_OVERFLOW)) {
		left = belem->bnr;
		if (left.bn->ndFLink &&
                    hfs_bnode_in_brec(left.bn->ndFLink, brec)) {
			hfs_warn("hfs_binsert: corrupt btree\n");
			tree->reserved -= reserve;
			hfs_free(tmpkey, tmpsize);
			return -EIO;
		}
			
		right = split(belem, ROUND(keysize+1) + ROUND(datasize));
		--reserve;
		--tree->reserved;
		if (!right.bn) {
			hfs_warn("hfs_binsert: unable to split node!\n");
			tree->reserved -= reserve;
			hfs_free(tmpkey, tmpsize);
			return -ENOSPC;
		}
		binsert_nonfull(brec, belem, key, data, keysize, datasize);
	
		if (belem->bnr.bn == left.bn) {
			other = right;
			if (belem->record == 1) {
				hfs_bnode_update_key(brec, belem, left.bn, 0);
			}
		} else {
			other = left;
		}

		if (left.bn->node == tree->root->node) {
			add_root(tree, left.bn, right.bn);
			hfs_bnode_relse(&other);
			goto done;
		}

		data = &node;
		datasize = sizeof(node);
		node = htonl(right.bn->node);
		key = tmpkey;
		keysize = tree->bthKeyLen;
		memcpy(tmpkey, bnode_key(right.bn, 1), keysize+1);
		hfs_bnode_relse(&other);
		
		--belem;
	}

	if (belem < brec->top) {
		hfs_warn("hfs_binsert: Missing parent.\n");
		tree->reserved -= reserve;
		hfs_free(tmpkey, tmpsize);
		return -EIO;
	}

	binsert_nonfull(brec, belem, key, data, keysize, datasize);

done:
	tree->reserved -= reserve;
	hfs_free(tmpkey, tmpsize);
	return 0;
}

/*================ Global functions ================*/

/*
 * hfs_binsert()
 *
 * Description:
 *   This function inserts a new record into a b-tree.
 * Input Variable(s):
 *   struct hfs_btree *tree: pointer to the (struct hfs_btree) to insert in
 *   struct hfs_bkey *key: pointer to the (struct hfs_bkey) to insert
 *   void *data: pointer to the data to associate with 'key' in the b-tree
 *   unsigned int datasize: the size of the data
 * Output Variable(s):
 *   NONE
 * Returns:
 *   int: 0 on success, error code on failure
 * Preconditions:
 *   'tree' points to a valid (struct hfs_btree)
 *   'key' points to a valid (struct hfs_bkey)
 *   'data' points to valid memory of length 'datasize'
 * Postconditions:
 *   If zero is returned then the record has been inserted in the
 *    indicated location updating all in-core data structures and
 *    scheduling all on-disk data structures for write-back.
 */
int hfs_binsert(struct hfs_btree *tree, const struct hfs_bkey *key,
		const void *data, hfs_u16 datasize)
{ 
	struct hfs_brec brec;
	struct hfs_belem *belem;
	int err, reserve, retval;
	hfs_u8 keysize;

	if (!tree || (tree->magic != HFS_BTREE_MAGIC) || !key || !data) {
		hfs_warn("hfs_binsert: invalid arguments.\n");
		return -EINVAL;
	}

	if (key->KeyLen > tree->bthKeyLen) {
		hfs_warn("hfs_binsert: oversized key\n");
		return -EINVAL;
	}

restart:
	if (!tree->bthNRecs) {
		/* create the root bnode */
		add_root(tree, NULL, NULL);
		if (!hfs_brec_init(&brec, tree, HFS_BFIND_INSERT)) {
			hfs_warn("hfs_binsert: failed to create root.\n");
			return -ENOSPC;
		}
	} else {
		err = hfs_bfind(&brec, tree, key, HFS_BFIND_INSERT);
		if (err < 0) {
			hfs_warn("hfs_binsert: hfs_brec_find failed.\n");
			return err;
		} else if (err == 0) {
			hfs_brec_relse(&brec, NULL);
			return -EEXIST;
		}
	}

	keysize = key->KeyLen;
	datasize = ROUND(datasize);
	belem = brec.bottom;
	belem->flags = 0;
	if (bnode_freespace(belem->bnr.bn) <
			    (sizeof(hfs_u16) + ROUND(keysize+1) + datasize)) {
		belem->flags |= HFS_BPATH_OVERFLOW;
	}
	if (belem->record == 0) {
		belem->flags |= HFS_BPATH_FIRST;
	}

	if (!belem->flags) {
		hfs_brec_lock(&brec, brec.bottom);
		reserve = 0;
	} else {
		reserve = brec.bottom - brec.top;
		if (brec.top == 0) {
			++reserve;
		}
		/* make certain we have enough nodes to proceed */
		if ((tree->bthFree - tree->reserved) < reserve) {
			hfs_brec_relse(&brec, NULL);
			hfs_btree_lock(tree);
			if ((tree->bthFree - tree->reserved) < reserve) {
				hfs_btree_extend(tree);
			}
			hfs_btree_unlock(tree);
			if ((tree->bthFree - tree->reserved) < reserve) {
				return -ENOSPC;
			} else {
				goto restart;
			}
		}
		tree->reserved += reserve;
		hfs_brec_lock(&brec, NULL);
	}

	retval = binsert(&brec, key, data, keysize, datasize, reserve);
	hfs_brec_relse(&brec, NULL);
	if (!retval) {
		++tree->bthNRecs;
		tree->dirt = 1;
	}
	return retval;
}