Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 | /* * linux/fs/hfs/binsert.c * * Copyright (C) 1995-1997 Paul H. Hargrove * This file may be distributed under the terms of the GNU Public License. * * This file contains the code to insert records in a B-tree. * * "XXX" in a comment is a note to myself to consider changing something. * * In function preconditions the term "valid" applied to a pointer to * a structure means that the pointer is non-NULL and the structure it * points to has all fields initialized to consistent values. */ #include "hfs_btree.h" /*================ File-local functions ================*/ /* * binsert_nonfull() * * Description: * Inserts a record in a given bnode known to have sufficient space. * Input Variable(s): * struct hfs_brec* brec: pointer to the brec for the insertion * struct hfs_belem* belem: the element in the search path to insert in * struct hfs_bkey* key: pointer to the key for the record to insert * void* data: pointer to the record to insert * hfs_u16 keysize: size of the key to insert * hfs_u16 datasize: size of the record to insert * Output Variable(s): * NONE * Returns: * NONE * Preconditions: * 'brec' points to a valid (struct hfs_brec). * 'belem' points to a valid (struct hfs_belem) in 'brec', the node * of which has enough free space to insert 'key' and 'data'. * 'key' is a pointer to a valid (struct hfs_bkey) of length 'keysize' * which, in sorted order, belongs at the location indicated by 'brec'. * 'data' is non-NULL an points to appropriate data of length 'datasize' * Postconditions: * The record has been inserted in the position indicated by 'brec'. */ static void binsert_nonfull(struct hfs_brec *brec, struct hfs_belem *belem, const struct hfs_bkey *key, const void *data, hfs_u8 keysize, hfs_u16 datasize) { int i, rec, nrecs, size, tomove; hfs_u8 *start; struct hfs_bnode *bnode = belem->bnr.bn; rec = ++(belem->record); size = ROUND(keysize+1) + datasize; nrecs = bnode->ndNRecs + 1; tomove = bnode_offset(bnode, nrecs) - bnode_offset(bnode, rec); /* adjust the record table */ for (i = nrecs; i >= rec; --i) { hfs_put_hs(bnode_offset(bnode,i) + size, RECTBL(bnode,i+1)); } /* make room */ start = bnode_key(bnode, rec); memmove(start + size, start, tomove); /* copy in the key and the data*/ *start = keysize; keysize = ROUND(keysize+1); memcpy(start + 1, (hfs_u8 *)key + 1, keysize-1); memcpy(start + keysize, data, datasize); /* update record count */ ++bnode->ndNRecs; } /* * add_root() * * Description: * Adds a new root to a B*-tree, increasing its height. * Input Variable(s): * struct hfs_btree *tree: the tree to add a new root to * struct hfs_bnode *left: the new root's first child or NULL * struct hfs_bnode *right: the new root's second child or NULL * Output Variable(s): * NONE * Returns: * void * Preconditions: * 'tree' points to a valid (struct hfs_btree). * 'left' and 'right' point to valid (struct hfs_bnode)s, which * resulted from splitting the old root node, or are both NULL * if there was no root node before. * Postconditions: * Upon success a new root node is added to 'tree' with either * two children ('left' and 'right') or none. */ static void add_root(struct hfs_btree *tree, struct hfs_bnode *left, struct hfs_bnode *right) { struct hfs_bnode_ref bnr; struct hfs_bnode *root; struct hfs_bkey *key; int keylen = tree->bthKeyLen; if (left && !right) { hfs_warn("add_root: LEFT but no RIGHT\n"); return; } bnr = hfs_bnode_alloc(tree); if (!(root = bnr.bn)) { return; } root->sticky = HFS_STICKY; tree->root = root; tree->bthRoot = root->node; ++tree->bthDepth; root->ndNHeight = tree->bthDepth; root->ndFLink = 0; root->ndBLink = 0; if (!left) { /* tree was empty */ root->ndType = ndLeafNode; root->ndNRecs = 0; tree->bthFNode = root->node; tree->bthLNode = root->node; } else { root->ndType = ndIndxNode; root->ndNRecs = 2; hfs_put_hs(sizeof(struct NodeDescriptor) + ROUND(1+keylen) + sizeof(hfs_u32), RECTBL(root, 2)); key = bnode_key(root, 1); key->KeyLen = keylen; memcpy(key->value, ((struct hfs_bkey *)bnode_key(left, 1))->value, keylen); hfs_put_hl(left->node, bkey_record(key)); hfs_put_hs(sizeof(struct NodeDescriptor) + 2*ROUND(1+keylen) + 2*sizeof(hfs_u32), RECTBL(root, 3)); key = bnode_key(root, 2); key->KeyLen = keylen; memcpy(key->value, ((struct hfs_bkey *)bnode_key(right, 1))->value, keylen); hfs_put_hl(right->node, bkey_record(key)); /* the former root (left) is now just a normal node */ left->sticky = HFS_NOT_STICKY; if ((left->next = bhash(tree, left->node))) { left->next->prev = left; } bhash(tree, left->node) = left; } hfs_bnode_relse(&bnr); tree->dirt = 1; } /* * insert_empty_bnode() * * Description: * Adds an empty node to the right of 'left'. * Input Variable(s): * struct hfs_btree *tree: the tree to add a node to * struct hfs_bnode *left: the node to add a node after * Output Variable(s): * NONE * Returns: * struct hfs_bnode_ref *: reference to the new bnode. * Preconditions: * 'tree' points to a valid (struct hfs_btree) with at least 1 free node. * 'left' points to a valid (struct hfs_bnode) belonging to 'tree'. * Postconditions: * If NULL is returned then 'tree' and 'left' are unchanged. * Otherwise a node with 0 records is inserted in the tree to the right * of the node 'left'. The 'ndFLink' of 'left' and the 'ndBLink' of * the former right-neighbor of 'left' (if one existed) point to the * new node. If 'left' had no right neighbor and is a leaf node the * the 'bthLNode' of 'tree' points to the new node. The free-count and * bitmap for 'tree' are kept current by hfs_bnode_alloc() which supplies * the required node. */ static struct hfs_bnode_ref insert_empty_bnode(struct hfs_btree *tree, struct hfs_bnode *left) { struct hfs_bnode_ref retval; struct hfs_bnode_ref right; retval = hfs_bnode_alloc(tree); if (!retval.bn) { hfs_warn("hfs_binsert: out of bnodes?.\n"); goto done; } retval.bn->sticky = HFS_NOT_STICKY; if ((retval.bn->next = bhash(tree, retval.bn->node))) { retval.bn->next->prev = retval.bn; } bhash(tree, retval.bn->node) = retval.bn; if (left->ndFLink) { right = hfs_bnode_find(tree, left->ndFLink, HFS_LOCK_WRITE); if (!right.bn) { hfs_warn("hfs_binsert: corrupt btree.\n"); hfs_bnode_bitop(tree, retval.bn->node, 0); hfs_bnode_relse(&retval); goto done; } right.bn->ndBLink = retval.bn->node; hfs_bnode_relse(&right); } else if (left->ndType == ndLeafNode) { tree->bthLNode = retval.bn->node; tree->dirt = 1; } retval.bn->ndFLink = left->ndFLink; retval.bn->ndBLink = left->node; retval.bn->ndType = left->ndType; retval.bn->ndNHeight = left->ndNHeight; retval.bn->ndNRecs = 0; left->ndFLink = retval.bn->node; done: return retval; } /* * split() * * Description: * Splits an over full node during insertion. * Picks the split point that results in the most-nearly equal * space usage in the new and old nodes. * Input Variable(s): * struct hfs_belem *elem: the over full node. * int size: the number of bytes to be used by the new record and its key. * Output Variable(s): * struct hfs_belem *elem: changed to indicate where the new record * should be inserted. * Returns: * struct hfs_bnode_ref: reference to the new bnode. * Preconditions: * 'elem' points to a valid path element corresponding to the over full node. * 'size' is positive. * Postconditions: * The records in the node corresponding to 'elem' are redistributed across * the old and new nodes so that after inserting the new record, the space * usage in these two nodes is as equal as possible. * 'elem' is updated so that a call to binsert_nonfull() will insert the * new record in the correct location. */ static inline struct hfs_bnode_ref split(struct hfs_belem *elem, int size) { struct hfs_bnode *bnode = elem->bnr.bn; int nrecs, cutoff, index, tmp, used, in_right; struct hfs_bnode_ref right; right = insert_empty_bnode(bnode->tree, bnode); if (right.bn) { nrecs = bnode->ndNRecs; cutoff = (size + bnode_end(bnode) - sizeof(struct NodeDescriptor) + (nrecs+1)*sizeof(hfs_u16))/2; used = 0; in_right = 1; /* note that this only works because records sizes are even */ for (index=1; index <= elem->record; ++index) { tmp = (sizeof(hfs_u16) + bnode_rsize(bnode, index))/2; used += tmp; if (used > cutoff) { goto found; } used += tmp; } tmp = (size + sizeof(hfs_u16))/2; used += tmp; if (used > cutoff) { goto found; } in_right = 0; used += tmp; for (; index <= nrecs; ++index) { tmp = (sizeof(hfs_u16) + bnode_rsize(bnode, index))/2; used += tmp; if (used > cutoff) { goto found; } used += tmp; } /* couldn't find the split point! */ hfs_bnode_relse(&right); } return right; found: if (in_right) { elem->bnr = right; elem->record -= index-1; } hfs_bnode_shift_right(bnode, right.bn, index); return right; } /* * binsert() * * Description: * Inserts a record in a tree known to have enough room, even if the * insertion requires the splitting of nodes. * Input Variable(s): * struct hfs_brec *brec: partial path to the node to insert in * const struct hfs_bkey *key: key for the new record * const void *data: data for the new record * hfs_u8 keysize: size of the key * hfs_u16 datasize: size of the data * int reserve: number of nodes reserved in case of splits * Output Variable(s): * *brec = NULL * Returns: * int: 0 on success, error code on failure * Preconditions: * 'brec' points to a valid (struct hfs_brec) corresponding to a * record in a leaf node, after which a record is to be inserted, * or to "record 0" of the leaf node if the record is to be inserted * before all existing records in the node. The (struct hfs_brec) * includes all ancestors of the leaf node that are needed to * complete the insertion including the parents of any nodes that * will be split. * 'key' points to a valid (struct hfs_bkey) which is appropriate * to this tree, and which belongs at the insertion point. * 'data' points data appropriate for the indicated node. * 'keysize' gives the size in bytes of the key. * 'datasize' gives the size in bytes of the data. * 'reserve' gives the number of nodes that have been reserved in the * tree to allow for splitting of nodes. * Postconditions: * All 'reserve'd nodes have been either used or released. * *brec = NULL * On success the key and data have been inserted at the indicated * location in the tree, all appropriate fields of the in-core data * structures have been changed and updated versions of the on-disk * data structures have been scheduled for write-back to disk. * On failure the B*-tree is probably invalid both on disk and in-core. * * XXX: Some attempt at repair might be made in the event of failure, * or the fs should be remounted read-only so things don't get worse. */ static int binsert(struct hfs_brec *brec, const struct hfs_bkey *key, const void *data, hfs_u8 keysize, hfs_u16 datasize, int reserve) { struct hfs_bnode_ref left, right, other; struct hfs_btree *tree = brec->tree; struct hfs_belem *belem = brec->bottom; int tmpsize = 1 + tree->bthKeyLen; struct hfs_bkey *tmpkey = hfs_malloc(tmpsize); hfs_u32 node; while ((belem >= brec->top) && (belem->flags & HFS_BPATH_OVERFLOW)) { left = belem->bnr; if (left.bn->ndFLink && hfs_bnode_in_brec(left.bn->ndFLink, brec)) { hfs_warn("hfs_binsert: corrupt btree\n"); tree->reserved -= reserve; hfs_free(tmpkey, tmpsize); return -EIO; } right = split(belem, ROUND(keysize+1) + ROUND(datasize)); --reserve; --tree->reserved; if (!right.bn) { hfs_warn("hfs_binsert: unable to split node!\n"); tree->reserved -= reserve; hfs_free(tmpkey, tmpsize); return -ENOSPC; } binsert_nonfull(brec, belem, key, data, keysize, datasize); if (belem->bnr.bn == left.bn) { other = right; if (belem->record == 1) { hfs_bnode_update_key(brec, belem, left.bn, 0); } } else { other = left; } if (left.bn->node == tree->root->node) { add_root(tree, left.bn, right.bn); hfs_bnode_relse(&other); goto done; } data = &node; datasize = sizeof(node); node = htonl(right.bn->node); key = tmpkey; keysize = tree->bthKeyLen; memcpy(tmpkey, bnode_key(right.bn, 1), keysize+1); hfs_bnode_relse(&other); --belem; } if (belem < brec->top) { hfs_warn("hfs_binsert: Missing parent.\n"); tree->reserved -= reserve; hfs_free(tmpkey, tmpsize); return -EIO; } binsert_nonfull(brec, belem, key, data, keysize, datasize); done: tree->reserved -= reserve; hfs_free(tmpkey, tmpsize); return 0; } /*================ Global functions ================*/ /* * hfs_binsert() * * Description: * This function inserts a new record into a b-tree. * Input Variable(s): * struct hfs_btree *tree: pointer to the (struct hfs_btree) to insert in * struct hfs_bkey *key: pointer to the (struct hfs_bkey) to insert * void *data: pointer to the data to associate with 'key' in the b-tree * unsigned int datasize: the size of the data * Output Variable(s): * NONE * Returns: * int: 0 on success, error code on failure * Preconditions: * 'tree' points to a valid (struct hfs_btree) * 'key' points to a valid (struct hfs_bkey) * 'data' points to valid memory of length 'datasize' * Postconditions: * If zero is returned then the record has been inserted in the * indicated location updating all in-core data structures and * scheduling all on-disk data structures for write-back. */ int hfs_binsert(struct hfs_btree *tree, const struct hfs_bkey *key, const void *data, hfs_u16 datasize) { struct hfs_brec brec; struct hfs_belem *belem; int err, reserve, retval; hfs_u8 keysize; if (!tree || (tree->magic != HFS_BTREE_MAGIC) || !key || !data) { hfs_warn("hfs_binsert: invalid arguments.\n"); return -EINVAL; } if (key->KeyLen > tree->bthKeyLen) { hfs_warn("hfs_binsert: oversized key\n"); return -EINVAL; } restart: if (!tree->bthNRecs) { /* create the root bnode */ add_root(tree, NULL, NULL); if (!hfs_brec_init(&brec, tree, HFS_BFIND_INSERT)) { hfs_warn("hfs_binsert: failed to create root.\n"); return -ENOSPC; } } else { err = hfs_bfind(&brec, tree, key, HFS_BFIND_INSERT); if (err < 0) { hfs_warn("hfs_binsert: hfs_brec_find failed.\n"); return err; } else if (err == 0) { hfs_brec_relse(&brec, NULL); return -EEXIST; } } keysize = key->KeyLen; datasize = ROUND(datasize); belem = brec.bottom; belem->flags = 0; if (bnode_freespace(belem->bnr.bn) < (sizeof(hfs_u16) + ROUND(keysize+1) + datasize)) { belem->flags |= HFS_BPATH_OVERFLOW; } if (belem->record == 0) { belem->flags |= HFS_BPATH_FIRST; } if (!belem->flags) { hfs_brec_lock(&brec, brec.bottom); reserve = 0; } else { reserve = brec.bottom - brec.top; if (brec.top == 0) { ++reserve; } /* make certain we have enough nodes to proceed */ if ((tree->bthFree - tree->reserved) < reserve) { hfs_brec_relse(&brec, NULL); while (tree->lock) { hfs_sleep_on(&tree->wait); } tree->lock = 1; if ((tree->bthFree - tree->reserved) < reserve) { hfs_btree_extend(tree); } tree->lock = 0; hfs_wake_up(&tree->wait); if ((tree->bthFree - tree->reserved) < reserve) { return -ENOSPC; } else { goto restart; } } tree->reserved += reserve; hfs_brec_lock(&brec, NULL); } retval = binsert(&brec, key, data, keysize, datasize, reserve); hfs_brec_relse(&brec, NULL); if (!retval) { ++tree->bthNRecs; tree->dirt = 1; } return retval; } |