Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 | /* $Id: time.c,v 1.12 1999/06/13 16:30:34 ralf Exp $ * * Copyright (C) 1991, 1992, 1995 Linus Torvalds * Copyright (C) 1996, 1997, 1998 Ralf Baechle * * This file contains the time handling details for PC-style clocks as * found in some MIPS systems. */ #include <linux/config.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/param.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <asm/bootinfo.h> #include <asm/mipsregs.h> #include <asm/io.h> #include <asm/irq.h> #include <linux/mc146818rtc.h> #include <linux/timex.h> extern volatile unsigned long lost_ticks; /* * Change this if you have some constant time drift */ /* This is the value for the PC-style PICs. */ /* #define USECS_PER_JIFFY (1000020/HZ) */ /* This is for machines which generate the exact clock. */ #define USECS_PER_JIFFY (1000000/HZ) /* Cycle counter value at the previous timer interrupt.. */ static unsigned int timerhi = 0, timerlo = 0; /* * On MIPS only R4000 and better have a cycle counter. * * FIXME: Does playing with the RP bit in c0_status interfere with this code? */ static unsigned long do_fast_gettimeoffset(void) { u32 count; unsigned long res, tmp; /* Last jiffy when do_fast_gettimeoffset() was called. */ static unsigned long last_jiffies=0; unsigned long quotient; /* * Cached "1/(clocks per usec)*2^32" value. * It has to be recalculated once each jiffy. */ static unsigned long cached_quotient=0; tmp = jiffies; quotient = cached_quotient; if (tmp && last_jiffies != tmp) { last_jiffies = tmp; __asm__(".set\tnoreorder\n\t" ".set\tnoat\n\t" ".set\tmips3\n\t" "lwu\t%0,%2\n\t" "dsll32\t$1,%1,0\n\t" "or\t$1,$1,%0\n\t" "ddivu\t$0,$1,%3\n\t" "mflo\t$1\n\t" "dsll32\t%0,%4,0\n\t" "nop\n\t" "ddivu\t$0,%0,$1\n\t" "mflo\t%0\n\t" ".set\tmips0\n\t" ".set\tat\n\t" ".set\treorder" :"=&r" (quotient) :"r" (timerhi), "m" (timerlo), "r" (tmp), "r" (USECS_PER_JIFFY) :"$1"); cached_quotient = quotient; } /* Get last timer tick in absolute kernel time */ count = read_32bit_cp0_register(CP0_COUNT); /* .. relative to previous jiffy (32 bits is enough) */ count -= timerlo; //printk("count: %08lx, %08lx:%08lx\n", count, timerhi, timerlo); __asm__("multu\t%1,%2\n\t" "mfhi\t%0" :"=r" (res) :"r" (count), "r" (quotient)); /* * Due to possible jiffies inconsistencies, we need to check * the result so that we'll get a timer that is monotonic. */ if (res >= USECS_PER_JIFFY) res = USECS_PER_JIFFY-1; return res; } /* This function must be called with interrupts disabled * It was inspired by Steve McCanne's microtime-i386 for BSD. -- jrs * * However, the pc-audio speaker driver changes the divisor so that * it gets interrupted rather more often - it loads 64 into the * counter rather than 11932! This has an adverse impact on * do_gettimeoffset() -- it stops working! What is also not * good is that the interval that our timer function gets called * is no longer 10.0002 ms, but 9.9767 ms. To get around this * would require using a different timing source. Maybe someone * could use the RTC - I know that this can interrupt at frequencies * ranging from 8192Hz to 2Hz. If I had the energy, I'd somehow fix * it so that at startup, the timer code in sched.c would select * using either the RTC or the 8253 timer. The decision would be * based on whether there was any other device around that needed * to trample on the 8253. I'd set up the RTC to interrupt at 1024 Hz, * and then do some jiggery to have a version of do_timer that * advanced the clock by 1/1024 s. Every time that reached over 1/100 * of a second, then do all the old code. If the time was kept correct * then do_gettimeoffset could just return 0 - there is no low order * divider that can be accessed. * * Ideally, you would be able to use the RTC for the speaker driver, * but it appears that the speaker driver really needs interrupt more * often than every 120 us or so. * * Anyway, this needs more thought.... pjsg (1993-08-28) * * If you are really that interested, you should be reading * comp.protocols.time.ntp! */ #define TICK_SIZE tick static unsigned long do_slow_gettimeoffset(void) { int count; static int count_p = LATCH; /* for the first call after boot */ static unsigned long jiffies_p = 0; /* * cache volatile jiffies temporarily; we have IRQs turned off. */ unsigned long jiffies_t; /* timer count may underflow right here */ outb_p(0x00, 0x43); /* latch the count ASAP */ count = inb_p(0x40); /* read the latched count */ /* * We do this guaranteed double memory access instead of a _p * postfix in the previous port access. Wheee, hackady hack */ jiffies_t = jiffies; count |= inb_p(0x40) << 8; /* * avoiding timer inconsistencies (they are rare, but they happen)... * there are two kinds of problems that must be avoided here: * 1. the timer counter underflows * 2. hardware problem with the timer, not giving us continuous time, * the counter does small "jumps" upwards on some Pentium systems, * (see c't 95/10 page 335 for Neptun bug.) */ if( jiffies_t == jiffies_p ) { if( count > count_p ) { /* the nutcase */ outb_p(0x0A, 0x20); /* assumption about timer being IRQ1 */ if (inb(0x20) & 0x01) { /* * We cannot detect lost timer interrupts ... * well, that's why we call them lost, don't we? :) * [hmm, on the Pentium and Alpha we can ... sort of] */ count -= LATCH; } else { printk("do_slow_gettimeoffset(): hardware timer problem?\n"); } } } else jiffies_p = jiffies_t; count_p = count; count = ((LATCH-1) - count) * TICK_SIZE; count = (count + LATCH/2) / LATCH; return count; } static unsigned long (*do_gettimeoffset)(void) = do_slow_gettimeoffset; /* * This version of gettimeofday has near microsecond resolution. */ void do_gettimeofday(struct timeval *tv) { unsigned long flags; save_and_cli(flags); *tv = xtime; tv->tv_usec += do_gettimeoffset(); /* * xtime is atomically updated in timer_bh. lost_ticks is * nonzero if the timer bottom half hasnt executed yet. */ if (lost_ticks) tv->tv_usec += USECS_PER_JIFFY; restore_flags(flags); if (tv->tv_usec >= 1000000) { tv->tv_usec -= 1000000; tv->tv_sec++; } } void do_settimeofday(struct timeval *tv) { cli(); /* This is revolting. We need to set the xtime.tv_usec * correctly. However, the value in this location is * is value at the last tick. * Discover what correction gettimeofday * would have done, and then undo it! */ tv->tv_usec -= do_gettimeoffset(); if (tv->tv_usec < 0) { tv->tv_usec += 1000000; tv->tv_sec--; } xtime = *tv; time_adjust = 0; /* stop active adjtime() */ time_status |= STA_UNSYNC; time_maxerror = NTP_PHASE_LIMIT; time_esterror = NTP_PHASE_LIMIT; sti(); } /* * In order to set the CMOS clock precisely, set_rtc_mmss has to be * called 500 ms after the second nowtime has started, because when * nowtime is written into the registers of the CMOS clock, it will * jump to the next second precisely 500 ms later. Check the Motorola * MC146818A or Dallas DS12887 data sheet for details. * * BUG: This routine does not handle hour overflow properly; it just * sets the minutes. Usually you won't notice until after reboot! */ static int set_rtc_mmss(unsigned long nowtime) { int retval = 0; int real_seconds, real_minutes, cmos_minutes; unsigned char save_control, save_freq_select; save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being set */ CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL); save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset prescaler */ CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT); cmos_minutes = CMOS_READ(RTC_MINUTES); if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) BCD_TO_BIN(cmos_minutes); /* * since we're only adjusting minutes and seconds, * don't interfere with hour overflow. This avoids * messing with unknown time zones but requires your * RTC not to be off by more than 15 minutes */ real_seconds = nowtime % 60; real_minutes = nowtime / 60; if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) real_minutes += 30; /* correct for half hour time zone */ real_minutes %= 60; if (abs(real_minutes - cmos_minutes) < 30) { if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { BIN_TO_BCD(real_seconds); BIN_TO_BCD(real_minutes); } CMOS_WRITE(real_seconds,RTC_SECONDS); CMOS_WRITE(real_minutes,RTC_MINUTES); } else { printk(KERN_WARNING "set_rtc_mmss: can't update from %d to %d\n", cmos_minutes, real_minutes); retval = -1; } /* The following flags have to be released exactly in this order, * otherwise the DS12887 (popular MC146818A clone with integrated * battery and quartz) will not reset the oscillator and will not * update precisely 500 ms later. You won't find this mentioned in * the Dallas Semiconductor data sheets, but who believes data * sheets anyway ... -- Markus Kuhn */ CMOS_WRITE(save_control, RTC_CONTROL); CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); return retval; } /* last time the cmos clock got updated */ static long last_rtc_update = 0; /* * timer_interrupt() needs to keep up the real-time clock, * as well as call the "do_timer()" routine every clocktick */ static void inline timer_interrupt(int irq, void *dev_id, struct pt_regs * regs) { #ifdef CONFIG_PROFILE if(!user_mode(regs)) { if (prof_buffer && current->pid) { extern int _stext; unsigned long pc = regs->cp0_epc; pc -= (unsigned long) &_stext; pc >>= prof_shift; /* * Dont ignore out-of-bounds pc values silently, * put them into the last histogram slot, so if * present, they will show up as a sharp peak. */ if (pc > prof_len-1) pc = prof_len-1; atomic_inc((atomic_t *)&prof_buffer[pc]); } } #endif do_timer(regs); /* * If we have an externally synchronized Linux clock, then update * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be * called as close as possible to 500 ms before the new second starts. */ if ((time_status & STA_UNSYNC) == 0 && xtime.tv_sec > last_rtc_update + 660 && xtime.tv_usec >= 500000 - ((unsigned) tick) / 2 && xtime.tv_usec <= 500000 + ((unsigned) tick) / 2) if (set_rtc_mmss(xtime.tv_sec) == 0) last_rtc_update = xtime.tv_sec; else last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */ /* As we return to user mode fire off the other CPU schedulers.. this is basically because we don't yet share IRQ's around. This message is rigged to be safe on the 386 - basically it's a hack, so don't look closely for now.. */ /*smp_message_pass(MSG_ALL_BUT_SELF, MSG_RESCHEDULE, 0L, 0); */ } static void r4k_timer_interrupt(int irq, void *dev_id, struct pt_regs * regs) { unsigned int count; /* * The cycle counter is only 32 bit which is good for about * a minute at current count rates of upto 150MHz or so. */ count = read_32bit_cp0_register(CP0_COUNT); timerhi += (count < timerlo); /* Wrap around */ timerlo = count; timer_interrupt(irq, dev_id, regs); if (!jiffies) { /* * If jiffies has overflowed in this timer_interrupt we must * update the timer[hi]/[lo] to make do_fast_gettimeoffset() * quotient calc still valid. -arca */ timerhi = timerlo = 0; } } /* Converts Gregorian date to seconds since 1970-01-01 00:00:00. * Assumes input in normal date format, i.e. 1980-12-31 23:59:59 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59. * * [For the Julian calendar (which was used in Russia before 1917, * Britain & colonies before 1752, anywhere else before 1582, * and is still in use by some communities) leave out the * -year/100+year/400 terms, and add 10.] * * This algorithm was first published by Gauss (I think). * * WARNING: this function will overflow on 2106-02-07 06:28:16 on * machines were long is 32-bit! (However, as time_t is signed, we * will already get problems at other places on 2038-01-19 03:14:08) */ static inline unsigned long mktime(unsigned int year, unsigned int mon, unsigned int day, unsigned int hour, unsigned int min, unsigned int sec) { if (0 >= (int) (mon -= 2)) { /* 1..12 -> 11,12,1..10 */ mon += 12; /* Puts Feb last since it has leap day */ year -= 1; } return ((( (unsigned long)(year/4 - year/100 + year/400 + 367*mon/12 + day) + year*365 - 719499 )*24 + hour /* now have hours */ )*60 + min /* now have minutes */ )*60 + sec; /* finally seconds */ } char cyclecounter_available; static inline void init_cycle_counter(void) { switch(mips_cputype) { case CPU_UNKNOWN: case CPU_R2000: case CPU_R3000: case CPU_R3000A: case CPU_R3041: case CPU_R3051: case CPU_R3052: case CPU_R3081: case CPU_R3081E: case CPU_R6000: case CPU_R6000A: case CPU_R8000: /* Not shure about that one, play safe */ cyclecounter_available = 0; break; case CPU_R4000PC: case CPU_R4000SC: case CPU_R4000MC: case CPU_R4200: case CPU_R4400PC: case CPU_R4400SC: case CPU_R4400MC: case CPU_R4600: case CPU_R10000: case CPU_R4300: case CPU_R4650: case CPU_R4700: case CPU_R5000: case CPU_R5000A: case CPU_R4640: case CPU_NEVADA: cyclecounter_available = 1; break; } } struct irqaction irq0 = { timer_interrupt, SA_INTERRUPT, 0, "timer", NULL, NULL}; void (*board_time_init)(struct irqaction *irq); __initfunc(void time_init(void)) { unsigned int epoch, year, mon, day, hour, min, sec; int i; /* The Linux interpretation of the CMOS clock register contents: * When the Update-In-Progress (UIP) flag goes from 1 to 0, the * RTC registers show the second which has precisely just started. * Let's hope other operating systems interpret the RTC the same way. */ /* read RTC exactly on falling edge of update flag */ for (i = 0 ; i < 1000000 ; i++) /* may take up to 1 second... */ if (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP) break; for (i = 0 ; i < 1000000 ; i++) /* must try at least 2.228 ms */ if (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)) break; do { /* Isn't this overkill ? UIP above should guarantee consistency */ sec = CMOS_READ(RTC_SECONDS); min = CMOS_READ(RTC_MINUTES); hour = CMOS_READ(RTC_HOURS); day = CMOS_READ(RTC_DAY_OF_MONTH); mon = CMOS_READ(RTC_MONTH); year = CMOS_READ(RTC_YEAR); } while (sec != CMOS_READ(RTC_SECONDS)); if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { BCD_TO_BIN(sec); BCD_TO_BIN(min); BCD_TO_BIN(hour); BCD_TO_BIN(day); BCD_TO_BIN(mon); BCD_TO_BIN(year); } /* Attempt to guess the epoch. This is the same heuristic as in rtc.c so no stupid things will happen to timekeeping. Who knows, maybe Ultrix also uses 1952 as epoch ... */ if (year > 10 && year < 44) { epoch = 1980; } else if (year < 96) { epoch = 1952; } year += epoch; xtime.tv_sec = mktime(year, mon, day, hour, min, sec); xtime.tv_usec = 0; init_cycle_counter(); if (cyclecounter_available) { write_32bit_cp0_register(CP0_COUNT, 0); do_gettimeoffset = do_fast_gettimeoffset; irq0.handler = r4k_timer_interrupt; } board_time_init(&irq0); } |