Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 | /* * linux/net/sunrpc/sched.c * * Scheduling for synchronous and asynchronous RPC requests. * * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de> * * TCP NFS related read + write fixes * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie> */ #include <linux/module.h> #define __KERNEL_SYSCALLS__ #include <linux/sched.h> #include <linux/interrupt.h> #include <linux/malloc.h> #include <linux/unistd.h> #include <linux/smp.h> #include <linux/smp_lock.h> #include <linux/sunrpc/clnt.h> #ifdef RPC_DEBUG #define RPCDBG_FACILITY RPCDBG_SCHED static int rpc_task_id = 0; #endif /* * We give RPC the same get_free_pages priority as NFS */ #define GFP_RPC GFP_NFS static void __rpc_default_timer(struct rpc_task *task); static void rpciod_killall(void); /* * When an asynchronous RPC task is activated within a bottom half * handler, or while executing another RPC task, it is put on * schedq, and rpciod is woken up. */ static struct rpc_wait_queue schedq = RPC_INIT_WAITQ("schedq"); /* * RPC tasks that create another task (e.g. for contacting the portmapper) * will wait on this queue for their child's completion */ static struct rpc_wait_queue childq = RPC_INIT_WAITQ("childq"); /* * RPC tasks sit here while waiting for conditions to improve. */ static struct rpc_wait_queue delay_queue = RPC_INIT_WAITQ("delayq"); /* * All RPC tasks are linked into this list */ static struct rpc_task * all_tasks = NULL; /* * rpciod-related stuff */ static struct wait_queue * rpciod_idle = NULL; static struct wait_queue * rpciod_killer = NULL; static struct semaphore rpciod_sema = MUTEX; static unsigned int rpciod_users = 0; static pid_t rpciod_pid = 0; static int rpc_inhibit = 0; /* * This is the last-ditch buffer for NFS swap requests */ static u32 swap_buffer[PAGE_SIZE >> 2]; static int swap_buffer_used = 0; /* * Add new request to wait queue. * * Swapper tasks always get inserted at the head of the queue. * This should avoid many nasty memory deadlocks and hopefully * improve overall performance. * Everyone else gets appended to the queue to ensure proper FIFO behavior. */ int rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) { if (task->tk_rpcwait) { if (task->tk_rpcwait != queue) { printk(KERN_WARNING "RPC: doubly enqueued task!\n"); return -EWOULDBLOCK; } return 0; } if (RPC_IS_SWAPPER(task)) rpc_insert_list(&queue->task, task); else rpc_append_list(&queue->task, task); task->tk_rpcwait = queue; dprintk("RPC: %4d added to queue %p \"%s\"\n", task->tk_pid, queue, rpc_qname(queue)); return 0; } /* * Remove request from queue. * Note: must be called with interrupts disabled. */ void rpc_remove_wait_queue(struct rpc_task *task) { struct rpc_wait_queue *queue; if (!(queue = task->tk_rpcwait)) return; rpc_remove_list(&queue->task, task); task->tk_rpcwait = NULL; dprintk("RPC: %4d removed from queue %p \"%s\"\n", task->tk_pid, queue, rpc_qname(queue)); } /* * Set up a timer for the current task. */ inline void rpc_add_timer(struct rpc_task *task, rpc_action timer) { unsigned long expires = jiffies + task->tk_timeout; dprintk("RPC: %4d setting alarm for %lu ms\n", task->tk_pid, task->tk_timeout * 1000 / HZ); if (!timer) timer = __rpc_default_timer; if (time_before(expires, jiffies)) { printk(KERN_ERR "RPC: bad timeout value %ld - setting to 10 sec!\n", task->tk_timeout); expires = jiffies + 10 * HZ; } task->tk_timer.expires = expires; task->tk_timer.data = (unsigned long) task; task->tk_timer.function = (void (*)(unsigned long)) timer; task->tk_timer.prev = NULL; task->tk_timer.next = NULL; add_timer(&task->tk_timer); } /* * Delete any timer for the current task. * Must be called with interrupts off. */ inline void rpc_del_timer(struct rpc_task *task) { if (task->tk_timeout) { dprintk("RPC: %4d deleting timer\n", task->tk_pid); del_timer(&task->tk_timer); task->tk_timeout = 0; } } /* * Make an RPC task runnable. * * Note: If the task is ASYNC, this must be called with * interrupts disabled to protect the wait queue operation. */ static inline void rpc_make_runnable(struct rpc_task *task) { if (task->tk_timeout) { printk(KERN_ERR "RPC: task w/ running timer in rpc_make_runnable!!\n"); return; } task->tk_flags |= RPC_TASK_RUNNING; if (RPC_IS_ASYNC(task)) { int status; status = rpc_add_wait_queue(&schedq, task); if (status) { printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status); task->tk_status = status; } wake_up(&rpciod_idle); } else { wake_up(&task->tk_wait); } } /* * For other people who may need to wake the I/O daemon * but should (for now) know nothing about its innards */ void rpciod_wake_up(void) { if(rpciod_pid==0) { printk(KERN_ERR "rpciod: wot no daemon?\n"); } wake_up(&rpciod_idle); } /* * Prepare for sleeping on a wait queue. * By always appending tasks to the list we ensure FIFO behavior. * NB: An RPC task will only receive interrupt-driven events as long * as it's on a wait queue. */ static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, rpc_action action, rpc_action timer) { unsigned long oldflags; int status; dprintk("RPC: %4d sleep_on(queue \"%s\" time %ld)\n", task->tk_pid, rpc_qname(q), jiffies); /* * Protect the execution below. */ save_flags(oldflags); cli(); status = rpc_add_wait_queue(q, task); if (status) { printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status); task->tk_status = status; task->tk_flags |= RPC_TASK_RUNNING; } else { task->tk_callback = action; if (task->tk_timeout) rpc_add_timer(task, timer); task->tk_flags &= ~RPC_TASK_RUNNING; } restore_flags(oldflags); return; } void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, rpc_action action, rpc_action timer) { __rpc_sleep_on(q, task, action, timer); } /* * Wake up a single task -- must be invoked with bottom halves off. * * It would probably suffice to cli/sti the del_timer and remove_wait_queue * operations individually. */ static void __rpc_wake_up(struct rpc_task *task) { dprintk("RPC: %4d __rpc_wake_up (now %ld inh %d)\n", task->tk_pid, jiffies, rpc_inhibit); #ifdef RPC_DEBUG if (task->tk_magic != 0xf00baa) { printk(KERN_ERR "RPC: attempt to wake up non-existing task!\n"); rpc_debug = ~0; return; } #endif rpc_del_timer(task); if (task->tk_rpcwait != &schedq) rpc_remove_wait_queue(task); if (!RPC_IS_RUNNING(task)) { task->tk_flags |= RPC_TASK_CALLBACK; rpc_make_runnable(task); } dprintk("RPC: __rpc_wake_up done\n"); } /* * Default timeout handler if none specified by user */ static void __rpc_default_timer(struct rpc_task *task) { dprintk("RPC: %d timeout (default timer)\n", task->tk_pid); task->tk_status = -ETIMEDOUT; task->tk_timeout = 0; __rpc_wake_up(task); } /* * Wake up the specified task */ void rpc_wake_up_task(struct rpc_task *task) { unsigned long oldflags; save_flags(oldflags); cli(); __rpc_wake_up(task); restore_flags(oldflags); } /* * Wake up the next task on the wait queue. */ struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue) { unsigned long oldflags; struct rpc_task *task; dprintk("RPC: wake_up_next(%p \"%s\")\n", queue, rpc_qname(queue)); save_flags(oldflags); cli(); if ((task = queue->task) != 0) __rpc_wake_up(task); restore_flags(oldflags); return task; } /* * Wake up all tasks on a queue */ void rpc_wake_up(struct rpc_wait_queue *queue) { unsigned long oldflags; save_flags(oldflags); cli(); while (queue->task) __rpc_wake_up(queue->task); restore_flags(oldflags); } /* * Wake up all tasks on a queue, and set their status value. */ void rpc_wake_up_status(struct rpc_wait_queue *queue, int status) { struct rpc_task *task; unsigned long oldflags; save_flags(oldflags); cli(); while ((task = queue->task) != NULL) { task->tk_status = status; __rpc_wake_up(task); } restore_flags(oldflags); } /* * Run a task at a later time */ static void __rpc_atrun(struct rpc_task *); void rpc_delay(struct rpc_task *task, unsigned long delay) { task->tk_timeout = delay; rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun); } static void __rpc_atrun(struct rpc_task *task) { task->tk_status = 0; __rpc_wake_up(task); } /* * This is the RPC `scheduler' (or rather, the finite state machine). */ static int __rpc_execute(struct rpc_task *task) { unsigned long oldflags; int status = 0; dprintk("RPC: %4d rpc_execute flgs %x\n", task->tk_pid, task->tk_flags); if (!RPC_IS_RUNNING(task)) { printk(KERN_WARNING "RPC: rpc_execute called for sleeping task!!\n"); return 0; } while (1) { /* * Execute any pending callback. */ if (task->tk_flags & RPC_TASK_CALLBACK) { /* Define a callback save pointer */ void (*save_callback)(struct rpc_task *); task->tk_flags &= ~RPC_TASK_CALLBACK; /* * If a callback exists, save it, reset it, * call it. * The save is needed to stop from resetting * another callback set within the callback handler * - Dave */ if (task->tk_callback) { save_callback=task->tk_callback; task->tk_callback=NULL; save_callback(task); } } /* * Perform the next FSM step. * tk_action may be NULL when the task has been killed * by someone else. */ if (RPC_IS_RUNNING(task)) { if (!task->tk_action) break; task->tk_action(task); } /* * Check whether task is sleeping. * Note that if the task may go to sleep in tk_action, * and the RPC reply arrives before we get here, it will * have state RUNNING, but will still be on schedq. */ save_flags(oldflags); cli(); if (RPC_IS_RUNNING(task)) { if (task->tk_rpcwait == &schedq) rpc_remove_wait_queue(task); } else while (!RPC_IS_RUNNING(task)) { if (RPC_IS_ASYNC(task)) { restore_flags(oldflags); return 0; } /* sync task: sleep here */ dprintk("RPC: %4d sync task going to sleep\n", task->tk_pid); if (current->pid == rpciod_pid) printk(KERN_ERR "RPC: rpciod waiting on sync task!\n"); sti(); __wait_event(task->tk_wait, RPC_IS_RUNNING(task)); cli(); /* * When the task received a signal, remove from * any queues etc, and make runnable again. */ if (signalled()) __rpc_wake_up(task); dprintk("RPC: %4d sync task resuming\n", task->tk_pid); } restore_flags(oldflags); /* * When a sync task receives a signal, it exits with * -ERESTARTSYS. In order to catch any callbacks that * clean up after sleeping on some queue, we don't * break the loop here, but go around once more. */ if (!RPC_IS_ASYNC(task) && signalled()) { dprintk("RPC: %4d got signal\n", task->tk_pid); rpc_exit(task, -ERESTARTSYS); } } dprintk("RPC: %4d exit() = %d\n", task->tk_pid, task->tk_status); if (task->tk_exit) { status = task->tk_status; task->tk_exit(task); } return status; } /* * User-visible entry point to the scheduler. * The recursion protection is for debugging. It should go away once * the code has stabilized. */ void rpc_execute(struct rpc_task *task) { static int executing = 0; int incr = RPC_IS_ASYNC(task)? 1 : 0; if (incr) { if (rpc_inhibit) { printk(KERN_INFO "RPC: execution inhibited!\n"); return; } if (executing) printk(KERN_WARNING "RPC: %d tasks executed\n", executing); } executing += incr; __rpc_execute(task); executing -= incr; } /* * This is our own little scheduler for async RPC tasks. */ static void __rpc_schedule(void) { struct rpc_task *task; int count = 0; unsigned long oldflags; int need_resched = current->need_resched; dprintk("RPC: rpc_schedule enter\n"); save_flags(oldflags); while (1) { cli(); if (!(task = schedq.task)) break; rpc_del_timer(task); rpc_remove_wait_queue(task); task->tk_flags |= RPC_TASK_RUNNING; restore_flags(oldflags); __rpc_execute(task); if (++count >= 200) { count = 0; need_resched = 1; } if (need_resched) schedule(); } restore_flags(oldflags); dprintk("RPC: rpc_schedule leave\n"); } /* * Allocate memory for RPC purpose. * * This is yet another tricky issue: For sync requests issued by * a user process, we want to make kmalloc sleep if there isn't * enough memory. Async requests should not sleep too excessively * because that will block rpciod (but that's not dramatic when * it's starved of memory anyway). Finally, swapout requests should * never sleep at all, and should not trigger another swap_out * request through kmalloc which would just increase memory contention. * * I hope the following gets it right, which gives async requests * a slight advantage over sync requests (good for writeback, debatable * for readahead): * * sync user requests: GFP_KERNEL * async requests: GFP_RPC (== GFP_NFS) * swap requests: GFP_ATOMIC (or new GFP_SWAPPER) */ void * rpc_allocate(unsigned int flags, unsigned int size) { u32 *buffer; int gfp; if (flags & RPC_TASK_SWAPPER) gfp = GFP_ATOMIC; else if (flags & RPC_TASK_ASYNC) gfp = GFP_RPC; else gfp = GFP_KERNEL; do { if ((buffer = (u32 *) kmalloc(size, gfp)) != NULL) { dprintk("RPC: allocated buffer %p\n", buffer); return buffer; } if ((flags & RPC_TASK_SWAPPER) && !swap_buffer_used++) { dprintk("RPC: used last-ditch swap buffer\n"); return swap_buffer; } if (flags & RPC_TASK_ASYNC) return NULL; current->state = TASK_INTERRUPTIBLE; schedule_timeout(HZ>>4); } while (!signalled()); return NULL; } void rpc_free(void *buffer) { if (buffer != swap_buffer) { kfree(buffer); return; } swap_buffer_used = 0; } /* * Creation and deletion of RPC task structures */ inline void rpc_init_task(struct rpc_task *task, struct rpc_clnt *clnt, rpc_action callback, int flags) { memset(task, 0, sizeof(*task)); task->tk_client = clnt; task->tk_flags = RPC_TASK_RUNNING | flags; task->tk_exit = callback; if (current->uid != current->fsuid || current->gid != current->fsgid) task->tk_flags |= RPC_TASK_SETUID; /* Initialize retry counters */ task->tk_garb_retry = 2; task->tk_cred_retry = 2; task->tk_suid_retry = 1; /* Add to global list of all tasks */ task->tk_next_task = all_tasks; task->tk_prev_task = NULL; if (all_tasks) all_tasks->tk_prev_task = task; all_tasks = task; if (clnt) clnt->cl_users++; #ifdef RPC_DEBUG task->tk_magic = 0xf00baa; task->tk_pid = rpc_task_id++; #endif dprintk("RPC: %4d new task procpid %d\n", task->tk_pid, current->pid); } /* * Create a new task for the specified client. We have to * clean up after an allocation failure, as the client may * have specified "oneshot". */ struct rpc_task * rpc_new_task(struct rpc_clnt *clnt, rpc_action callback, int flags) { struct rpc_task *task; task = (struct rpc_task *) rpc_allocate(flags, sizeof(*task)); if (!task) goto cleanup; rpc_init_task(task, clnt, callback, flags); dprintk("RPC: %4d allocated task\n", task->tk_pid); task->tk_flags |= RPC_TASK_DYNAMIC; out: return task; cleanup: /* Check whether to release the client */ if (clnt) { printk("rpc_new_task: failed, users=%d, oneshot=%d\n", clnt->cl_users, clnt->cl_oneshot); clnt->cl_users++; /* pretend we were used ... */ rpc_release_client(clnt); } goto out; } void rpc_release_task(struct rpc_task *task) { struct rpc_task *next, *prev; dprintk("RPC: %4d release task\n", task->tk_pid); /* Remove from global task list */ prev = task->tk_prev_task; next = task->tk_next_task; if (next) next->tk_prev_task = prev; if (prev) prev->tk_next_task = next; else all_tasks = next; /* Release resources */ if (task->tk_rqstp) xprt_release(task); if (task->tk_cred) rpcauth_releasecred(task); if (task->tk_buffer) { rpc_free(task->tk_buffer); task->tk_buffer = NULL; } if (task->tk_client) { rpc_release_client(task->tk_client); task->tk_client = NULL; } #ifdef RPC_DEBUG task->tk_magic = 0; #endif if (task->tk_flags & RPC_TASK_DYNAMIC) { dprintk("RPC: %4d freeing task\n", task->tk_pid); task->tk_flags &= ~RPC_TASK_DYNAMIC; rpc_free(task); } } /* * Handling of RPC child tasks * We can't simply call wake_up(parent) here, because the * parent task may already have gone away */ static inline struct rpc_task * rpc_find_parent(struct rpc_task *child) { struct rpc_task *temp, *parent; parent = (struct rpc_task *) child->tk_calldata; for (temp = childq.task; temp; temp = temp->tk_next) { if (temp == parent) return parent; } return NULL; } static void rpc_child_exit(struct rpc_task *child) { struct rpc_task *parent; if ((parent = rpc_find_parent(child)) != NULL) { parent->tk_status = child->tk_status; rpc_wake_up_task(parent); } rpc_release_task(child); } /* * Note: rpc_new_task releases the client after a failure. */ struct rpc_task * rpc_new_child(struct rpc_clnt *clnt, struct rpc_task *parent) { struct rpc_task *task; task = rpc_new_task(clnt, NULL, RPC_TASK_ASYNC | RPC_TASK_CHILD); if (!task) goto fail; task->tk_exit = rpc_child_exit; task->tk_calldata = parent; return task; fail: parent->tk_status = -ENOMEM; return NULL; } void rpc_run_child(struct rpc_task *task, struct rpc_task *child, rpc_action func) { unsigned long oldflags; save_flags(oldflags); cli(); rpc_make_runnable(child); restore_flags(oldflags); /* N.B. Is it possible for the child to have already finished? */ rpc_sleep_on(&childq, task, func, NULL); } /* * Kill all tasks for the given client. * XXX: kill their descendants as well? */ void rpc_killall_tasks(struct rpc_clnt *clnt) { struct rpc_task **q, *rovr; dprintk("RPC: killing all tasks for client %p\n", clnt); /* N.B. Why bother to inhibit? Nothing blocks here ... */ rpc_inhibit++; for (q = &all_tasks; (rovr = *q); q = &rovr->tk_next_task) { if (!clnt || rovr->tk_client == clnt) { rovr->tk_flags |= RPC_TASK_KILLED; rpc_exit(rovr, -EIO); rpc_wake_up_task(rovr); } } rpc_inhibit--; } static struct semaphore rpciod_running = MUTEX_LOCKED; /* * This is the rpciod kernel thread */ static int rpciod(void *ptr) { struct wait_queue **assassin = (struct wait_queue **) ptr; unsigned long oldflags; int rounds = 0; MOD_INC_USE_COUNT; lock_kernel(); /* * Let our maker know we're running ... */ rpciod_pid = current->pid; up(&rpciod_running); exit_files(current); exit_mm(current); spin_lock_irq(¤t->sigmask_lock); siginitsetinv(¤t->blocked, sigmask(SIGKILL)); recalc_sigpending(current); spin_unlock_irq(¤t->sigmask_lock); current->session = 1; current->pgrp = 1; sprintf(current->comm, "rpciod"); dprintk("RPC: rpciod starting (pid %d)\n", rpciod_pid); while (rpciod_users) { if (signalled()) { rpciod_killall(); flush_signals(current); } __rpc_schedule(); if (++rounds >= 64) { /* safeguard */ schedule(); rounds = 0; } save_flags(oldflags); cli(); dprintk("RPC: rpciod running checking dispatch\n"); rpciod_tcp_dispatcher(); if (!schedq.task) { dprintk("RPC: rpciod back to sleep\n"); interruptible_sleep_on(&rpciod_idle); dprintk("RPC: switch to rpciod\n"); rpciod_tcp_dispatcher(); rounds = 0; } restore_flags(oldflags); } dprintk("RPC: rpciod shutdown commences\n"); if (all_tasks) { printk(KERN_ERR "rpciod: active tasks at shutdown?!\n"); rpciod_killall(); } rpciod_pid = 0; wake_up(assassin); dprintk("RPC: rpciod exiting\n"); MOD_DEC_USE_COUNT; return 0; } static void rpciod_killall(void) { unsigned long flags; while (all_tasks) { current->sigpending = 0; rpc_killall_tasks(NULL); __rpc_schedule(); if (all_tasks) { dprintk("rpciod_killall: waiting for tasks to exit\n"); current->state = TASK_INTERRUPTIBLE; schedule_timeout(1); } } spin_lock_irqsave(¤t->sigmask_lock, flags); recalc_sigpending(current); spin_unlock_irqrestore(¤t->sigmask_lock, flags); } /* * Start up the rpciod process if it's not already running. */ int rpciod_up(void) { int error = 0; MOD_INC_USE_COUNT; down(&rpciod_sema); dprintk("rpciod_up: pid %d, users %d\n", rpciod_pid, rpciod_users); rpciod_users++; if (rpciod_pid) goto out; /* * If there's no pid, we should be the first user. */ if (rpciod_users > 1) printk(KERN_WARNING "rpciod_up: no pid, %d users??\n", rpciod_users); /* * Create the rpciod thread and wait for it to start. */ error = kernel_thread(rpciod, &rpciod_killer, 0); if (error < 0) { printk(KERN_WARNING "rpciod_up: create thread failed, error=%d\n", error); rpciod_users--; goto out; } down(&rpciod_running); error = 0; out: up(&rpciod_sema); MOD_DEC_USE_COUNT; return error; } void rpciod_down(void) { unsigned long flags; MOD_INC_USE_COUNT; down(&rpciod_sema); dprintk("rpciod_down pid %d sema %d\n", rpciod_pid, rpciod_users); if (rpciod_users) { if (--rpciod_users) goto out; } else printk(KERN_WARNING "rpciod_down: pid=%d, no users??\n", rpciod_pid); if (!rpciod_pid) { dprintk("rpciod_down: Nothing to do!\n"); goto out; } kill_proc(rpciod_pid, SIGKILL, 1); /* * Usually rpciod will exit very quickly, so we * wait briefly before checking the process id. */ current->sigpending = 0; current->state = TASK_INTERRUPTIBLE; schedule_timeout(1); /* * Display a message if we're going to wait longer. */ while (rpciod_pid) { dprintk("rpciod_down: waiting for pid %d to exit\n", rpciod_pid); if (signalled()) { dprintk("rpciod_down: caught signal\n"); break; } interruptible_sleep_on(&rpciod_killer); } spin_lock_irqsave(¤t->sigmask_lock, flags); recalc_sigpending(current); spin_unlock_irqrestore(¤t->sigmask_lock, flags); out: up(&rpciod_sema); MOD_DEC_USE_COUNT; } #ifdef RPC_DEBUG #include <linux/nfs_fs.h> void rpc_show_tasks(void) { struct rpc_task *t = all_tasks, *next; struct nfs_wreq *wreq; if (!t) return; printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout " "-rpcwait -action- --exit--\n"); for (; t; t = next) { next = t->tk_next_task; printk("%05d %04d %04x %06d %8p %6d %8p %08ld %8s %8p %8p\n", t->tk_pid, t->tk_proc, t->tk_flags, t->tk_status, t->tk_client, t->tk_client->cl_prog, t->tk_rqstp, t->tk_timeout, t->tk_rpcwait ? rpc_qname(t->tk_rpcwait) : " <NULL> ", t->tk_action, t->tk_exit); if (!(t->tk_flags & RPC_TASK_NFSWRITE)) continue; /* NFS write requests */ wreq = (struct nfs_wreq *) t->tk_calldata; printk(" NFS: flgs=%08x, pid=%d, pg=%p, off=(%d, %d)\n", wreq->wb_flags, wreq->wb_pid, wreq->wb_page, wreq->wb_offset, wreq->wb_bytes); printk(" name=%s/%s\n", wreq->wb_file->f_dentry->d_parent->d_name.name, wreq->wb_file->f_dentry->d_name.name); } } #endif |