Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
/*
 * linux/net/sunrpc/sched.c
 *
 * Scheduling for synchronous and asynchronous RPC requests.
 *
 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
 *
 * TCP NFS related read + write fixes
 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
 */

#include <linux/module.h>

#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/mempool.h>
#include <linux/smp.h>
#include <linux/spinlock.h>
#include <linux/mutex.h>
#include <linux/freezer.h>

#include <linux/sunrpc/clnt.h>

#include "sunrpc.h"

#ifdef RPC_DEBUG
#define RPCDBG_FACILITY		RPCDBG_SCHED
#endif

#define CREATE_TRACE_POINTS
#include <trace/events/sunrpc.h>

/*
 * RPC slabs and memory pools
 */
#define RPC_BUFFER_MAXSIZE	(2048)
#define RPC_BUFFER_POOLSIZE	(8)
#define RPC_TASK_POOLSIZE	(8)
static struct kmem_cache	*rpc_task_slabp __read_mostly;
static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
static mempool_t	*rpc_task_mempool __read_mostly;
static mempool_t	*rpc_buffer_mempool __read_mostly;

static void			rpc_async_schedule(struct work_struct *);
static void			 rpc_release_task(struct rpc_task *task);
static void __rpc_queue_timer_fn(unsigned long ptr);

/*
 * RPC tasks sit here while waiting for conditions to improve.
 */
static struct rpc_wait_queue delay_queue;

/*
 * rpciod-related stuff
 */
struct workqueue_struct *rpciod_workqueue;

/*
 * Disable the timer for a given RPC task. Should be called with
 * queue->lock and bh_disabled in order to avoid races within
 * rpc_run_timer().
 */
static void
__rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
{
	if (task->tk_timeout == 0)
		return;
	dprintk("RPC: %5u disabling timer\n", task->tk_pid);
	task->tk_timeout = 0;
	list_del(&task->u.tk_wait.timer_list);
	if (list_empty(&queue->timer_list.list))
		del_timer(&queue->timer_list.timer);
}

static void
rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
{
	queue->timer_list.expires = expires;
	mod_timer(&queue->timer_list.timer, expires);
}

/*
 * Set up a timer for the current task.
 */
static void
__rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
{
	if (!task->tk_timeout)
		return;

	dprintk("RPC: %5u setting alarm for %lu ms\n",
			task->tk_pid, task->tk_timeout * 1000 / HZ);

	task->u.tk_wait.expires = jiffies + task->tk_timeout;
	if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
		rpc_set_queue_timer(queue, task->u.tk_wait.expires);
	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
}

static void rpc_rotate_queue_owner(struct rpc_wait_queue *queue)
{
	struct list_head *q = &queue->tasks[queue->priority];
	struct rpc_task *task;

	if (!list_empty(q)) {
		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
		if (task->tk_owner == queue->owner)
			list_move_tail(&task->u.tk_wait.list, q);
	}
}

static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
{
	if (queue->priority != priority) {
		/* Fairness: rotate the list when changing priority */
		rpc_rotate_queue_owner(queue);
		queue->priority = priority;
	}
}

static void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
{
	queue->owner = pid;
	queue->nr = RPC_BATCH_COUNT;
}

static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
{
	rpc_set_waitqueue_priority(queue, queue->maxpriority);
	rpc_set_waitqueue_owner(queue, 0);
}

/*
 * Add new request to a priority queue.
 */
static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
		struct rpc_task *task,
		unsigned char queue_priority)
{
	struct list_head *q;
	struct rpc_task *t;

	INIT_LIST_HEAD(&task->u.tk_wait.links);
	if (unlikely(queue_priority > queue->maxpriority))
		queue_priority = queue->maxpriority;
	if (queue_priority > queue->priority)
		rpc_set_waitqueue_priority(queue, queue_priority);
	q = &queue->tasks[queue_priority];
	list_for_each_entry(t, q, u.tk_wait.list) {
		if (t->tk_owner == task->tk_owner) {
			list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
			return;
		}
	}
	list_add_tail(&task->u.tk_wait.list, q);
}

/*
 * Add new request to wait queue.
 *
 * Swapper tasks always get inserted at the head of the queue.
 * This should avoid many nasty memory deadlocks and hopefully
 * improve overall performance.
 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
 */
static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
		struct rpc_task *task,
		unsigned char queue_priority)
{
	WARN_ON_ONCE(RPC_IS_QUEUED(task));
	if (RPC_IS_QUEUED(task))
		return;

	if (RPC_IS_PRIORITY(queue))
		__rpc_add_wait_queue_priority(queue, task, queue_priority);
	else if (RPC_IS_SWAPPER(task))
		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
	else
		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
	task->tk_waitqueue = queue;
	queue->qlen++;
	/* barrier matches the read in rpc_wake_up_task_queue_locked() */
	smp_wmb();
	rpc_set_queued(task);

	dprintk("RPC: %5u added to queue %p \"%s\"\n",
			task->tk_pid, queue, rpc_qname(queue));
}

/*
 * Remove request from a priority queue.
 */
static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
{
	struct rpc_task *t;

	if (!list_empty(&task->u.tk_wait.links)) {
		t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
		list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
		list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
	}
}

/*
 * Remove request from queue.
 * Note: must be called with spin lock held.
 */
static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
{
	__rpc_disable_timer(queue, task);
	if (RPC_IS_PRIORITY(queue))
		__rpc_remove_wait_queue_priority(task);
	list_del(&task->u.tk_wait.list);
	queue->qlen--;
	dprintk("RPC: %5u removed from queue %p \"%s\"\n",
			task->tk_pid, queue, rpc_qname(queue));
}

static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
{
	int i;

	spin_lock_init(&queue->lock);
	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
		INIT_LIST_HEAD(&queue->tasks[i]);
	queue->maxpriority = nr_queues - 1;
	rpc_reset_waitqueue_priority(queue);
	queue->qlen = 0;
	setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
	INIT_LIST_HEAD(&queue->timer_list.list);
	rpc_assign_waitqueue_name(queue, qname);
}

void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
{
	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
}
EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);

void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
{
	__rpc_init_priority_wait_queue(queue, qname, 1);
}
EXPORT_SYMBOL_GPL(rpc_init_wait_queue);

void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
{
	del_timer_sync(&queue->timer_list.timer);
}
EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);

static int rpc_wait_bit_killable(void *word)
{
	if (fatal_signal_pending(current))
		return -ERESTARTSYS;
	freezable_schedule_unsafe();
	return 0;
}

#if defined(RPC_DEBUG) || defined(RPC_TRACEPOINTS)
static void rpc_task_set_debuginfo(struct rpc_task *task)
{
	static atomic_t rpc_pid;

	task->tk_pid = atomic_inc_return(&rpc_pid);
}
#else
static inline void rpc_task_set_debuginfo(struct rpc_task *task)
{
}
#endif

static void rpc_set_active(struct rpc_task *task)
{
	trace_rpc_task_begin(task->tk_client, task, NULL);

	rpc_task_set_debuginfo(task);
	set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
}

/*
 * Mark an RPC call as having completed by clearing the 'active' bit
 * and then waking up all tasks that were sleeping.
 */
static int rpc_complete_task(struct rpc_task *task)
{
	void *m = &task->tk_runstate;
	wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
	struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
	unsigned long flags;
	int ret;

	trace_rpc_task_complete(task->tk_client, task, NULL);

	spin_lock_irqsave(&wq->lock, flags);
	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
	ret = atomic_dec_and_test(&task->tk_count);
	if (waitqueue_active(wq))
		__wake_up_locked_key(wq, TASK_NORMAL, &k);
	spin_unlock_irqrestore(&wq->lock, flags);
	return ret;
}

/*
 * Allow callers to wait for completion of an RPC call
 *
 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
 * to enforce taking of the wq->lock and hence avoid races with
 * rpc_complete_task().
 */
int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
{
	if (action == NULL)
		action = rpc_wait_bit_killable;
	return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
			action, TASK_KILLABLE);
}
EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);

/*
 * Make an RPC task runnable.
 *
 * Note: If the task is ASYNC, and is being made runnable after sitting on an
 * rpc_wait_queue, this must be called with the queue spinlock held to protect
 * the wait queue operation.
 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
 * which is needed to ensure that __rpc_execute() doesn't loop (due to the
 * lockless RPC_IS_QUEUED() test) before we've had a chance to test
 * the RPC_TASK_RUNNING flag.
 */
static void rpc_make_runnable(struct rpc_task *task)
{
	bool need_wakeup = !rpc_test_and_set_running(task);

	rpc_clear_queued(task);
	if (!need_wakeup)
		return;
	if (RPC_IS_ASYNC(task)) {
		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
		queue_work(rpciod_workqueue, &task->u.tk_work);
	} else
		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
}

/*
 * Prepare for sleeping on a wait queue.
 * By always appending tasks to the list we ensure FIFO behavior.
 * NB: An RPC task will only receive interrupt-driven events as long
 * as it's on a wait queue.
 */
static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
		struct rpc_task *task,
		rpc_action action,
		unsigned char queue_priority)
{
	dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
			task->tk_pid, rpc_qname(q), jiffies);

	trace_rpc_task_sleep(task->tk_client, task, q);

	__rpc_add_wait_queue(q, task, queue_priority);

	WARN_ON_ONCE(task->tk_callback != NULL);
	task->tk_callback = action;
	__rpc_add_timer(q, task);
}

void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
				rpc_action action)
{
	/* We shouldn't ever put an inactive task to sleep */
	WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
	if (!RPC_IS_ACTIVATED(task)) {
		task->tk_status = -EIO;
		rpc_put_task_async(task);
		return;
	}

	/*
	 * Protect the queue operations.
	 */
	spin_lock_bh(&q->lock);
	__rpc_sleep_on_priority(q, task, action, task->tk_priority);
	spin_unlock_bh(&q->lock);
}
EXPORT_SYMBOL_GPL(rpc_sleep_on);

void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
		rpc_action action, int priority)
{
	/* We shouldn't ever put an inactive task to sleep */
	WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
	if (!RPC_IS_ACTIVATED(task)) {
		task->tk_status = -EIO;
		rpc_put_task_async(task);
		return;
	}

	/*
	 * Protect the queue operations.
	 */
	spin_lock_bh(&q->lock);
	__rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
	spin_unlock_bh(&q->lock);
}
EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);

/**
 * __rpc_do_wake_up_task - wake up a single rpc_task
 * @queue: wait queue
 * @task: task to be woken up
 *
 * Caller must hold queue->lock, and have cleared the task queued flag.
 */
static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
{
	dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
			task->tk_pid, jiffies);

	/* Has the task been executed yet? If not, we cannot wake it up! */
	if (!RPC_IS_ACTIVATED(task)) {
		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
		return;
	}

	trace_rpc_task_wakeup(task->tk_client, task, queue);

	__rpc_remove_wait_queue(queue, task);

	rpc_make_runnable(task);

	dprintk("RPC:       __rpc_wake_up_task done\n");
}

/*
 * Wake up a queued task while the queue lock is being held
 */
static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
{
	if (RPC_IS_QUEUED(task)) {
		smp_rmb();
		if (task->tk_waitqueue == queue)
			__rpc_do_wake_up_task(queue, task);
	}
}

/*
 * Wake up a task on a specific queue
 */
void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
{
	spin_lock_bh(&queue->lock);
	rpc_wake_up_task_queue_locked(queue, task);
	spin_unlock_bh(&queue->lock);
}
EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);

/*
 * Wake up the next task on a priority queue.
 */
static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
{
	struct list_head *q;
	struct rpc_task *task;

	/*
	 * Service a batch of tasks from a single owner.
	 */
	q = &queue->tasks[queue->priority];
	if (!list_empty(q)) {
		task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
		if (queue->owner == task->tk_owner) {
			if (--queue->nr)
				goto out;
			list_move_tail(&task->u.tk_wait.list, q);
		}
		/*
		 * Check if we need to switch queues.
		 */
		goto new_owner;
	}

	/*
	 * Service the next queue.
	 */
	do {
		if (q == &queue->tasks[0])
			q = &queue->tasks[queue->maxpriority];
		else
			q = q - 1;
		if (!list_empty(q)) {
			task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
			goto new_queue;
		}
	} while (q != &queue->tasks[queue->priority]);

	rpc_reset_waitqueue_priority(queue);
	return NULL;

new_queue:
	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
new_owner:
	rpc_set_waitqueue_owner(queue, task->tk_owner);
out:
	return task;
}

static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
{
	if (RPC_IS_PRIORITY(queue))
		return __rpc_find_next_queued_priority(queue);
	if (!list_empty(&queue->tasks[0]))
		return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
	return NULL;
}

/*
 * Wake up the first task on the wait queue.
 */
struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
		bool (*func)(struct rpc_task *, void *), void *data)
{
	struct rpc_task	*task = NULL;

	dprintk("RPC:       wake_up_first(%p \"%s\")\n",
			queue, rpc_qname(queue));
	spin_lock_bh(&queue->lock);
	task = __rpc_find_next_queued(queue);
	if (task != NULL) {
		if (func(task, data))
			rpc_wake_up_task_queue_locked(queue, task);
		else
			task = NULL;
	}
	spin_unlock_bh(&queue->lock);

	return task;
}
EXPORT_SYMBOL_GPL(rpc_wake_up_first);

static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
{
	return true;
}

/*
 * Wake up the next task on the wait queue.
*/
struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
{
	return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
}
EXPORT_SYMBOL_GPL(rpc_wake_up_next);

/**
 * rpc_wake_up - wake up all rpc_tasks
 * @queue: rpc_wait_queue on which the tasks are sleeping
 *
 * Grabs queue->lock
 */
void rpc_wake_up(struct rpc_wait_queue *queue)
{
	struct list_head *head;

	spin_lock_bh(&queue->lock);
	head = &queue->tasks[queue->maxpriority];
	for (;;) {
		while (!list_empty(head)) {
			struct rpc_task *task;
			task = list_first_entry(head,
					struct rpc_task,
					u.tk_wait.list);
			rpc_wake_up_task_queue_locked(queue, task);
		}
		if (head == &queue->tasks[0])
			break;
		head--;
	}
	spin_unlock_bh(&queue->lock);
}
EXPORT_SYMBOL_GPL(rpc_wake_up);

/**
 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
 * @queue: rpc_wait_queue on which the tasks are sleeping
 * @status: status value to set
 *
 * Grabs queue->lock
 */
void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
{
	struct list_head *head;

	spin_lock_bh(&queue->lock);
	head = &queue->tasks[queue->maxpriority];
	for (;;) {
		while (!list_empty(head)) {
			struct rpc_task *task;
			task = list_first_entry(head,
					struct rpc_task,
					u.tk_wait.list);
			task->tk_status = status;
			rpc_wake_up_task_queue_locked(queue, task);
		}
		if (head == &queue->tasks[0])
			break;
		head--;
	}
	spin_unlock_bh(&queue->lock);
}
EXPORT_SYMBOL_GPL(rpc_wake_up_status);

static void __rpc_queue_timer_fn(unsigned long ptr)
{
	struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
	struct rpc_task *task, *n;
	unsigned long expires, now, timeo;

	spin_lock(&queue->lock);
	expires = now = jiffies;
	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
		timeo = task->u.tk_wait.expires;
		if (time_after_eq(now, timeo)) {
			dprintk("RPC: %5u timeout\n", task->tk_pid);
			task->tk_status = -ETIMEDOUT;
			rpc_wake_up_task_queue_locked(queue, task);
			continue;
		}
		if (expires == now || time_after(expires, timeo))
			expires = timeo;
	}
	if (!list_empty(&queue->timer_list.list))
		rpc_set_queue_timer(queue, expires);
	spin_unlock(&queue->lock);
}

static void __rpc_atrun(struct rpc_task *task)
{
	task->tk_status = 0;
}

/*
 * Run a task at a later time
 */
void rpc_delay(struct rpc_task *task, unsigned long delay)
{
	task->tk_timeout = delay;
	rpc_sleep_on(&delay_queue, task, __rpc_atrun);
}
EXPORT_SYMBOL_GPL(rpc_delay);

/*
 * Helper to call task->tk_ops->rpc_call_prepare
 */
void rpc_prepare_task(struct rpc_task *task)
{
	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
}

static void
rpc_init_task_statistics(struct rpc_task *task)
{
	/* Initialize retry counters */
	task->tk_garb_retry = 2;
	task->tk_cred_retry = 2;
	task->tk_rebind_retry = 2;

	/* starting timestamp */
	task->tk_start = ktime_get();
}

static void
rpc_reset_task_statistics(struct rpc_task *task)
{
	task->tk_timeouts = 0;
	task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);

	rpc_init_task_statistics(task);
}

/*
 * Helper that calls task->tk_ops->rpc_call_done if it exists
 */
void rpc_exit_task(struct rpc_task *task)
{
	task->tk_action = NULL;
	if (task->tk_ops->rpc_call_done != NULL) {
		task->tk_ops->rpc_call_done(task, task->tk_calldata);
		if (task->tk_action != NULL) {
			WARN_ON(RPC_ASSASSINATED(task));
			/* Always release the RPC slot and buffer memory */
			xprt_release(task);
			rpc_reset_task_statistics(task);
		}
	}
}

void rpc_exit(struct rpc_task *task, int status)
{
	task->tk_status = status;
	task->tk_action = rpc_exit_task;
	if (RPC_IS_QUEUED(task))
		rpc_wake_up_queued_task(task->tk_waitqueue, task);
}
EXPORT_SYMBOL_GPL(rpc_exit);

void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
{
	if (ops->rpc_release != NULL)
		ops->rpc_release(calldata);
}

/*
 * This is the RPC `scheduler' (or rather, the finite state machine).
 */
static void __rpc_execute(struct rpc_task *task)
{
	struct rpc_wait_queue *queue;
	int task_is_async = RPC_IS_ASYNC(task);
	int status = 0;

	dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
			task->tk_pid, task->tk_flags);

	WARN_ON_ONCE(RPC_IS_QUEUED(task));
	if (RPC_IS_QUEUED(task))
		return;

	for (;;) {
		void (*do_action)(struct rpc_task *);

		/*
		 * Execute any pending callback first.
		 */
		do_action = task->tk_callback;
		task->tk_callback = NULL;
		if (do_action == NULL) {
			/*
			 * Perform the next FSM step.
			 * tk_action may be NULL if the task has been killed.
			 * In particular, note that rpc_killall_tasks may
			 * do this at any time, so beware when dereferencing.
			 */
			do_action = task->tk_action;
			if (do_action == NULL)
				break;
		}
		trace_rpc_task_run_action(task->tk_client, task, task->tk_action);
		do_action(task);

		/*
		 * Lockless check for whether task is sleeping or not.
		 */
		if (!RPC_IS_QUEUED(task))
			continue;
		/*
		 * The queue->lock protects against races with
		 * rpc_make_runnable().
		 *
		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
		 * rpc_task, rpc_make_runnable() can assign it to a
		 * different workqueue. We therefore cannot assume that the
		 * rpc_task pointer may still be dereferenced.
		 */
		queue = task->tk_waitqueue;
		spin_lock_bh(&queue->lock);
		if (!RPC_IS_QUEUED(task)) {
			spin_unlock_bh(&queue->lock);
			continue;
		}
		rpc_clear_running(task);
		spin_unlock_bh(&queue->lock);
		if (task_is_async)
			return;

		/* sync task: sleep here */
		dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
		status = out_of_line_wait_on_bit(&task->tk_runstate,
				RPC_TASK_QUEUED, rpc_wait_bit_killable,
				TASK_KILLABLE);
		if (status == -ERESTARTSYS) {
			/*
			 * When a sync task receives a signal, it exits with
			 * -ERESTARTSYS. In order to catch any callbacks that
			 * clean up after sleeping on some queue, we don't
			 * break the loop here, but go around once more.
			 */
			dprintk("RPC: %5u got signal\n", task->tk_pid);
			task->tk_flags |= RPC_TASK_KILLED;
			rpc_exit(task, -ERESTARTSYS);
		}
		dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
	}

	dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
			task->tk_status);
	/* Release all resources associated with the task */
	rpc_release_task(task);
}

/*
 * User-visible entry point to the scheduler.
 *
 * This may be called recursively if e.g. an async NFS task updates
 * the attributes and finds that dirty pages must be flushed.
 * NOTE: Upon exit of this function the task is guaranteed to be
 *	 released. In particular note that tk_release() will have
 *	 been called, so your task memory may have been freed.
 */
void rpc_execute(struct rpc_task *task)
{
	bool is_async = RPC_IS_ASYNC(task);

	rpc_set_active(task);
	rpc_make_runnable(task);
	if (!is_async)
		__rpc_execute(task);
}

static void rpc_async_schedule(struct work_struct *work)
{
	current->flags |= PF_FSTRANS;
	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
	current->flags &= ~PF_FSTRANS;
}

/**
 * rpc_malloc - allocate an RPC buffer
 * @task: RPC task that will use this buffer
 * @size: requested byte size
 *
 * To prevent rpciod from hanging, this allocator never sleeps,
 * returning NULL if the request cannot be serviced immediately.
 * The caller can arrange to sleep in a way that is safe for rpciod.
 *
 * Most requests are 'small' (under 2KiB) and can be serviced from a
 * mempool, ensuring that NFS reads and writes can always proceed,
 * and that there is good locality of reference for these buffers.
 *
 * In order to avoid memory starvation triggering more writebacks of
 * NFS requests, we avoid using GFP_KERNEL.
 */
void *rpc_malloc(struct rpc_task *task, size_t size)
{
	struct rpc_buffer *buf;
	gfp_t gfp = GFP_NOWAIT;

	if (RPC_IS_SWAPPER(task))
		gfp |= __GFP_MEMALLOC;

	size += sizeof(struct rpc_buffer);
	if (size <= RPC_BUFFER_MAXSIZE)
		buf = mempool_alloc(rpc_buffer_mempool, gfp);
	else
		buf = kmalloc(size, gfp);

	if (!buf)
		return NULL;

	buf->len = size;
	dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
			task->tk_pid, size, buf);
	return &buf->data;
}
EXPORT_SYMBOL_GPL(rpc_malloc);

/**
 * rpc_free - free buffer allocated via rpc_malloc
 * @buffer: buffer to free
 *
 */
void rpc_free(void *buffer)
{
	size_t size;
	struct rpc_buffer *buf;

	if (!buffer)
		return;

	buf = container_of(buffer, struct rpc_buffer, data);
	size = buf->len;

	dprintk("RPC:       freeing buffer of size %zu at %p\n",
			size, buf);

	if (size <= RPC_BUFFER_MAXSIZE)
		mempool_free(buf, rpc_buffer_mempool);
	else
		kfree(buf);
}
EXPORT_SYMBOL_GPL(rpc_free);

/*
 * Creation and deletion of RPC task structures
 */
static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
{
	memset(task, 0, sizeof(*task));
	atomic_set(&task->tk_count, 1);
	task->tk_flags  = task_setup_data->flags;
	task->tk_ops = task_setup_data->callback_ops;
	task->tk_calldata = task_setup_data->callback_data;
	INIT_LIST_HEAD(&task->tk_task);

	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
	task->tk_owner = current->tgid;

	/* Initialize workqueue for async tasks */
	task->tk_workqueue = task_setup_data->workqueue;

	if (task->tk_ops->rpc_call_prepare != NULL)
		task->tk_action = rpc_prepare_task;

	rpc_init_task_statistics(task);

	dprintk("RPC:       new task initialized, procpid %u\n",
				task_pid_nr(current));
}

static struct rpc_task *
rpc_alloc_task(void)
{
	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO);
}

/*
 * Create a new task for the specified client.
 */
struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
{
	struct rpc_task	*task = setup_data->task;
	unsigned short flags = 0;

	if (task == NULL) {
		task = rpc_alloc_task();
		if (task == NULL) {
			rpc_release_calldata(setup_data->callback_ops,
					setup_data->callback_data);
			return ERR_PTR(-ENOMEM);
		}
		flags = RPC_TASK_DYNAMIC;
	}

	rpc_init_task(task, setup_data);
	task->tk_flags |= flags;
	dprintk("RPC:       allocated task %p\n", task);
	return task;
}

/*
 * rpc_free_task - release rpc task and perform cleanups
 *
 * Note that we free up the rpc_task _after_ rpc_release_calldata()
 * in order to work around a workqueue dependency issue.
 *
 * Tejun Heo states:
 * "Workqueue currently considers two work items to be the same if they're
 * on the same address and won't execute them concurrently - ie. it
 * makes a work item which is queued again while being executed wait
 * for the previous execution to complete.
 *
 * If a work function frees the work item, and then waits for an event
 * which should be performed by another work item and *that* work item
 * recycles the freed work item, it can create a false dependency loop.
 * There really is no reliable way to detect this short of verifying
 * every memory free."
 *
 */
static void rpc_free_task(struct rpc_task *task)
{
	unsigned short tk_flags = task->tk_flags;

	rpc_release_calldata(task->tk_ops, task->tk_calldata);

	if (tk_flags & RPC_TASK_DYNAMIC) {
		dprintk("RPC: %5u freeing task\n", task->tk_pid);
		mempool_free(task, rpc_task_mempool);
	}
}

static void rpc_async_release(struct work_struct *work)
{
	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
}

static void rpc_release_resources_task(struct rpc_task *task)
{
	xprt_release(task);
	if (task->tk_msg.rpc_cred) {
		put_rpccred(task->tk_msg.rpc_cred);
		task->tk_msg.rpc_cred = NULL;
	}
	rpc_task_release_client(task);
}

static void rpc_final_put_task(struct rpc_task *task,
		struct workqueue_struct *q)
{
	if (q != NULL) {
		INIT_WORK(&task->u.tk_work, rpc_async_release);
		queue_work(q, &task->u.tk_work);
	} else
		rpc_free_task(task);
}

static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
{
	if (atomic_dec_and_test(&task->tk_count)) {
		rpc_release_resources_task(task);
		rpc_final_put_task(task, q);
	}
}

void rpc_put_task(struct rpc_task *task)
{
	rpc_do_put_task(task, NULL);
}
EXPORT_SYMBOL_GPL(rpc_put_task);

void rpc_put_task_async(struct rpc_task *task)
{
	rpc_do_put_task(task, task->tk_workqueue);
}
EXPORT_SYMBOL_GPL(rpc_put_task_async);

static void rpc_release_task(struct rpc_task *task)
{
	dprintk("RPC: %5u release task\n", task->tk_pid);

	WARN_ON_ONCE(RPC_IS_QUEUED(task));

	rpc_release_resources_task(task);

	/*
	 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
	 * so it should be safe to use task->tk_count as a test for whether
	 * or not any other processes still hold references to our rpc_task.
	 */
	if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
		/* Wake up anyone who may be waiting for task completion */
		if (!rpc_complete_task(task))
			return;
	} else {
		if (!atomic_dec_and_test(&task->tk_count))
			return;
	}
	rpc_final_put_task(task, task->tk_workqueue);
}

int rpciod_up(void)
{
	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
}

void rpciod_down(void)
{
	module_put(THIS_MODULE);
}

/*
 * Start up the rpciod workqueue.
 */
static int rpciod_start(void)
{
	struct workqueue_struct *wq;

	/*
	 * Create the rpciod thread and wait for it to start.
	 */
	dprintk("RPC:       creating workqueue rpciod\n");
	wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 1);
	rpciod_workqueue = wq;
	return rpciod_workqueue != NULL;
}

static void rpciod_stop(void)
{
	struct workqueue_struct *wq = NULL;

	if (rpciod_workqueue == NULL)
		return;
	dprintk("RPC:       destroying workqueue rpciod\n");

	wq = rpciod_workqueue;
	rpciod_workqueue = NULL;
	destroy_workqueue(wq);
}

void
rpc_destroy_mempool(void)
{
	rpciod_stop();
	if (rpc_buffer_mempool)
		mempool_destroy(rpc_buffer_mempool);
	if (rpc_task_mempool)
		mempool_destroy(rpc_task_mempool);
	if (rpc_task_slabp)
		kmem_cache_destroy(rpc_task_slabp);
	if (rpc_buffer_slabp)
		kmem_cache_destroy(rpc_buffer_slabp);
	rpc_destroy_wait_queue(&delay_queue);
}

int
rpc_init_mempool(void)
{
	/*
	 * The following is not strictly a mempool initialisation,
	 * but there is no harm in doing it here
	 */
	rpc_init_wait_queue(&delay_queue, "delayq");
	if (!rpciod_start())
		goto err_nomem;

	rpc_task_slabp = kmem_cache_create("rpc_tasks",
					     sizeof(struct rpc_task),
					     0, SLAB_HWCACHE_ALIGN,
					     NULL);
	if (!rpc_task_slabp)
		goto err_nomem;
	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
					     RPC_BUFFER_MAXSIZE,
					     0, SLAB_HWCACHE_ALIGN,
					     NULL);
	if (!rpc_buffer_slabp)
		goto err_nomem;
	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
						    rpc_task_slabp);
	if (!rpc_task_mempool)
		goto err_nomem;
	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
						      rpc_buffer_slabp);
	if (!rpc_buffer_mempool)
		goto err_nomem;
	return 0;
err_nomem:
	rpc_destroy_mempool();
	return -ENOMEM;
}