Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
/*
 *	linux/mm/mmap.c
 *
 * Written by obz.
 */
#include <linux/stat.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/shm.h>
#include <linux/errno.h>
#include <linux/mman.h>
#include <linux/string.h>
#include <linux/malloc.h>

#include <asm/segment.h>
#include <asm/system.h>
#include <asm/pgtable.h>

/*
 * description of effects of mapping type and prot in current implementation.
 * this is due to the limited x86 page protection hardware.  The expected
 * behavior is in parens:
 *
 * map_type	prot
 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
 *		
 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
 *
 */

pgprot_t protection_map[16] = {
	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
};

unsigned long do_mmap(struct file * file, unsigned long addr, unsigned long len,
	unsigned long prot, unsigned long flags, unsigned long off)
{
	struct vm_area_struct * vma;

	if ((len = PAGE_ALIGN(len)) == 0)
		return addr;

	if (addr > TASK_SIZE || len > TASK_SIZE || addr > TASK_SIZE-len)
		return -EINVAL;

	/* offset overflow? */
	if (off + len < off)
		return -EINVAL;

	/* mlock MCL_FUTURE? */
	if (current->mm->def_flags & VM_LOCKED) {
		unsigned long locked = current->mm->locked_vm << PAGE_SHIFT;
		locked += len;
		if (locked > current->rlim[RLIMIT_MEMLOCK].rlim_cur)
			return -EAGAIN;
	}

	/*
	 * do simple checking here so the lower-level routines won't have
	 * to. we assume access permissions have been handled by the open
	 * of the memory object, so we don't do any here.
	 */

	if (file != NULL) {
		switch (flags & MAP_TYPE) {
		case MAP_SHARED:
			if ((prot & PROT_WRITE) && !(file->f_mode & 2))
				return -EACCES;
			/*
			 * make sure there are no mandatory locks on the file.
			 */
			if (locks_verify_locked(file->f_inode))
				return -EAGAIN;
			/* fall through */
		case MAP_PRIVATE:
			if (!(file->f_mode & 1))
				return -EACCES;
			break;

		default:
			return -EINVAL;
		}
		if (flags & MAP_DENYWRITE) {
			if (file->f_inode->i_writecount > 0)
				return -ETXTBSY;
		}
	} else if ((flags & MAP_TYPE) != MAP_PRIVATE)
		return -EINVAL;

	/*
	 * obtain the address to map to. we verify (or select) it and ensure
	 * that it represents a valid section of the address space.
	 */

	if (flags & MAP_FIXED) {
		if (addr & ~PAGE_MASK)
			return -EINVAL;
		if (len > TASK_SIZE || addr > TASK_SIZE - len)
			return -EINVAL;
	} else {
		addr = get_unmapped_area(addr, len);
		if (!addr)
			return -ENOMEM;
	}

	/*
	 * determine the object being mapped and call the appropriate
	 * specific mapper. the address has already been validated, but
	 * not unmapped, but the maps are removed from the list.
	 */
	if (file && (!file->f_op || !file->f_op->mmap))
		return -ENODEV;

	vma = (struct vm_area_struct *)kmalloc(sizeof(struct vm_area_struct),
		GFP_KERNEL);
	if (!vma)
		return -ENOMEM;

	vma->vm_mm = current->mm;
	vma->vm_start = addr;
	vma->vm_end = addr + len;
	vma->vm_flags = prot & (VM_READ | VM_WRITE | VM_EXEC);
	vma->vm_flags |= flags & (VM_GROWSDOWN | VM_DENYWRITE | VM_EXECUTABLE);
	vma->vm_flags |= current->mm->def_flags;

	if (file) {
		if (file->f_mode & 1)
			vma->vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
		if (flags & MAP_SHARED) {
			vma->vm_flags |= VM_SHARED | VM_MAYSHARE;
			/*
			 * This looks strange, but when we don't have the file open
			 * for writing, we can demote the shared mapping to a simpler
			 * private mapping. That also takes care of a security hole
			 * with ptrace() writing to a shared mapping without write
			 * permissions.
			 *
			 * We leave the VM_MAYSHARE bit on, just to get correct output
			 * from /proc/xxx/maps..
			 */
			if (!(file->f_mode & 2))
				vma->vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
		}
	} else
		vma->vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
	vma->vm_page_prot = protection_map[vma->vm_flags & 0x0f];
	vma->vm_ops = NULL;
	vma->vm_offset = off;
	vma->vm_inode = NULL;
	vma->vm_pte = 0;

	do_munmap(addr, len);	/* Clear old maps */

	if (file) {
		int error = file->f_op->mmap(file->f_inode, file, vma);
	
		if (error) {
			kfree(vma);
			return error;
		}
	}

	flags = vma->vm_flags;
	insert_vm_struct(current, vma);
	merge_segments(current, vma->vm_start, vma->vm_end);

	/* merge_segments might have merged our vma, so we can't use it any more */
	current->mm->total_vm += len >> PAGE_SHIFT;
	if (flags & VM_LOCKED) {
		unsigned long start = addr;
		current->mm->locked_vm += len >> PAGE_SHIFT;
		do {
			char c = get_user((char *) start);
			len -= PAGE_SIZE;
			start += PAGE_SIZE;
			__asm__ __volatile__("": :"r" (c));
		} while (len > 0);
	}
	return addr;
}

/*
 * Get an address range which is currently unmapped.
 * For mmap() without MAP_FIXED and shmat() with addr=0.
 * Return value 0 means ENOMEM.
 */
unsigned long get_unmapped_area(unsigned long addr, unsigned long len)
{
	struct vm_area_struct * vmm;

	if (len > TASK_SIZE)
		return 0;
	if (!addr)
		addr = TASK_SIZE / 3;
	addr = PAGE_ALIGN(addr);

	for (vmm = find_vma(current, addr); ; vmm = vmm->vm_next) {
		/* At this point:  (!vmm || addr < vmm->vm_end). */
		if (TASK_SIZE - len < addr)
			return 0;
		if (!vmm || addr + len <= vmm->vm_start)
			return addr;
		addr = vmm->vm_end;
	}
}

/*
 * Searching a VMA in the linear list task->mm->mmap is horribly slow.
 * Use an AVL (Adelson-Velskii and Landis) tree to speed up this search
 * from O(n) to O(log n), where n is the number of VMAs of the task
 * (typically around 6, but may reach 3000 in some cases).
 * Written by Bruno Haible <haible@ma2s2.mathematik.uni-karlsruhe.de>.
 */

/* We keep the list and tree sorted by address. */
#define vm_avl_key	vm_end
#define vm_avl_key_t	unsigned long	/* typeof(vma->avl_key) */

/*
 * task->mm->mmap_avl is the AVL tree corresponding to task->mm->mmap
 * or, more exactly, its root.
 * A vm_area_struct has the following fields:
 *   vm_avl_left     left son of a tree node
 *   vm_avl_right    right son of a tree node
 *   vm_avl_height   1+max(heightof(left),heightof(right))
 * The empty tree is represented as NULL.
 */

/* Since the trees are balanced, their height will never be large. */
#define avl_maxheight	41	/* why this? a small exercise */
#define heightof(tree)	((tree) == avl_empty ? 0 : (tree)->vm_avl_height)
/*
 * Consistency and balancing rules:
 * 1. tree->vm_avl_height == 1+max(heightof(tree->vm_avl_left),heightof(tree->vm_avl_right))
 * 2. abs( heightof(tree->vm_avl_left) - heightof(tree->vm_avl_right) ) <= 1
 * 3. foreach node in tree->vm_avl_left: node->vm_avl_key <= tree->vm_avl_key,
 *    foreach node in tree->vm_avl_right: node->vm_avl_key >= tree->vm_avl_key.
 */

/* Look up the nodes at the left and at the right of a given node. */
static inline void avl_neighbours (struct vm_area_struct * node, struct vm_area_struct * tree, struct vm_area_struct ** to_the_left, struct vm_area_struct ** to_the_right)
{
	vm_avl_key_t key = node->vm_avl_key;

	*to_the_left = *to_the_right = NULL;
	for (;;) {
		if (tree == avl_empty) {
			printk("avl_neighbours: node not found in the tree\n");
			return;
		}
		if (key == tree->vm_avl_key)
			break;
		if (key < tree->vm_avl_key) {
			*to_the_right = tree;
			tree = tree->vm_avl_left;
		} else {
			*to_the_left = tree;
			tree = tree->vm_avl_right;
		}
	}
	if (tree != node) {
		printk("avl_neighbours: node not exactly found in the tree\n");
		return;
	}
	if (tree->vm_avl_left != avl_empty) {
		struct vm_area_struct * node;
		for (node = tree->vm_avl_left; node->vm_avl_right != avl_empty; node = node->vm_avl_right)
			continue;
		*to_the_left = node;
	}
	if (tree->vm_avl_right != avl_empty) {
		struct vm_area_struct * node;
		for (node = tree->vm_avl_right; node->vm_avl_left != avl_empty; node = node->vm_avl_left)
			continue;
		*to_the_right = node;
	}
	if ((*to_the_left && ((*to_the_left)->vm_next != node)) || (node->vm_next != *to_the_right))
		printk("avl_neighbours: tree inconsistent with list\n");
}

/*
 * Rebalance a tree.
 * After inserting or deleting a node of a tree we have a sequence of subtrees
 * nodes[0]..nodes[k-1] such that
 * nodes[0] is the root and nodes[i+1] = nodes[i]->{vm_avl_left|vm_avl_right}.
 */
static inline void avl_rebalance (struct vm_area_struct *** nodeplaces_ptr, int count)
{
	for ( ; count > 0 ; count--) {
		struct vm_area_struct ** nodeplace = *--nodeplaces_ptr;
		struct vm_area_struct * node = *nodeplace;
		struct vm_area_struct * nodeleft = node->vm_avl_left;
		struct vm_area_struct * noderight = node->vm_avl_right;
		int heightleft = heightof(nodeleft);
		int heightright = heightof(noderight);
		if (heightright + 1 < heightleft) {
			/*                                                      */
			/*                            *                         */
			/*                          /   \                       */
			/*                       n+2      n                     */
			/*                                                      */
			struct vm_area_struct * nodeleftleft = nodeleft->vm_avl_left;
			struct vm_area_struct * nodeleftright = nodeleft->vm_avl_right;
			int heightleftright = heightof(nodeleftright);
			if (heightof(nodeleftleft) >= heightleftright) {
				/*                                                        */
				/*                *                    n+2|n+3            */
				/*              /   \                  /    \             */
				/*           n+2      n      -->      /   n+1|n+2         */
				/*           / \                      |    /    \         */
				/*         n+1 n|n+1                 n+1  n|n+1  n        */
				/*                                                        */
				node->vm_avl_left = nodeleftright; nodeleft->vm_avl_right = node;
				nodeleft->vm_avl_height = 1 + (node->vm_avl_height = 1 + heightleftright);
				*nodeplace = nodeleft;
			} else {
				/*                                                        */
				/*                *                     n+2               */
				/*              /   \                 /     \             */
				/*           n+2      n      -->    n+1     n+1           */
				/*           / \                    / \     / \           */
				/*          n  n+1                 n   L   R   n          */
				/*             / \                                        */
				/*            L   R                                       */
				/*                                                        */
				nodeleft->vm_avl_right = nodeleftright->vm_avl_left;
				node->vm_avl_left = nodeleftright->vm_avl_right;
				nodeleftright->vm_avl_left = nodeleft;
				nodeleftright->vm_avl_right = node;
				nodeleft->vm_avl_height = node->vm_avl_height = heightleftright;
				nodeleftright->vm_avl_height = heightleft;
				*nodeplace = nodeleftright;
			}
		}
		else if (heightleft + 1 < heightright) {
			/* similar to the above, just interchange 'left' <--> 'right' */
			struct vm_area_struct * noderightright = noderight->vm_avl_right;
			struct vm_area_struct * noderightleft = noderight->vm_avl_left;
			int heightrightleft = heightof(noderightleft);
			if (heightof(noderightright) >= heightrightleft) {
				node->vm_avl_right = noderightleft; noderight->vm_avl_left = node;
				noderight->vm_avl_height = 1 + (node->vm_avl_height = 1 + heightrightleft);
				*nodeplace = noderight;
			} else {
				noderight->vm_avl_left = noderightleft->vm_avl_right;
				node->vm_avl_right = noderightleft->vm_avl_left;
				noderightleft->vm_avl_right = noderight;
				noderightleft->vm_avl_left = node;
				noderight->vm_avl_height = node->vm_avl_height = heightrightleft;
				noderightleft->vm_avl_height = heightright;
				*nodeplace = noderightleft;
			}
		}
		else {
			int height = (heightleft<heightright ? heightright : heightleft) + 1;
			if (height == node->vm_avl_height)
				break;
			node->vm_avl_height = height;
		}
	}
}

/* Insert a node into a tree. */
static inline void avl_insert (struct vm_area_struct * new_node, struct vm_area_struct ** ptree)
{
	vm_avl_key_t key = new_node->vm_avl_key;
	struct vm_area_struct ** nodeplace = ptree;
	struct vm_area_struct ** stack[avl_maxheight];
	int stack_count = 0;
	struct vm_area_struct *** stack_ptr = &stack[0]; /* = &stack[stackcount] */
	for (;;) {
		struct vm_area_struct * node = *nodeplace;
		if (node == avl_empty)
			break;
		*stack_ptr++ = nodeplace; stack_count++;
		if (key < node->vm_avl_key)
			nodeplace = &node->vm_avl_left;
		else
			nodeplace = &node->vm_avl_right;
	}
	new_node->vm_avl_left = avl_empty;
	new_node->vm_avl_right = avl_empty;
	new_node->vm_avl_height = 1;
	*nodeplace = new_node;
	avl_rebalance(stack_ptr,stack_count);
}

/* Insert a node into a tree, and
 * return the node to the left of it and the node to the right of it.
 */
static inline void avl_insert_neighbours (struct vm_area_struct * new_node, struct vm_area_struct ** ptree,
	struct vm_area_struct ** to_the_left, struct vm_area_struct ** to_the_right)
{
	vm_avl_key_t key = new_node->vm_avl_key;
	struct vm_area_struct ** nodeplace = ptree;
	struct vm_area_struct ** stack[avl_maxheight];
	int stack_count = 0;
	struct vm_area_struct *** stack_ptr = &stack[0]; /* = &stack[stackcount] */
	*to_the_left = *to_the_right = NULL;
	for (;;) {
		struct vm_area_struct * node = *nodeplace;
		if (node == avl_empty)
			break;
		*stack_ptr++ = nodeplace; stack_count++;
		if (key < node->vm_avl_key) {
			*to_the_right = node;
			nodeplace = &node->vm_avl_left;
		} else {
			*to_the_left = node;
			nodeplace = &node->vm_avl_right;
		}
	}
	new_node->vm_avl_left = avl_empty;
	new_node->vm_avl_right = avl_empty;
	new_node->vm_avl_height = 1;
	*nodeplace = new_node;
	avl_rebalance(stack_ptr,stack_count);
}

/* Removes a node out of a tree. */
static inline void avl_remove (struct vm_area_struct * node_to_delete, struct vm_area_struct ** ptree)
{
	vm_avl_key_t key = node_to_delete->vm_avl_key;
	struct vm_area_struct ** nodeplace = ptree;
	struct vm_area_struct ** stack[avl_maxheight];
	int stack_count = 0;
	struct vm_area_struct *** stack_ptr = &stack[0]; /* = &stack[stackcount] */
	struct vm_area_struct ** nodeplace_to_delete;
	for (;;) {
		struct vm_area_struct * node = *nodeplace;
		if (node == avl_empty) {
			/* what? node_to_delete not found in tree? */
			printk("avl_remove: node to delete not found in tree\n");
			return;
		}
		*stack_ptr++ = nodeplace; stack_count++;
		if (key == node->vm_avl_key)
			break;
		if (key < node->vm_avl_key)
			nodeplace = &node->vm_avl_left;
		else
			nodeplace = &node->vm_avl_right;
	}
	nodeplace_to_delete = nodeplace;
	/* Have to remove node_to_delete = *nodeplace_to_delete. */
	if (node_to_delete->vm_avl_left == avl_empty) {
		*nodeplace_to_delete = node_to_delete->vm_avl_right;
		stack_ptr--; stack_count--;
	} else {
		struct vm_area_struct *** stack_ptr_to_delete = stack_ptr;
		struct vm_area_struct ** nodeplace = &node_to_delete->vm_avl_left;
		struct vm_area_struct * node;
		for (;;) {
			node = *nodeplace;
			if (node->vm_avl_right == avl_empty)
				break;
			*stack_ptr++ = nodeplace; stack_count++;
			nodeplace = &node->vm_avl_right;
		}
		*nodeplace = node->vm_avl_left;
		/* node replaces node_to_delete */
		node->vm_avl_left = node_to_delete->vm_avl_left;
		node->vm_avl_right = node_to_delete->vm_avl_right;
		node->vm_avl_height = node_to_delete->vm_avl_height;
		*nodeplace_to_delete = node; /* replace node_to_delete */
		*stack_ptr_to_delete = &node->vm_avl_left; /* replace &node_to_delete->vm_avl_left */
	}
	avl_rebalance(stack_ptr,stack_count);
}

#ifdef DEBUG_AVL

/* print a list */
static void printk_list (struct vm_area_struct * vma)
{
	printk("[");
	while (vma) {
		printk("%08lX-%08lX", vma->vm_start, vma->vm_end);
		vma = vma->vm_next;
		if (!vma)
			break;
		printk(" ");
	}
	printk("]");
}

/* print a tree */
static void printk_avl (struct vm_area_struct * tree)
{
	if (tree != avl_empty) {
		printk("(");
		if (tree->vm_avl_left != avl_empty) {
			printk_avl(tree->vm_avl_left);
			printk("<");
		}
		printk("%08lX-%08lX", tree->vm_start, tree->vm_end);
		if (tree->vm_avl_right != avl_empty) {
			printk(">");
			printk_avl(tree->vm_avl_right);
		}
		printk(")");
	}
}

static char *avl_check_point = "somewhere";

/* check a tree's consistency and balancing */
static void avl_checkheights (struct vm_area_struct * tree)
{
	int h, hl, hr;

	if (tree == avl_empty)
		return;
	avl_checkheights(tree->vm_avl_left);
	avl_checkheights(tree->vm_avl_right);
	h = tree->vm_avl_height;
	hl = heightof(tree->vm_avl_left);
	hr = heightof(tree->vm_avl_right);
	if ((h == hl+1) && (hr <= hl) && (hl <= hr+1))
		return;
	if ((h == hr+1) && (hl <= hr) && (hr <= hl+1))
		return;
	printk("%s: avl_checkheights: heights inconsistent\n",avl_check_point);
}

/* check that all values stored in a tree are < key */
static void avl_checkleft (struct vm_area_struct * tree, vm_avl_key_t key)
{
	if (tree == avl_empty)
		return;
	avl_checkleft(tree->vm_avl_left,key);
	avl_checkleft(tree->vm_avl_right,key);
	if (tree->vm_avl_key < key)
		return;
	printk("%s: avl_checkleft: left key %lu >= top key %lu\n",avl_check_point,tree->vm_avl_key,key);
}

/* check that all values stored in a tree are > key */
static void avl_checkright (struct vm_area_struct * tree, vm_avl_key_t key)
{
	if (tree == avl_empty)
		return;
	avl_checkright(tree->vm_avl_left,key);
	avl_checkright(tree->vm_avl_right,key);
	if (tree->vm_avl_key > key)
		return;
	printk("%s: avl_checkright: right key %lu <= top key %lu\n",avl_check_point,tree->vm_avl_key,key);
}

/* check that all values are properly increasing */
static void avl_checkorder (struct vm_area_struct * tree)
{
	if (tree == avl_empty)
		return;
	avl_checkorder(tree->vm_avl_left);
	avl_checkorder(tree->vm_avl_right);
	avl_checkleft(tree->vm_avl_left,tree->vm_avl_key);
	avl_checkright(tree->vm_avl_right,tree->vm_avl_key);
}

/* all checks */
static void avl_check (struct task_struct * task, char *caller)
{
	avl_check_point = caller;
/*	printk("task \"%s\", %s\n",task->comm,caller); */
/*	printk("task \"%s\" list: ",task->comm); printk_list(task->mm->mmap); printk("\n"); */
/*	printk("task \"%s\" tree: ",task->comm); printk_avl(task->mm->mmap_avl); printk("\n"); */
	avl_checkheights(task->mm->mmap_avl);
	avl_checkorder(task->mm->mmap_avl);
}

#endif


/*
 * Normal function to fix up a mapping
 * This function is the default for when an area has no specific
 * function.  This may be used as part of a more specific routine.
 * This function works out what part of an area is affected and
 * adjusts the mapping information.  Since the actual page
 * manipulation is done in do_mmap(), none need be done here,
 * though it would probably be more appropriate.
 *
 * By the time this function is called, the area struct has been
 * removed from the process mapping list, so it needs to be
 * reinserted if necessary.
 *
 * The 4 main cases are:
 *    Unmapping the whole area
 *    Unmapping from the start of the segment to a point in it
 *    Unmapping from an intermediate point to the end
 *    Unmapping between to intermediate points, making a hole.
 *
 * Case 4 involves the creation of 2 new areas, for each side of
 * the hole.
 */
static void unmap_fixup(struct vm_area_struct *area,
		 unsigned long addr, size_t len)
{
	struct vm_area_struct *mpnt;
	unsigned long end = addr + len;

	if (addr < area->vm_start || addr >= area->vm_end ||
	    end <= area->vm_start || end > area->vm_end ||
	    end < addr)
	{
		printk("unmap_fixup: area=%lx-%lx, unmap %lx-%lx!!\n",
		       area->vm_start, area->vm_end, addr, end);
		return;
	}
	area->vm_mm->total_vm -= len >> PAGE_SHIFT;
	if (area->vm_flags & VM_LOCKED)
		area->vm_mm->locked_vm -= len >> PAGE_SHIFT;

	/* Unmapping the whole area */
	if (addr == area->vm_start && end == area->vm_end) {
		if (area->vm_ops && area->vm_ops->close)
			area->vm_ops->close(area);
		if (area->vm_inode)
			iput(area->vm_inode);
		return;
	}

	/* Work out to one of the ends */
	if (end == area->vm_end)
		area->vm_end = addr;
	else
	if (addr == area->vm_start) {
		area->vm_offset += (end - area->vm_start);
		area->vm_start = end;
	}
	else {
	/* Unmapping a hole: area->vm_start < addr <= end < area->vm_end */
		/* Add end mapping -- leave beginning for below */
		mpnt = (struct vm_area_struct *)kmalloc(sizeof(*mpnt), GFP_KERNEL);

		if (!mpnt)
			return;
		*mpnt = *area;
		mpnt->vm_offset += (end - area->vm_start);
		mpnt->vm_start = end;
		if (mpnt->vm_inode)
			mpnt->vm_inode->i_count++;
		if (mpnt->vm_ops && mpnt->vm_ops->open)
			mpnt->vm_ops->open(mpnt);
		area->vm_end = addr;	/* Truncate area */
		insert_vm_struct(current, mpnt);
	}

	/* construct whatever mapping is needed */
	mpnt = (struct vm_area_struct *)kmalloc(sizeof(*mpnt), GFP_KERNEL);
	if (!mpnt)
		return;
	*mpnt = *area;
	if (mpnt->vm_ops && mpnt->vm_ops->open)
		mpnt->vm_ops->open(mpnt);
	if (area->vm_ops && area->vm_ops->close) {
		area->vm_end = area->vm_start;
		area->vm_ops->close(area);
	}
	insert_vm_struct(current, mpnt);
}

asmlinkage int sys_munmap(unsigned long addr, size_t len)
{
	return do_munmap(addr, len);
}

/*
 * Munmap is split into 2 main parts -- this part which finds
 * what needs doing, and the areas themselves, which do the
 * work.  This now handles partial unmappings.
 * Jeremy Fitzhardine <jeremy@sw.oz.au>
 */
int do_munmap(unsigned long addr, size_t len)
{
	struct vm_area_struct *mpnt, *prev, *next, **npp, *free;

	if ((addr & ~PAGE_MASK) || addr > TASK_SIZE || len > TASK_SIZE-addr)
		return -EINVAL;

	if ((len = PAGE_ALIGN(len)) == 0)
		return 0;

	/*
	 * Check if this memory area is ok - put it on the temporary
	 * list if so..  The checks here are pretty simple --
	 * every area affected in some way (by any overlap) is put
	 * on the list.  If nothing is put on, nothing is affected.
	 */
	mpnt = find_vma(current, addr);
	if (!mpnt)
		return 0;
	avl_neighbours(mpnt, current->mm->mmap_avl, &prev, &next);
	/* we have  prev->vm_next == mpnt && mpnt->vm_next = next */
	/* and  addr < mpnt->vm_end  */

	npp = (prev ? &prev->vm_next : &current->mm->mmap);
	free = NULL;
	for ( ; mpnt && mpnt->vm_start < addr+len; mpnt = *npp) {
		*npp = mpnt->vm_next;
		mpnt->vm_next = free;
		free = mpnt;
		avl_remove(mpnt, &current->mm->mmap_avl);
	}

	if (free == NULL)
		return 0;

	/*
	 * Ok - we have the memory areas we should free on the 'free' list,
	 * so release them, and unmap the page range..
	 * If the one of the segments is only being partially unmapped,
	 * it will put new vm_area_struct(s) into the address space.
	 */
	while (free) {
		unsigned long st, end;

		mpnt = free;
		free = free->vm_next;

		remove_shared_vm_struct(mpnt);

		st = addr < mpnt->vm_start ? mpnt->vm_start : addr;
		end = addr+len;
		end = end > mpnt->vm_end ? mpnt->vm_end : end;

		if (mpnt->vm_ops && mpnt->vm_ops->unmap)
			mpnt->vm_ops->unmap(mpnt, st, end-st);
		zap_page_range(current->mm, st, end-st);
		unmap_fixup(mpnt, st, end-st);
		kfree(mpnt);
	}

	zap_page_range(current->mm, addr, len);
	return 0;
}

/* Build the AVL tree corresponding to the VMA list. */
void build_mmap_avl(struct mm_struct * mm)
{
	struct vm_area_struct * vma;

	mm->mmap_avl = NULL;
	for (vma = mm->mmap; vma; vma = vma->vm_next)
		avl_insert(vma, &mm->mmap_avl);
}

/* Release all mmaps. */
void exit_mmap(struct mm_struct * mm)
{
	struct vm_area_struct * mpnt;

	mpnt = mm->mmap;
	mm->mmap = NULL;
	mm->mmap_avl = NULL;
	mm->rss = 0;
	mm->total_vm = 0;
	mm->locked_vm = 0;
	while (mpnt) {
		struct vm_area_struct * next = mpnt->vm_next;
		if (mpnt->vm_ops) {
			if (mpnt->vm_ops->unmap)
				mpnt->vm_ops->unmap(mpnt, mpnt->vm_start, mpnt->vm_end-mpnt->vm_start);
			if (mpnt->vm_ops->close)
				mpnt->vm_ops->close(mpnt);
		}
		remove_shared_vm_struct(mpnt);
		zap_page_range(mm, mpnt->vm_start, mpnt->vm_end-mpnt->vm_start);
		if (mpnt->vm_inode)
			iput(mpnt->vm_inode);
		kfree(mpnt);
		mpnt = next;
	}
}

/*
 * Insert vm structure into process list sorted by address
 * and into the inode's i_mmap ring.
 */
void insert_vm_struct(struct task_struct *t, struct vm_area_struct *vmp)
{
	struct vm_area_struct *share;
	struct inode * inode;

#if 0 /* equivalent, but slow */
	struct vm_area_struct **p, *mpnt;

	p = &t->mm->mmap;
	while ((mpnt = *p) != NULL) {
		if (mpnt->vm_start > vmp->vm_start)
			break;
		if (mpnt->vm_end > vmp->vm_start)
			printk("insert_vm_struct: overlapping memory areas\n");
		p = &mpnt->vm_next;
	}
	vmp->vm_next = mpnt;
	*p = vmp;
#else
	struct vm_area_struct * prev, * next;

	avl_insert_neighbours(vmp, &t->mm->mmap_avl, &prev, &next);
	if ((prev ? prev->vm_next : t->mm->mmap) != next)
		printk("insert_vm_struct: tree inconsistent with list\n");
	if (prev)
		prev->vm_next = vmp;
	else
		t->mm->mmap = vmp;
	vmp->vm_next = next;
#endif

	inode = vmp->vm_inode;
	if (!inode)
		return;

	/* insert vmp into inode's circular share list */
	if ((share = inode->i_mmap)) {
		vmp->vm_next_share = share->vm_next_share;
		vmp->vm_next_share->vm_prev_share = vmp;
		share->vm_next_share = vmp;
		vmp->vm_prev_share = share;
	} else
		inode->i_mmap = vmp->vm_next_share = vmp->vm_prev_share = vmp;
}

/*
 * Remove one vm structure from the inode's i_mmap ring.
 */
void remove_shared_vm_struct(struct vm_area_struct *mpnt)
{
	struct inode * inode = mpnt->vm_inode;

	if (!inode)
		return;

	if (mpnt->vm_next_share == mpnt) {
		if (inode->i_mmap != mpnt)
			printk("Inode i_mmap ring corrupted\n");
		inode->i_mmap = NULL;
		return;
	}

	if (inode->i_mmap == mpnt)
		inode->i_mmap = mpnt->vm_next_share;

	mpnt->vm_prev_share->vm_next_share = mpnt->vm_next_share;
	mpnt->vm_next_share->vm_prev_share = mpnt->vm_prev_share;
}

/*
 * Merge the list of memory segments if possible.
 * Redundant vm_area_structs are freed.
 * This assumes that the list is ordered by address.
 * We don't need to traverse the entire list, only those segments
 * which intersect or are adjacent to a given interval.
 */
void merge_segments (struct task_struct * task, unsigned long start_addr, unsigned long end_addr)
{
	struct vm_area_struct *prev, *mpnt, *next;

	mpnt = find_vma(task, start_addr);
	if (!mpnt)
		return;
	avl_neighbours(mpnt, task->mm->mmap_avl, &prev, &next);
	/* we have  prev->vm_next == mpnt && mpnt->vm_next = next */

	if (!prev) {
		prev = mpnt;
		mpnt = next;
	}

	/* prev and mpnt cycle through the list, as long as
	 * start_addr < mpnt->vm_end && prev->vm_start < end_addr
	 */
	for ( ; mpnt && prev->vm_start < end_addr ; prev = mpnt, mpnt = next) {
#if 0
		printk("looping in merge_segments, mpnt=0x%lX\n", (unsigned long) mpnt);
#endif

		next = mpnt->vm_next;

		/*
		 * To share, we must have the same inode, operations.. 
		 */
		if (mpnt->vm_inode != prev->vm_inode)
			continue;
		if (mpnt->vm_pte != prev->vm_pte)
			continue;
		if (mpnt->vm_ops != prev->vm_ops)
			continue;
		if (mpnt->vm_flags != prev->vm_flags)
			continue;
		if (prev->vm_end != mpnt->vm_start)
			continue;
		/*
		 * and if we have an inode, the offsets must be contiguous..
		 */
		if ((mpnt->vm_inode != NULL) || (mpnt->vm_flags & VM_SHM)) {
			if (prev->vm_offset + prev->vm_end - prev->vm_start != mpnt->vm_offset)
				continue;
		}

		/*
		 * merge prev with mpnt and set up pointers so the new
		 * big segment can possibly merge with the next one.
		 * The old unused mpnt is freed.
		 */
		avl_remove(mpnt, &task->mm->mmap_avl);
		prev->vm_end = mpnt->vm_end;
		prev->vm_next = mpnt->vm_next;
		if (mpnt->vm_ops && mpnt->vm_ops->close) {
			mpnt->vm_offset += mpnt->vm_end - mpnt->vm_start;
			mpnt->vm_start = mpnt->vm_end;
			mpnt->vm_ops->close(mpnt);
		}
		remove_shared_vm_struct(mpnt);
		if (mpnt->vm_inode)
			mpnt->vm_inode->i_count--;
		kfree_s(mpnt, sizeof(*mpnt));
		mpnt = prev;
	}
}