Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 | /* * linux/mm/mmap.c * * Written by obz. */ #include <linux/stat.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/shm.h> #include <linux/errno.h> #include <linux/mman.h> #include <linux/string.h> #include <linux/malloc.h> #include <asm/segment.h> #include <asm/system.h> #include <asm/pgtable.h> static int anon_map(struct inode *, struct file *, struct vm_area_struct *); /* * description of effects of mapping type and prot in current implementation. * this is due to the limited x86 page protection hardware. The expected * behavior is in parens: * * map_type prot * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes * w: (no) no w: (no) no w: (yes) yes w: (no) no * x: (no) no x: (no) yes x: (no) yes x: (yes) yes * * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes * w: (no) no w: (no) no w: (copy) copy w: (no) no * x: (no) no x: (no) yes x: (no) yes x: (yes) yes * */ pgprot_t protection_map[16] = { __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 }; unsigned long do_mmap(struct file * file, unsigned long addr, unsigned long len, unsigned long prot, unsigned long flags, unsigned long off) { int error; struct vm_area_struct * vma; if ((len = PAGE_ALIGN(len)) == 0) return addr; if (addr > TASK_SIZE || len > TASK_SIZE || addr > TASK_SIZE-len) return -EINVAL; /* offset overflow? */ if (off + len < off) return -EINVAL; /* * do simple checking here so the lower-level routines won't have * to. we assume access permissions have been handled by the open * of the memory object, so we don't do any here. */ if (file != NULL) { switch (flags & MAP_TYPE) { case MAP_SHARED: if ((prot & PROT_WRITE) && !(file->f_mode & 2)) return -EACCES; /* fall through */ case MAP_PRIVATE: if (!(file->f_mode & 1)) return -EACCES; break; default: return -EINVAL; } if ((flags & MAP_DENYWRITE) && (file->f_inode->i_wcount > 0)) return -ETXTBSY; } else if ((flags & MAP_TYPE) != MAP_PRIVATE) return -EINVAL; /* * obtain the address to map to. we verify (or select) it and ensure * that it represents a valid section of the address space. */ if (flags & MAP_FIXED) { if (addr & ~PAGE_MASK) return -EINVAL; if (len > TASK_SIZE || addr > TASK_SIZE - len) return -EINVAL; } else { addr = get_unmapped_area(addr, len); if (!addr) return -ENOMEM; } /* * determine the object being mapped and call the appropriate * specific mapper. the address has already been validated, but * not unmapped, but the maps are removed from the list. */ if (file && (!file->f_op || !file->f_op->mmap)) return -ENODEV; vma = (struct vm_area_struct *)kmalloc(sizeof(struct vm_area_struct), GFP_KERNEL); if (!vma) return -ENOMEM; vma->vm_task = current; vma->vm_start = addr; vma->vm_end = addr + len; vma->vm_flags = prot & (VM_READ | VM_WRITE | VM_EXEC); vma->vm_flags |= flags & (VM_GROWSDOWN | VM_DENYWRITE | VM_EXECUTABLE); if (file) { if (file->f_mode & 1) vma->vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; if (flags & MAP_SHARED) { vma->vm_flags |= VM_SHARED | VM_MAYSHARE; /* * This looks strange, but when we don't have the file open * for writing, we can demote the shared mapping to a simpler * private mapping. That also takes care of a security hole * with ptrace() writing to a shared mapping without write * permissions. * * We leave the VM_MAYSHARE bit on, just to get correct output * from /proc/xxx/maps.. */ if (!(file->f_mode & 2)) vma->vm_flags &= ~(VM_MAYWRITE | VM_SHARED); } } else vma->vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; vma->vm_page_prot = protection_map[vma->vm_flags & 0x0f]; vma->vm_ops = NULL; vma->vm_offset = off; vma->vm_inode = NULL; vma->vm_pte = 0; do_munmap(addr, len); /* Clear old maps */ if (file) error = file->f_op->mmap(file->f_inode, file, vma); else error = anon_map(NULL, NULL, vma); if (error) { kfree(vma); return error; } insert_vm_struct(current, vma); merge_segments(current, vma->vm_start, vma->vm_end); return addr; } /* * Get an address range which is currently unmapped. * For mmap() without MAP_FIXED and shmat() with addr=0. * Return value 0 means ENOMEM. */ unsigned long get_unmapped_area(unsigned long addr, unsigned long len) { struct vm_area_struct * vmm; if (len > TASK_SIZE) return 0; if (!addr) addr = TASK_SIZE / 3; addr = PAGE_ALIGN(addr); for (vmm = current->mm->mmap; ; vmm = vmm->vm_next) { if (TASK_SIZE - len < addr) return 0; if (!vmm) return addr; if (addr > vmm->vm_end) continue; if (addr + len > vmm->vm_start) { addr = vmm->vm_end; continue; } return addr; } } /* * Searching a VMA in the linear list task->mm->mmap is horribly slow. * Use an AVL (Adelson-Velskii and Landis) tree to speed up this search * from O(n) to O(log n), where n is the number of VMAs of the task * (typically around 6, but may reach 3000 in some cases). * Written by Bruno Haible <haible@ma2s2.mathematik.uni-karlsruhe.de>. */ /* We keep the list and tree sorted by address. */ #define vm_avl_key vm_end #define vm_avl_key_t unsigned long /* typeof(vma->avl_key) */ /* * task->mm->mmap_avl is the AVL tree corresponding to task->mm->mmap * or, more exactly, its root. * A vm_area_struct has the following fields: * vm_avl_left left son of a tree node * vm_avl_right right son of a tree node * vm_avl_height 1+max(heightof(left),heightof(right)) * The empty tree is represented as NULL. */ #define avl_empty (struct vm_area_struct *) NULL /* Since the trees are balanced, their height will never be large. */ #define avl_maxheight 41 /* why this? a small exercise */ #define heightof(tree) ((tree) == avl_empty ? 0 : (tree)->vm_avl_height) /* * Consistency and balancing rules: * 1. tree->vm_avl_height == 1+max(heightof(tree->vm_avl_left),heightof(tree->vm_avl_right)) * 2. abs( heightof(tree->vm_avl_left) - heightof(tree->vm_avl_right) ) <= 1 * 3. foreach node in tree->vm_avl_left: node->vm_avl_key <= tree->vm_avl_key, * foreach node in tree->vm_avl_right: node->vm_avl_key >= tree->vm_avl_key. */ /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ struct vm_area_struct * find_vma (struct task_struct * task, unsigned long addr) { #if 0 /* equivalent, but slow */ struct vm_area_struct * vma; for (vma = task->mm->mmap ; ; vma = vma->vm_next) { if (!vma) return NULL; if (vma->vm_end > addr) return vma; } #else struct vm_area_struct * result = NULL; struct vm_area_struct * tree; for (tree = task->mm->mmap_avl ; ; ) { if (tree == avl_empty) return result; if (tree->vm_end > addr) { if (tree->vm_start <= addr) return tree; result = tree; tree = tree->vm_avl_left; } else tree = tree->vm_avl_right; } #endif } /* Look up the first VMA which intersects the interval start_addr..end_addr-1, NULL if none. Assume start_addr < end_addr. */ struct vm_area_struct * find_vma_intersection (struct task_struct * task, unsigned long start_addr, unsigned long end_addr) { struct vm_area_struct * vma; #if 0 /* equivalent, but slow */ for (vma = task->mm->mmap; vma; vma = vma->vm_next) { if (end_addr <= vma->vm_start) break; if (start_addr < vma->vm_end) return vma; } return NULL; #else vma = find_vma(task,start_addr); if (!vma || end_addr <= vma->vm_start) return NULL; return vma; #endif } /* Look up the nodes at the left and at the right of a given node. */ static void avl_neighbours (struct vm_area_struct * node, struct vm_area_struct * tree, struct vm_area_struct ** to_the_left, struct vm_area_struct ** to_the_right) { vm_avl_key_t key = node->vm_avl_key; *to_the_left = *to_the_right = NULL; for (;;) { if (tree == avl_empty) { printk("avl_neighbours: node not found in the tree\n"); return; } if (key == tree->vm_avl_key) break; if (key < tree->vm_avl_key) { *to_the_right = tree; tree = tree->vm_avl_left; } else { *to_the_left = tree; tree = tree->vm_avl_right; } } if (tree != node) { printk("avl_neighbours: node not exactly found in the tree\n"); return; } if (tree->vm_avl_left != avl_empty) { struct vm_area_struct * node; for (node = tree->vm_avl_left; node->vm_avl_right != avl_empty; node = node->vm_avl_right) continue; *to_the_left = node; } if (tree->vm_avl_right != avl_empty) { struct vm_area_struct * node; for (node = tree->vm_avl_right; node->vm_avl_left != avl_empty; node = node->vm_avl_left) continue; *to_the_right = node; } if ((*to_the_left && ((*to_the_left)->vm_next != node)) || (node->vm_next != *to_the_right)) printk("avl_neighbours: tree inconsistent with list\n"); } /* * Rebalance a tree. * After inserting or deleting a node of a tree we have a sequence of subtrees * nodes[0]..nodes[k-1] such that * nodes[0] is the root and nodes[i+1] = nodes[i]->{vm_avl_left|vm_avl_right}. */ static void avl_rebalance (struct vm_area_struct *** nodeplaces_ptr, int count) { for ( ; count > 0 ; count--) { struct vm_area_struct ** nodeplace = *--nodeplaces_ptr; struct vm_area_struct * node = *nodeplace; struct vm_area_struct * nodeleft = node->vm_avl_left; struct vm_area_struct * noderight = node->vm_avl_right; int heightleft = heightof(nodeleft); int heightright = heightof(noderight); if (heightright + 1 < heightleft) { /* */ /* * */ /* / \ */ /* n+2 n */ /* */ struct vm_area_struct * nodeleftleft = nodeleft->vm_avl_left; struct vm_area_struct * nodeleftright = nodeleft->vm_avl_right; int heightleftright = heightof(nodeleftright); if (heightof(nodeleftleft) >= heightleftright) { /* */ /* * n+2|n+3 */ /* / \ / \ */ /* n+2 n --> / n+1|n+2 */ /* / \ | / \ */ /* n+1 n|n+1 n+1 n|n+1 n */ /* */ node->vm_avl_left = nodeleftright; nodeleft->vm_avl_right = node; nodeleft->vm_avl_height = 1 + (node->vm_avl_height = 1 + heightleftright); *nodeplace = nodeleft; } else { /* */ /* * n+2 */ /* / \ / \ */ /* n+2 n --> n+1 n+1 */ /* / \ / \ / \ */ /* n n+1 n L R n */ /* / \ */ /* L R */ /* */ nodeleft->vm_avl_right = nodeleftright->vm_avl_left; node->vm_avl_left = nodeleftright->vm_avl_right; nodeleftright->vm_avl_left = nodeleft; nodeleftright->vm_avl_right = node; nodeleft->vm_avl_height = node->vm_avl_height = heightleftright; nodeleftright->vm_avl_height = heightleft; *nodeplace = nodeleftright; } } else if (heightleft + 1 < heightright) { /* similar to the above, just interchange 'left' <--> 'right' */ struct vm_area_struct * noderightright = noderight->vm_avl_right; struct vm_area_struct * noderightleft = noderight->vm_avl_left; int heightrightleft = heightof(noderightleft); if (heightof(noderightright) >= heightrightleft) { node->vm_avl_right = noderightleft; noderight->vm_avl_left = node; noderight->vm_avl_height = 1 + (node->vm_avl_height = 1 + heightrightleft); *nodeplace = noderight; } else { noderight->vm_avl_left = noderightleft->vm_avl_right; node->vm_avl_right = noderightleft->vm_avl_left; noderightleft->vm_avl_right = noderight; noderightleft->vm_avl_left = node; noderight->vm_avl_height = node->vm_avl_height = heightrightleft; noderightleft->vm_avl_height = heightright; *nodeplace = noderightleft; } } else { int height = (heightleft<heightright ? heightright : heightleft) + 1; if (height == node->vm_avl_height) break; node->vm_avl_height = height; } } } /* Insert a node into a tree. */ static void avl_insert (struct vm_area_struct * new_node, struct vm_area_struct ** ptree) { vm_avl_key_t key = new_node->vm_avl_key; struct vm_area_struct ** nodeplace = ptree; struct vm_area_struct ** stack[avl_maxheight]; int stack_count = 0; struct vm_area_struct *** stack_ptr = &stack[0]; /* = &stack[stackcount] */ for (;;) { struct vm_area_struct * node = *nodeplace; if (node == avl_empty) break; *stack_ptr++ = nodeplace; stack_count++; if (key < node->vm_avl_key) nodeplace = &node->vm_avl_left; else nodeplace = &node->vm_avl_right; } new_node->vm_avl_left = avl_empty; new_node->vm_avl_right = avl_empty; new_node->vm_avl_height = 1; *nodeplace = new_node; avl_rebalance(stack_ptr,stack_count); } /* Insert a node into a tree, and * return the node to the left of it and the node to the right of it. */ static void avl_insert_neighbours (struct vm_area_struct * new_node, struct vm_area_struct ** ptree, struct vm_area_struct ** to_the_left, struct vm_area_struct ** to_the_right) { vm_avl_key_t key = new_node->vm_avl_key; struct vm_area_struct ** nodeplace = ptree; struct vm_area_struct ** stack[avl_maxheight]; int stack_count = 0; struct vm_area_struct *** stack_ptr = &stack[0]; /* = &stack[stackcount] */ *to_the_left = *to_the_right = NULL; for (;;) { struct vm_area_struct * node = *nodeplace; if (node == avl_empty) break; *stack_ptr++ = nodeplace; stack_count++; if (key < node->vm_avl_key) { *to_the_right = node; nodeplace = &node->vm_avl_left; } else { *to_the_left = node; nodeplace = &node->vm_avl_right; } } new_node->vm_avl_left = avl_empty; new_node->vm_avl_right = avl_empty; new_node->vm_avl_height = 1; *nodeplace = new_node; avl_rebalance(stack_ptr,stack_count); } /* Removes a node out of a tree. */ static void avl_remove (struct vm_area_struct * node_to_delete, struct vm_area_struct ** ptree) { vm_avl_key_t key = node_to_delete->vm_avl_key; struct vm_area_struct ** nodeplace = ptree; struct vm_area_struct ** stack[avl_maxheight]; int stack_count = 0; struct vm_area_struct *** stack_ptr = &stack[0]; /* = &stack[stackcount] */ struct vm_area_struct ** nodeplace_to_delete; for (;;) { struct vm_area_struct * node = *nodeplace; if (node == avl_empty) { /* what? node_to_delete not found in tree? */ printk("avl_remove: node to delete not found in tree\n"); return; } *stack_ptr++ = nodeplace; stack_count++; if (key == node->vm_avl_key) break; if (key < node->vm_avl_key) nodeplace = &node->vm_avl_left; else nodeplace = &node->vm_avl_right; } nodeplace_to_delete = nodeplace; /* Have to remove node_to_delete = *nodeplace_to_delete. */ if (node_to_delete->vm_avl_left == avl_empty) { *nodeplace_to_delete = node_to_delete->vm_avl_right; stack_ptr--; stack_count--; } else { struct vm_area_struct *** stack_ptr_to_delete = stack_ptr; struct vm_area_struct ** nodeplace = &node_to_delete->vm_avl_left; struct vm_area_struct * node; for (;;) { node = *nodeplace; if (node->vm_avl_right == avl_empty) break; *stack_ptr++ = nodeplace; stack_count++; nodeplace = &node->vm_avl_right; } *nodeplace = node->vm_avl_left; /* node replaces node_to_delete */ node->vm_avl_left = node_to_delete->vm_avl_left; node->vm_avl_right = node_to_delete->vm_avl_right; node->vm_avl_height = node_to_delete->vm_avl_height; *nodeplace_to_delete = node; /* replace node_to_delete */ *stack_ptr_to_delete = &node->vm_avl_left; /* replace &node_to_delete->vm_avl_left */ } avl_rebalance(stack_ptr,stack_count); } #ifdef DEBUG_AVL /* print a list */ static void printk_list (struct vm_area_struct * vma) { printk("["); while (vma) { printk("%08lX-%08lX", vma->vm_start, vma->vm_end); vma = vma->vm_next; if (!vma) break; printk(" "); } printk("]"); } /* print a tree */ static void printk_avl (struct vm_area_struct * tree) { if (tree != avl_empty) { printk("("); if (tree->vm_avl_left != avl_empty) { printk_avl(tree->vm_avl_left); printk("<"); } printk("%08lX-%08lX", tree->vm_start, tree->vm_end); if (tree->vm_avl_right != avl_empty) { printk(">"); printk_avl(tree->vm_avl_right); } printk(")"); } } static char *avl_check_point = "somewhere"; /* check a tree's consistency and balancing */ static void avl_checkheights (struct vm_area_struct * tree) { int h, hl, hr; if (tree == avl_empty) return; avl_checkheights(tree->vm_avl_left); avl_checkheights(tree->vm_avl_right); h = tree->vm_avl_height; hl = heightof(tree->vm_avl_left); hr = heightof(tree->vm_avl_right); if ((h == hl+1) && (hr <= hl) && (hl <= hr+1)) return; if ((h == hr+1) && (hl <= hr) && (hr <= hl+1)) return; printk("%s: avl_checkheights: heights inconsistent\n",avl_check_point); } /* check that all values stored in a tree are < key */ static void avl_checkleft (struct vm_area_struct * tree, vm_avl_key_t key) { if (tree == avl_empty) return; avl_checkleft(tree->vm_avl_left,key); avl_checkleft(tree->vm_avl_right,key); if (tree->vm_avl_key < key) return; printk("%s: avl_checkleft: left key %lu >= top key %lu\n",avl_check_point,tree->vm_avl_key,key); } /* check that all values stored in a tree are > key */ static void avl_checkright (struct vm_area_struct * tree, vm_avl_key_t key) { if (tree == avl_empty) return; avl_checkright(tree->vm_avl_left,key); avl_checkright(tree->vm_avl_right,key); if (tree->vm_avl_key > key) return; printk("%s: avl_checkright: right key %lu <= top key %lu\n",avl_check_point,tree->vm_avl_key,key); } /* check that all values are properly increasing */ static void avl_checkorder (struct vm_area_struct * tree) { if (tree == avl_empty) return; avl_checkorder(tree->vm_avl_left); avl_checkorder(tree->vm_avl_right); avl_checkleft(tree->vm_avl_left,tree->vm_avl_key); avl_checkright(tree->vm_avl_right,tree->vm_avl_key); } /* all checks */ static void avl_check (struct task_struct * task, char *caller) { avl_check_point = caller; /* printk("task \"%s\", %s\n",task->comm,caller); */ /* printk("task \"%s\" list: ",task->comm); printk_list(task->mm->mmap); printk("\n"); */ /* printk("task \"%s\" tree: ",task->comm); printk_avl(task->mm->mmap_avl); printk("\n"); */ avl_checkheights(task->mm->mmap_avl); avl_checkorder(task->mm->mmap_avl); } #endif /* * Normal function to fix up a mapping * This function is the default for when an area has no specific * function. This may be used as part of a more specific routine. * This function works out what part of an area is affected and * adjusts the mapping information. Since the actual page * manipulation is done in do_mmap(), none need be done here, * though it would probably be more appropriate. * * By the time this function is called, the area struct has been * removed from the process mapping list, so it needs to be * reinserted if necessary. * * The 4 main cases are: * Unmapping the whole area * Unmapping from the start of the segment to a point in it * Unmapping from an intermediate point to the end * Unmapping between to intermediate points, making a hole. * * Case 4 involves the creation of 2 new areas, for each side of * the hole. */ void unmap_fixup(struct vm_area_struct *area, unsigned long addr, size_t len) { struct vm_area_struct *mpnt; unsigned long end = addr + len; if (addr < area->vm_start || addr >= area->vm_end || end <= area->vm_start || end > area->vm_end || end < addr) { printk("unmap_fixup: area=%lx-%lx, unmap %lx-%lx!!\n", area->vm_start, area->vm_end, addr, end); return; } /* Unmapping the whole area */ if (addr == area->vm_start && end == area->vm_end) { if (area->vm_ops && area->vm_ops->close) area->vm_ops->close(area); if (area->vm_inode) iput(area->vm_inode); return; } /* Work out to one of the ends */ if (end == area->vm_end) area->vm_end = addr; else if (addr == area->vm_start) { area->vm_offset += (end - area->vm_start); area->vm_start = end; } else { /* Unmapping a hole: area->vm_start < addr <= end < area->vm_end */ /* Add end mapping -- leave beginning for below */ mpnt = (struct vm_area_struct *)kmalloc(sizeof(*mpnt), GFP_KERNEL); if (!mpnt) return; *mpnt = *area; mpnt->vm_offset += (end - area->vm_start); mpnt->vm_start = end; if (mpnt->vm_inode) mpnt->vm_inode->i_count++; if (mpnt->vm_ops && mpnt->vm_ops->open) mpnt->vm_ops->open(mpnt); area->vm_end = addr; /* Truncate area */ insert_vm_struct(current, mpnt); } /* construct whatever mapping is needed */ mpnt = (struct vm_area_struct *)kmalloc(sizeof(*mpnt), GFP_KERNEL); if (!mpnt) return; *mpnt = *area; if (mpnt->vm_ops && mpnt->vm_ops->open) mpnt->vm_ops->open(mpnt); if (area->vm_ops && area->vm_ops->close) { area->vm_end = area->vm_start; area->vm_ops->close(area); } insert_vm_struct(current, mpnt); } asmlinkage int sys_munmap(unsigned long addr, size_t len) { return do_munmap(addr, len); } /* * Munmap is split into 2 main parts -- this part which finds * what needs doing, and the areas themselves, which do the * work. This now handles partial unmappings. * Jeremy Fitzhardine <jeremy@sw.oz.au> */ int do_munmap(unsigned long addr, size_t len) { struct vm_area_struct *mpnt, *prev, *next, **npp, *free; if ((addr & ~PAGE_MASK) || addr > TASK_SIZE || len > TASK_SIZE-addr) return -EINVAL; if ((len = PAGE_ALIGN(len)) == 0) return 0; /* * Check if this memory area is ok - put it on the temporary * list if so.. The checks here are pretty simple -- * every area affected in some way (by any overlap) is put * on the list. If nothing is put on, nothing is affected. */ mpnt = find_vma(current, addr); if (!mpnt) return 0; avl_neighbours(mpnt, current->mm->mmap_avl, &prev, &next); /* we have prev->vm_next == mpnt && mpnt->vm_next = next */ /* and addr < mpnt->vm_end */ npp = (prev ? &prev->vm_next : ¤t->mm->mmap); free = NULL; for ( ; mpnt && mpnt->vm_start < addr+len; mpnt = *npp) { *npp = mpnt->vm_next; mpnt->vm_next = free; free = mpnt; avl_remove(mpnt, ¤t->mm->mmap_avl); } if (free == NULL) return 0; /* * Ok - we have the memory areas we should free on the 'free' list, * so release them, and unmap the page range.. * If the one of the segments is only being partially unmapped, * it will put new vm_area_struct(s) into the address space. */ while (free) { unsigned long st, end; mpnt = free; free = free->vm_next; remove_shared_vm_struct(mpnt); st = addr < mpnt->vm_start ? mpnt->vm_start : addr; end = addr+len; end = end > mpnt->vm_end ? mpnt->vm_end : end; if (mpnt->vm_ops && mpnt->vm_ops->unmap) mpnt->vm_ops->unmap(mpnt, st, end-st); unmap_fixup(mpnt, st, end-st); kfree(mpnt); } unmap_page_range(addr, len); return 0; } /* Build the AVL tree corresponding to the VMA list. */ void build_mmap_avl(struct task_struct * task) { struct vm_area_struct * vma; task->mm->mmap_avl = NULL; for (vma = task->mm->mmap; vma; vma = vma->vm_next) avl_insert(vma, &task->mm->mmap_avl); } /* Release all mmaps. */ void exit_mmap(struct task_struct * task) { struct vm_area_struct * mpnt; mpnt = task->mm->mmap; task->mm->mmap = NULL; task->mm->mmap_avl = NULL; while (mpnt) { struct vm_area_struct * next = mpnt->vm_next; if (mpnt->vm_ops && mpnt->vm_ops->close) mpnt->vm_ops->close(mpnt); remove_shared_vm_struct(mpnt); if (mpnt->vm_inode) iput(mpnt->vm_inode); kfree(mpnt); mpnt = next; } } /* * Insert vm structure into process list sorted by address * and into the inode's i_mmap ring. */ void insert_vm_struct(struct task_struct *t, struct vm_area_struct *vmp) { struct vm_area_struct *share; struct inode * inode; #if 0 /* equivalent, but slow */ struct vm_area_struct **p, *mpnt; p = &t->mm->mmap; while ((mpnt = *p) != NULL) { if (mpnt->vm_start > vmp->vm_start) break; if (mpnt->vm_end > vmp->vm_start) printk("insert_vm_struct: overlapping memory areas\n"); p = &mpnt->vm_next; } vmp->vm_next = mpnt; *p = vmp; #else struct vm_area_struct * prev, * next; avl_insert_neighbours(vmp, &t->mm->mmap_avl, &prev, &next); if ((prev ? prev->vm_next : t->mm->mmap) != next) printk("insert_vm_struct: tree inconsistent with list\n"); if (prev) prev->vm_next = vmp; else t->mm->mmap = vmp; vmp->vm_next = next; #endif inode = vmp->vm_inode; if (!inode) return; /* insert vmp into inode's circular share list */ if ((share = inode->i_mmap)) { vmp->vm_next_share = share->vm_next_share; vmp->vm_next_share->vm_prev_share = vmp; share->vm_next_share = vmp; vmp->vm_prev_share = share; } else inode->i_mmap = vmp->vm_next_share = vmp->vm_prev_share = vmp; } /* * Remove one vm structure from the inode's i_mmap ring. */ void remove_shared_vm_struct(struct vm_area_struct *mpnt) { struct inode * inode = mpnt->vm_inode; if (!inode) return; if (mpnt->vm_next_share == mpnt) { if (inode->i_mmap != mpnt) printk("Inode i_mmap ring corrupted\n"); inode->i_mmap = NULL; return; } if (inode->i_mmap == mpnt) inode->i_mmap = mpnt->vm_next_share; mpnt->vm_prev_share->vm_next_share = mpnt->vm_next_share; mpnt->vm_next_share->vm_prev_share = mpnt->vm_prev_share; } /* * Merge the list of memory segments if possible. * Redundant vm_area_structs are freed. * This assumes that the list is ordered by address. * We don't need to traverse the entire list, only those segments * which intersect or are adjacent to a given interval. */ void merge_segments (struct task_struct * task, unsigned long start_addr, unsigned long end_addr) { struct vm_area_struct *prev, *mpnt, *next; mpnt = find_vma(task, start_addr); if (!mpnt) return; avl_neighbours(mpnt, task->mm->mmap_avl, &prev, &next); /* we have prev->vm_next == mpnt && mpnt->vm_next = next */ if (!prev) { prev = mpnt; mpnt = next; } /* prev and mpnt cycle through the list, as long as * start_addr < mpnt->vm_end && prev->vm_start < end_addr */ for ( ; mpnt && prev->vm_start < end_addr ; prev = mpnt, mpnt = next) { #if 0 printk("looping in merge_segments, mpnt=0x%lX\n", (unsigned long) mpnt); #endif next = mpnt->vm_next; /* * To share, we must have the same inode, operations.. */ if (mpnt->vm_inode != prev->vm_inode) continue; if (mpnt->vm_pte != prev->vm_pte) continue; if (mpnt->vm_ops != prev->vm_ops) continue; if (mpnt->vm_flags != prev->vm_flags) continue; if (prev->vm_end != mpnt->vm_start) continue; /* * and if we have an inode, the offsets must be contiguous.. */ if ((mpnt->vm_inode != NULL) || (mpnt->vm_flags & VM_SHM)) { if (prev->vm_offset + prev->vm_end - prev->vm_start != mpnt->vm_offset) continue; } /* * merge prev with mpnt and set up pointers so the new * big segment can possibly merge with the next one. * The old unused mpnt is freed. */ avl_remove(mpnt, &task->mm->mmap_avl); prev->vm_end = mpnt->vm_end; prev->vm_next = mpnt->vm_next; if (mpnt->vm_ops && mpnt->vm_ops->close) { mpnt->vm_offset += mpnt->vm_end - mpnt->vm_start; mpnt->vm_start = mpnt->vm_end; mpnt->vm_ops->close(mpnt); } remove_shared_vm_struct(mpnt); if (mpnt->vm_inode) mpnt->vm_inode->i_count--; kfree_s(mpnt, sizeof(*mpnt)); mpnt = prev; } } /* * Map memory not associated with any file into a process * address space. Adjacent memory is merged. */ static int anon_map(struct inode *ino, struct file * file, struct vm_area_struct * vma) { if (zeromap_page_range(vma->vm_start, vma->vm_end - vma->vm_start, vma->vm_page_prot)) return -ENOMEM; return 0; } |