Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
/*
 * ramdisk.c - Multiple ramdisk driver - gzip-loading version - v. 0.8 beta.
 * 
 * (C) Chad Page, Theodore Ts'o, et. al, 1995. 
 *
 * This ramdisk is designed to have filesystems created on it and mounted
 * just like a regular floppy disk.  
 *  
 * It also does something suggested by Linus: use the buffer cache as the
 * ramdisk data.  This makes it possible to dynamically allocate the ramdisk
 * buffer - with some consequences I have to deal with as I write this. 
 * 
 * This code is based on the original ramdisk.c, written mostly by
 * Theodore Ts'o (TYT) in 1991.  The code was largely rewritten by
 * Chad Page to use the buffer cache to store the ramdisk data in
 * 1995; Theodore then took over the driver again, and cleaned it up
 * for inclusion in the mainline kernel.
 *
 * The original CRAMDISK code was written by Richard Lyons, and
 * adapted by Chad Page to use the new ramdisk interface.  Theodore
 * Ts'o rewrote it so that both the compressed ramdisk loader and the
 * kernel decompressor uses the same inflate.c codebase.  The ramdisk
 * loader now also loads into a dynamic (buffer cache based) ramdisk,
 * not the old static ramdisk.  Support for the old static ramdisk has
 * been completely removed.
 */

#include <linux/sched.h>
#include <linux/minix_fs.h>
#include <linux/ext2_fs.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/malloc.h>
#include <linux/ioctl.h>

#include <asm/system.h>
#include <asm/segment.h>

extern void wait_for_keypress(void);

/*
 * 35 has been officially registered as the RAMDISK major number, but
 * so is the original MAJOR number of 1.  We're using 1 in
 * include/linux/major.h for now
 */
#define MAJOR_NR RAMDISK_MAJOR
#include <linux/blk.h>

#define BUILD_CRAMDISK
#define NUM_RAMDISKS 8

void rd_load(void);
static int crd_load(struct file *fp, struct file *outfp);

/* Various static variables go here... mostly used within the ramdisk code only. */

static int rd_length[NUM_RAMDISKS];
static int rd_blocksizes[NUM_RAMDISKS];

/*
 * Parameters for the boot-loading of the ramdisk.  These are set by
 * init/main.c (from arguments to the kernel command line) or from the
 * architecture-specific setup routine (from the stored bootsector
 * information). 
 */
int rd_doload = 0;		/* 1 = load ramdisk, 0 = don't load */
int rd_prompt = 1;		/* 1 = prompt for ramdisk, 0 = don't prompt */
int rd_image_start = 0;		/* starting block # of image */

/*
 *  Basically, my strategy here is to set up a buffer-head which can't be
 *  deleted, and make that my Ramdisk.  If the request is outside of the
 *  allocated size, we must get rid of it...
 *
 */
static void rd_request(void)
{
	unsigned int minor;
	int offset, len;

repeat:
	INIT_REQUEST;
	
	minor = MINOR(CURRENT->rq_dev);

	if (minor >= NUM_RAMDISKS) {
		end_request(0);
		goto repeat;
	}
	
	offset = CURRENT->sector << 9;
	len = CURRENT->current_nr_sectors << 9;

	if ((offset + len) > rd_length[minor]) {
		end_request(0);
		goto repeat;
	}

	if (CURRENT->cmd == READ) {	
		memset(CURRENT->buffer, 0, len); 
	}
	set_bit(BH_Protected, &CURRENT->bh->b_state);

	end_request(1);
	goto repeat;
} 

static int rd_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
	int err;
	
	if (!inode || !inode->i_rdev) 	
		return -EINVAL;

	switch (cmd) {
		case BLKFLSBUF:
			if (!suser()) return -EACCES;
			invalidate_buffers(inode->i_rdev);
			break;
         	case BLKGETSIZE:   /* Return device size */
			if (!arg)  return -EINVAL;
			err = verify_area(VERIFY_WRITE, (long *) arg,
					  sizeof(long));
			if (err)
				return err;
			put_user(rd_length[MINOR(inode->i_rdev)] / 512, 
				 (long *) arg);
			return 0;
			
		default:
			break;
	};

	return 0;
}

static int rd_open(struct inode * inode, struct file * filp)
{

	if (DEVICE_NR(inode->i_rdev) >= NUM_RAMDISKS)
		return -ENODEV;

	return 0;
}

static struct file_operations fd_fops = {
	NULL,		/* lseek - default */
	block_read,	/* read - block dev write */
	block_write,	/* write - block dev write */
	NULL,		/* readdir - not here! */
	NULL,		/* select */
	rd_ioctl, 	/* ioctl */
	NULL,		/* mmap */
	rd_open,	/* open */
	NULL,		/* no special release code... */
	block_fsync		/* fsync */ 
};

/* This is the registration and initialization section of the ramdisk driver */
int rd_init(void)
{
	int		i;

	if (register_blkdev(MAJOR_NR, "ramdisk", &fd_fops)) {
		printk("RAMDISK2 : Could not get major %d", MAJOR_NR);
		return -EIO;
	}

	blk_dev[MAJOR_NR].request_fn = &rd_request;

	for (i = 0; i < NUM_RAMDISKS; i++) {
		rd_length[i] = (16384 * 1024);
		rd_blocksizes[i] = 1024;
	}

	blksize_size[MAJOR_NR] = rd_blocksizes;

	return 0;
}

/*
 * This routine tries to a ramdisk image to load, and returns the
 * number of blocks to read for a non-compressed image, 0 if the image
 * is a compressed image, and -1 if an image with the right magic
 * numbers could not be found.
 *
 * We currently check for the following magic numbers:
 * 	minix
 * 	ext2
 * 	gzip
 */
int
identify_ramdisk_image(int device, struct file *fp, int start_block)
{
	const int size = 512;
	struct minix_super_block *minixsb;
	struct ext2_super_block *ext2sb;
	int nblocks = -1;
	int max_blocks;
	unsigned char *buf;

	buf = kmalloc(size, GFP_KERNEL);
	if (buf == 0)
		return -1;

	minixsb = (struct minix_super_block *) buf;
	ext2sb = (struct ext2_super_block *) buf;
	memset(buf, 0xe5, size);

	/*
	 * Read block 0 to test for gzipped kernel
	 */
	if (fp->f_op->lseek)
		fp->f_op->lseek(fp->f_inode, fp, start_block * BLOCK_SIZE, 0);
	fp->f_pos = start_block * BLOCK_SIZE;
	
	fp->f_op->read(fp->f_inode, fp, buf, size);

	/*
	 * If it matches the gzip magic numbers, return -1
	 */
	if (buf[0] == 037 && ((buf[1] == 0213) || (buf[1] == 0236))) {
		printk(KERN_NOTICE
		       "RAMDISK: Compressed image found at block %d\n",
		       start_block);
		nblocks = 0;
		goto done;
	}

	/*
	 * Read block 1 to test for minix and ext2 superblock
	 */
	if (fp->f_op->lseek)
		fp->f_op->lseek(fp->f_inode, fp,
				(start_block+1) * BLOCK_SIZE, 0);
	fp->f_pos = (start_block+1) * BLOCK_SIZE;

	fp->f_op->read(fp->f_inode, fp, buf, size);
		
	/* Try minix */
	if (minixsb->s_magic == MINIX_SUPER_MAGIC ||
	    minixsb->s_magic == MINIX_SUPER_MAGIC2) {
		printk(KERN_NOTICE
		       "RAMDISK: Minix filesystem found at block %d\n",
		       start_block);
		nblocks = minixsb->s_nzones << minixsb->s_log_zone_size;
		goto done;
	}

	/* Try ext2 */
	if (ext2sb->s_magic == EXT2_SUPER_MAGIC) {
		printk(KERN_NOTICE
		       "RAMDISK: Ext2 filesystem found at block %d\n",
		       start_block);
		nblocks = ext2sb->s_blocks_count;
		goto done;
	}
	printk(KERN_NOTICE
	       "RAMDISK: Couldn't find valid ramdisk image starting at %d.\n",
	       start_block);
	
done:
	if (fp->f_op->lseek)
		fp->f_op->lseek(fp->f_inode, fp, start_block * BLOCK_SIZE, 0);
	fp->f_pos = start_block * BLOCK_SIZE;	

	if ((nblocks > 0) && blk_size[MAJOR(device)]) {
		max_blocks = blk_size[MAJOR(device)][MINOR(device)];
		max_blocks -= start_block;
		if (nblocks > max_blocks) {
			printk(KERN_NOTICE
			       "RAMDISK: Restricting filesystem size "
			       "from %d to %d blocks.\n",
			       nblocks, max_blocks);
			nblocks = max_blocks;
		}
	}
	kfree(buf);
	return nblocks;
}

/*
 * This routine loads in the ramdisk image.
 */
void rd_load()
{
	struct inode inode, out_inode;
	struct file infile, outfile;
	unsigned short fs;
	int device, ram_device;
	int nblocks, i;
	char *buf;
	unsigned short rotate = 0;
	char rotator[4] = { '|' , '/' , '-' , '\\' };

	if (rd_doload == 0)
		return;
	
	device = ROOT_DEV;
	ram_device = (MAJOR_NR << 8);

	if (MAJOR(device) != FLOPPY_MAJOR) return;

	if (rd_prompt) {
		printk(KERN_NOTICE
		       "VFS: Insert ramdisk floppy and press ENTER\n");
		wait_for_keypress();
	}

	memset(&infile, 0, sizeof(infile));
	memset(&inode, 0, sizeof(inode));
	inode.i_rdev = device;
	infile.f_mode = 1; /* read only */
	infile.f_inode = &inode;

	memset(&outfile, 0, sizeof(outfile));
	memset(&out_inode, 0, sizeof(out_inode));
	out_inode.i_rdev = ram_device;
	outfile.f_mode = 3; /* read/write */
	outfile.f_inode = &out_inode;

	if (blkdev_open(&inode, &infile) != 0) return;
	if (blkdev_open(&out_inode, &outfile) != 0) return;

	fs = get_fs();
	set_fs(KERNEL_DS);
	
	nblocks = identify_ramdisk_image(device, &infile, rd_image_start);
	if (nblocks < 0)
		goto done;

	if (nblocks == 0) {
#ifdef BUILD_CRAMDISK
		if (crd_load(&infile, &outfile) == 0)
			goto successful_load;
#else
		printk(KERN_NOTICE
		       "RAMDISK: Kernel does not support compressed "
		       "ramdisk images\n");
#endif
		goto done;
	}

	if (nblocks > (rd_length[0] >> BLOCK_SIZE_BITS)) {
		printk("RAMDISK: image too big! (%d/%d blocks)\n",
		       nblocks, rd_length[0] >> BLOCK_SIZE_BITS);
		goto done;
	}
		
	/*
	 * OK, time to copy in the data
	 */
	buf = kmalloc(BLOCK_SIZE, GFP_KERNEL);
	if (buf == 0) {
		printk(KERN_ERR "RAMDISK: could not allocate buffer\n");
		goto done;
	}

	printk(KERN_NOTICE "RAMDISK: Loading %d blocks into ram disk... ", nblocks);
	for (i=0; i < nblocks; i++) {
		infile.f_op->read(infile.f_inode, &infile, buf,
				  BLOCK_SIZE);
		outfile.f_op->write(outfile.f_inode, &outfile, buf,
				    BLOCK_SIZE);
		if (!(i % 16)) {
			printk("%c\b", rotator[rotate & 0x3]);
			rotate++;
		}
	}
	printk("done.\n");
	kfree(buf);

successful_load:
	invalidate_buffers(ROOT_DEV);
	ROOT_DEV = (MAJOR_NR << 8);

done:
	if (infile.f_op->release)
		infile.f_op->release(&inode, &infile);
	set_fs(fs);
}

#ifdef BUILD_CRAMDISK

/*
 * gzip declarations
 */

#define OF(args)  args

#define memzero(s, n)     memset ((s), 0, (n))


typedef unsigned char  uch;
typedef unsigned short ush;
typedef unsigned long  ulg;

#define INBUFSIZ 4096
#define WSIZE 0x8000    /* window size--must be a power of two, and */
			/*  at least 32K for zip's deflate method */

static uch *inbuf;
static uch *window;

static unsigned insize = 0;  /* valid bytes in inbuf */
static unsigned inptr = 0;   /* index of next byte to be processed in inbuf */
static unsigned outcnt = 0;  /* bytes in output buffer */
static exit_code = 0;
static long bytes_out = 0;
static struct file *crd_infp, *crd_outfp;

#define get_byte()  (inptr < insize ? inbuf[inptr++] : fill_inbuf())
		
/* Diagnostic functions (stubbed out) */
#define Assert(cond,msg)
#define Trace(x)
#define Tracev(x)
#define Tracevv(x)
#define Tracec(c,x)
#define Tracecv(c,x)

#define STATIC static

static int  fill_inbuf(void);
static void flush_window(void);
static void *malloc(int size);
static void free(void *where);
static void error(char *m);
static void gzip_mark(void **);
static void gzip_release(void **);

#include "../../lib/inflate.c"

static void *malloc(int size)
{
	return kmalloc(size, GFP_KERNEL);
}

static void free(void *where)
{
	kfree(where);
}

static void gzip_mark(void **ptr)
{
}

static void gzip_release(void **ptr)
{
}


/* ===========================================================================
 * Fill the input buffer. This is called only when the buffer is empty
 * and at least one byte is really needed.
 */
static int fill_inbuf()
{
	if (exit_code) return -1;
	
	insize = crd_infp->f_op->read(crd_infp->f_inode, crd_infp,
				      inbuf, INBUFSIZ);
	if (insize == 0) return -1;

	inptr = 1;

	return inbuf[0];
}

/* ===========================================================================
 * Write the output window window[0..outcnt-1] and update crc and bytes_out.
 * (Used for the decompressed data only.)
 */
static void flush_window()
{
    ulg c = crc;         /* temporary variable */
    unsigned n;
    uch *in, ch;
    
    crd_outfp->f_op->write(crd_outfp->f_inode, crd_outfp, window,
			   outcnt);
    in = window;
    for (n = 0; n < outcnt; n++) {
	    ch = *in++;
	    c = crc_32_tab[((int)c ^ ch) & 0xff] ^ (c >> 8);
    }
    crc = c;
    bytes_out += (ulg)outcnt;
    outcnt = 0;
}

static void error(char *x)
{
	printk(KERN_ERR "%s", x);
	exit_code = 1;
}

static int
crd_load(struct file * fp, struct file *outfp)
{
	int result;
	
	crd_infp = fp;
	crd_outfp = outfp;
	inbuf = kmalloc(INBUFSIZ, GFP_KERNEL);
	if (inbuf == 0) {
		printk(KERN_ERR "RAMDISK: Couldn't allocate gzip buffer\n");
		return -1;
	}
	window = kmalloc(WSIZE, GFP_KERNEL);
	if (window == 0) {
		printk(KERN_ERR "RAMDISK: Couldn't allocate gzip window\n");
		kfree(inbuf);
		return -1;
	}
	makecrc();
	result = gunzip();
	kfree(inbuf);
	kfree(window);
	return result;
}

#endif