Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
/* SPDX-License-Identifier: GPL-2.0+ */
/*
 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 * Internal non-public definitions that provide either classic
 * or preemptible semantics.
 *
 * Copyright Red Hat, 2009
 * Copyright IBM Corporation, 2009
 * Copyright SUSE, 2021
 *
 * Author: Ingo Molnar <mingo@elte.hu>
 *	   Paul E. McKenney <paulmck@linux.ibm.com>
 *	   Frederic Weisbecker <frederic@kernel.org>
 */

#ifdef CONFIG_RCU_NOCB_CPU
static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
{
	return lockdep_is_held(&rdp->nocb_lock);
}

static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
{
	/* Race on early boot between thread creation and assignment */
	if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread)
		return true;

	if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread)
		if (in_task())
			return true;
	return false;
}

/*
 * Offload callback processing from the boot-time-specified set of CPUs
 * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
 * created that pull the callbacks from the corresponding CPU, wait for
 * a grace period to elapse, and invoke the callbacks.  These kthreads
 * are organized into GP kthreads, which manage incoming callbacks, wait for
 * grace periods, and awaken CB kthreads, and the CB kthreads, which only
 * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
 * do a wake_up() on their GP kthread when they insert a callback into any
 * empty list, unless the rcu_nocb_poll boot parameter has been specified,
 * in which case each kthread actively polls its CPU.  (Which isn't so great
 * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
 *
 * This is intended to be used in conjunction with Frederic Weisbecker's
 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
 * running CPU-bound user-mode computations.
 *
 * Offloading of callbacks can also be used as an energy-efficiency
 * measure because CPUs with no RCU callbacks queued are more aggressive
 * about entering dyntick-idle mode.
 */


/*
 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
 * If the list is invalid, a warning is emitted and all CPUs are offloaded.
 */
static int __init rcu_nocb_setup(char *str)
{
	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
	if (*str == '=') {
		if (cpulist_parse(++str, rcu_nocb_mask)) {
			pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
			cpumask_setall(rcu_nocb_mask);
		}
	}
	rcu_state.nocb_is_setup = true;
	return 1;
}
__setup("rcu_nocbs", rcu_nocb_setup);

static int __init parse_rcu_nocb_poll(char *arg)
{
	rcu_nocb_poll = true;
	return 1;
}
__setup("rcu_nocb_poll", parse_rcu_nocb_poll);

/*
 * Don't bother bypassing ->cblist if the call_rcu() rate is low.
 * After all, the main point of bypassing is to avoid lock contention
 * on ->nocb_lock, which only can happen at high call_rcu() rates.
 */
static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
module_param(nocb_nobypass_lim_per_jiffy, int, 0);

/*
 * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
 * lock isn't immediately available, increment ->nocb_lock_contended to
 * flag the contention.
 */
static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
	__acquires(&rdp->nocb_bypass_lock)
{
	lockdep_assert_irqs_disabled();
	if (raw_spin_trylock(&rdp->nocb_bypass_lock))
		return;
	atomic_inc(&rdp->nocb_lock_contended);
	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
	smp_mb__after_atomic(); /* atomic_inc() before lock. */
	raw_spin_lock(&rdp->nocb_bypass_lock);
	smp_mb__before_atomic(); /* atomic_dec() after lock. */
	atomic_dec(&rdp->nocb_lock_contended);
}

/*
 * Spinwait until the specified rcu_data structure's ->nocb_lock is
 * not contended.  Please note that this is extremely special-purpose,
 * relying on the fact that at most two kthreads and one CPU contend for
 * this lock, and also that the two kthreads are guaranteed to have frequent
 * grace-period-duration time intervals between successive acquisitions
 * of the lock.  This allows us to use an extremely simple throttling
 * mechanism, and further to apply it only to the CPU doing floods of
 * call_rcu() invocations.  Don't try this at home!
 */
static void rcu_nocb_wait_contended(struct rcu_data *rdp)
{
	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
	while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
		cpu_relax();
}

/*
 * Conditionally acquire the specified rcu_data structure's
 * ->nocb_bypass_lock.
 */
static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
{
	lockdep_assert_irqs_disabled();
	return raw_spin_trylock(&rdp->nocb_bypass_lock);
}

/*
 * Release the specified rcu_data structure's ->nocb_bypass_lock.
 */
static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
	__releases(&rdp->nocb_bypass_lock)
{
	lockdep_assert_irqs_disabled();
	raw_spin_unlock(&rdp->nocb_bypass_lock);
}

/*
 * Acquire the specified rcu_data structure's ->nocb_lock, but only
 * if it corresponds to a no-CBs CPU.
 */
static void rcu_nocb_lock(struct rcu_data *rdp)
{
	lockdep_assert_irqs_disabled();
	if (!rcu_rdp_is_offloaded(rdp))
		return;
	raw_spin_lock(&rdp->nocb_lock);
}

/*
 * Release the specified rcu_data structure's ->nocb_lock, but only
 * if it corresponds to a no-CBs CPU.
 */
static void rcu_nocb_unlock(struct rcu_data *rdp)
{
	if (rcu_rdp_is_offloaded(rdp)) {
		lockdep_assert_irqs_disabled();
		raw_spin_unlock(&rdp->nocb_lock);
	}
}

/*
 * Release the specified rcu_data structure's ->nocb_lock and restore
 * interrupts, but only if it corresponds to a no-CBs CPU.
 */
static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
				       unsigned long flags)
{
	if (rcu_rdp_is_offloaded(rdp)) {
		lockdep_assert_irqs_disabled();
		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
	} else {
		local_irq_restore(flags);
	}
}

/* Lockdep check that ->cblist may be safely accessed. */
static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
{
	lockdep_assert_irqs_disabled();
	if (rcu_rdp_is_offloaded(rdp))
		lockdep_assert_held(&rdp->nocb_lock);
}

/*
 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
 * grace period.
 */
static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
{
	swake_up_all(sq);
}

static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
{
	return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
}

static void rcu_init_one_nocb(struct rcu_node *rnp)
{
	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
}

static bool __wake_nocb_gp(struct rcu_data *rdp_gp,
			   struct rcu_data *rdp,
			   bool force, unsigned long flags)
	__releases(rdp_gp->nocb_gp_lock)
{
	bool needwake = false;

	if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
		raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
				    TPS("AlreadyAwake"));
		return false;
	}

	if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
		del_timer(&rdp_gp->nocb_timer);
	}

	if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
		WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
		needwake = true;
	}
	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
	if (needwake) {
		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
		wake_up_process(rdp_gp->nocb_gp_kthread);
	}

	return needwake;
}

/*
 * Kick the GP kthread for this NOCB group.
 */
static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
{
	unsigned long flags;
	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;

	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
	return __wake_nocb_gp(rdp_gp, rdp, force, flags);
}

#ifdef CONFIG_RCU_LAZY
/*
 * LAZY_FLUSH_JIFFIES decides the maximum amount of time that
 * can elapse before lazy callbacks are flushed. Lazy callbacks
 * could be flushed much earlier for a number of other reasons
 * however, LAZY_FLUSH_JIFFIES will ensure no lazy callbacks are
 * left unsubmitted to RCU after those many jiffies.
 */
#define LAZY_FLUSH_JIFFIES (10 * HZ)
static unsigned long jiffies_lazy_flush = LAZY_FLUSH_JIFFIES;

// To be called only from test code.
void rcu_set_jiffies_lazy_flush(unsigned long jif)
{
	jiffies_lazy_flush = jif;
}
EXPORT_SYMBOL(rcu_set_jiffies_lazy_flush);

unsigned long rcu_get_jiffies_lazy_flush(void)
{
	return jiffies_lazy_flush;
}
EXPORT_SYMBOL(rcu_get_jiffies_lazy_flush);
#endif

/*
 * Arrange to wake the GP kthread for this NOCB group at some future
 * time when it is safe to do so.
 */
static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
			       const char *reason)
{
	unsigned long flags;
	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;

	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);

	/*
	 * Bypass wakeup overrides previous deferments. In case of
	 * callback storms, no need to wake up too early.
	 */
	if (waketype == RCU_NOCB_WAKE_LAZY &&
	    rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) {
		mod_timer(&rdp_gp->nocb_timer, jiffies + rcu_get_jiffies_lazy_flush());
		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
	} else if (waketype == RCU_NOCB_WAKE_BYPASS) {
		mod_timer(&rdp_gp->nocb_timer, jiffies + 2);
		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
	} else {
		if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE)
			mod_timer(&rdp_gp->nocb_timer, jiffies + 1);
		if (rdp_gp->nocb_defer_wakeup < waketype)
			WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
	}

	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);

	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
}

/*
 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
 * However, if there is a callback to be enqueued and if ->nocb_bypass
 * proves to be initially empty, just return false because the no-CB GP
 * kthread may need to be awakened in this case.
 *
 * Return true if there was something to be flushed and it succeeded, otherwise
 * false.
 *
 * Note that this function always returns true if rhp is NULL.
 */
static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp_in,
				     unsigned long j, bool lazy)
{
	struct rcu_cblist rcl;
	struct rcu_head *rhp = rhp_in;

	WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
	rcu_lockdep_assert_cblist_protected(rdp);
	lockdep_assert_held(&rdp->nocb_bypass_lock);
	if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
		raw_spin_unlock(&rdp->nocb_bypass_lock);
		return false;
	}
	/* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
	if (rhp)
		rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */

	/*
	 * If the new CB requested was a lazy one, queue it onto the main
	 * ->cblist so that we can take advantage of the grace-period that will
	 * happen regardless. But queue it onto the bypass list first so that
	 * the lazy CB is ordered with the existing CBs in the bypass list.
	 */
	if (lazy && rhp) {
		rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
		rhp = NULL;
	}
	rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
	WRITE_ONCE(rdp->lazy_len, 0);

	rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
	WRITE_ONCE(rdp->nocb_bypass_first, j);
	rcu_nocb_bypass_unlock(rdp);
	return true;
}

/*
 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
 * However, if there is a callback to be enqueued and if ->nocb_bypass
 * proves to be initially empty, just return false because the no-CB GP
 * kthread may need to be awakened in this case.
 *
 * Note that this function always returns true if rhp is NULL.
 */
static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
				  unsigned long j, bool lazy)
{
	if (!rcu_rdp_is_offloaded(rdp))
		return true;
	rcu_lockdep_assert_cblist_protected(rdp);
	rcu_nocb_bypass_lock(rdp);
	return rcu_nocb_do_flush_bypass(rdp, rhp, j, lazy);
}

/*
 * If the ->nocb_bypass_lock is immediately available, flush the
 * ->nocb_bypass queue into ->cblist.
 */
static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
{
	rcu_lockdep_assert_cblist_protected(rdp);
	if (!rcu_rdp_is_offloaded(rdp) ||
	    !rcu_nocb_bypass_trylock(rdp))
		return;
	WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j, false));
}

/*
 * See whether it is appropriate to use the ->nocb_bypass list in order
 * to control contention on ->nocb_lock.  A limited number of direct
 * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
 * is non-empty, further callbacks must be placed into ->nocb_bypass,
 * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
 * back to direct use of ->cblist.  However, ->nocb_bypass should not be
 * used if ->cblist is empty, because otherwise callbacks can be stranded
 * on ->nocb_bypass because we cannot count on the current CPU ever again
 * invoking call_rcu().  The general rule is that if ->nocb_bypass is
 * non-empty, the corresponding no-CBs grace-period kthread must not be
 * in an indefinite sleep state.
 *
 * Finally, it is not permitted to use the bypass during early boot,
 * as doing so would confuse the auto-initialization code.  Besides
 * which, there is no point in worrying about lock contention while
 * there is only one CPU in operation.
 */
static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
				bool *was_alldone, unsigned long flags,
				bool lazy)
{
	unsigned long c;
	unsigned long cur_gp_seq;
	unsigned long j = jiffies;
	long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
	bool bypass_is_lazy = (ncbs == READ_ONCE(rdp->lazy_len));

	lockdep_assert_irqs_disabled();

	// Pure softirq/rcuc based processing: no bypassing, no
	// locking.
	if (!rcu_rdp_is_offloaded(rdp)) {
		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
		return false;
	}

	// In the process of (de-)offloading: no bypassing, but
	// locking.
	if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
		rcu_nocb_lock(rdp);
		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
		return false; /* Not offloaded, no bypassing. */
	}

	// Don't use ->nocb_bypass during early boot.
	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
		rcu_nocb_lock(rdp);
		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
		return false;
	}

	// If we have advanced to a new jiffy, reset counts to allow
	// moving back from ->nocb_bypass to ->cblist.
	if (j == rdp->nocb_nobypass_last) {
		c = rdp->nocb_nobypass_count + 1;
	} else {
		WRITE_ONCE(rdp->nocb_nobypass_last, j);
		c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
		if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
				 nocb_nobypass_lim_per_jiffy))
			c = 0;
		else if (c > nocb_nobypass_lim_per_jiffy)
			c = nocb_nobypass_lim_per_jiffy;
	}
	WRITE_ONCE(rdp->nocb_nobypass_count, c);

	// If there hasn't yet been all that many ->cblist enqueues
	// this jiffy, tell the caller to enqueue onto ->cblist.  But flush
	// ->nocb_bypass first.
	// Lazy CBs throttle this back and do immediate bypass queuing.
	if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy && !lazy) {
		rcu_nocb_lock(rdp);
		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
		if (*was_alldone)
			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
					    TPS("FirstQ"));

		WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j, false));
		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
		return false; // Caller must enqueue the callback.
	}

	// If ->nocb_bypass has been used too long or is too full,
	// flush ->nocb_bypass to ->cblist.
	if ((ncbs && !bypass_is_lazy && j != READ_ONCE(rdp->nocb_bypass_first)) ||
	    (ncbs &&  bypass_is_lazy &&
	     (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + rcu_get_jiffies_lazy_flush()))) ||
	    ncbs >= qhimark) {
		rcu_nocb_lock(rdp);
		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);

		if (!rcu_nocb_flush_bypass(rdp, rhp, j, lazy)) {
			if (*was_alldone)
				trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
						    TPS("FirstQ"));
			WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
			return false; // Caller must enqueue the callback.
		}
		if (j != rdp->nocb_gp_adv_time &&
		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
			rcu_advance_cbs_nowake(rdp->mynode, rdp);
			rdp->nocb_gp_adv_time = j;
		}

		// The flush succeeded and we moved CBs into the regular list.
		// Don't wait for the wake up timer as it may be too far ahead.
		// Wake up the GP thread now instead, if the cblist was empty.
		__call_rcu_nocb_wake(rdp, *was_alldone, flags);

		return true; // Callback already enqueued.
	}

	// We need to use the bypass.
	rcu_nocb_wait_contended(rdp);
	rcu_nocb_bypass_lock(rdp);
	ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
	rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
	rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);

	if (lazy)
		WRITE_ONCE(rdp->lazy_len, rdp->lazy_len + 1);

	if (!ncbs) {
		WRITE_ONCE(rdp->nocb_bypass_first, j);
		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
	}
	rcu_nocb_bypass_unlock(rdp);
	smp_mb(); /* Order enqueue before wake. */
	// A wake up of the grace period kthread or timer adjustment
	// needs to be done only if:
	// 1. Bypass list was fully empty before (this is the first
	//    bypass list entry), or:
	// 2. Both of these conditions are met:
	//    a. The bypass list previously had only lazy CBs, and:
	//    b. The new CB is non-lazy.
	if (!ncbs || (bypass_is_lazy && !lazy)) {
		// No-CBs GP kthread might be indefinitely asleep, if so, wake.
		rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
		if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
					    TPS("FirstBQwake"));
			__call_rcu_nocb_wake(rdp, true, flags);
		} else {
			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
					    TPS("FirstBQnoWake"));
			rcu_nocb_unlock(rdp);
		}
	}
	return true; // Callback already enqueued.
}

/*
 * Awaken the no-CBs grace-period kthread if needed, either due to it
 * legitimately being asleep or due to overload conditions.
 *
 * If warranted, also wake up the kthread servicing this CPUs queues.
 */
static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
				 unsigned long flags)
				 __releases(rdp->nocb_lock)
{
	long bypass_len;
	unsigned long cur_gp_seq;
	unsigned long j;
	long lazy_len;
	long len;
	struct task_struct *t;
	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;

	// If we are being polled or there is no kthread, just leave.
	t = READ_ONCE(rdp->nocb_gp_kthread);
	if (rcu_nocb_poll || !t) {
		rcu_nocb_unlock(rdp);
		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
				    TPS("WakeNotPoll"));
		return;
	}
	// Need to actually to a wakeup.
	len = rcu_segcblist_n_cbs(&rdp->cblist);
	bypass_len = rcu_cblist_n_cbs(&rdp->nocb_bypass);
	lazy_len = READ_ONCE(rdp->lazy_len);
	if (was_alldone) {
		rdp->qlen_last_fqs_check = len;
		// Only lazy CBs in bypass list
		if (lazy_len && bypass_len == lazy_len) {
			rcu_nocb_unlock(rdp);
			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_LAZY,
					   TPS("WakeLazy"));
		} else if (!irqs_disabled_flags(flags)) {
			/* ... if queue was empty ... */
			rcu_nocb_unlock(rdp);
			wake_nocb_gp(rdp, false);
			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
					    TPS("WakeEmpty"));
		} else {
			rcu_nocb_unlock(rdp);
			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
					   TPS("WakeEmptyIsDeferred"));
		}
	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
		/* ... or if many callbacks queued. */
		rdp->qlen_last_fqs_check = len;
		j = jiffies;
		if (j != rdp->nocb_gp_adv_time &&
		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
			rcu_advance_cbs_nowake(rdp->mynode, rdp);
			rdp->nocb_gp_adv_time = j;
		}
		smp_mb(); /* Enqueue before timer_pending(). */
		if ((rdp->nocb_cb_sleep ||
		     !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
		    !timer_pending(&rdp_gp->nocb_timer)) {
			rcu_nocb_unlock(rdp);
			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
					   TPS("WakeOvfIsDeferred"));
		} else {
			rcu_nocb_unlock(rdp);
			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
		}
	} else {
		rcu_nocb_unlock(rdp);
		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
	}
}

static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head,
			  rcu_callback_t func, unsigned long flags, bool lazy)
{
	bool was_alldone;

	if (!rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy)) {
		/* Not enqueued on bypass but locked, do regular enqueue */
		rcutree_enqueue(rdp, head, func);
		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
	}
}

static int nocb_gp_toggle_rdp(struct rcu_data *rdp,
			       bool *wake_state)
{
	struct rcu_segcblist *cblist = &rdp->cblist;
	unsigned long flags;
	int ret;

	rcu_nocb_lock_irqsave(rdp, flags);
	if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) &&
	    !rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) {
		/*
		 * Offloading. Set our flag and notify the offload worker.
		 * We will handle this rdp until it ever gets de-offloaded.
		 */
		rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_GP);
		if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
			*wake_state = true;
		ret = 1;
	} else if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) &&
		   rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) {
		/*
		 * De-offloading. Clear our flag and notify the de-offload worker.
		 * We will ignore this rdp until it ever gets re-offloaded.
		 */
		rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_GP);
		if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
			*wake_state = true;
		ret = 0;
	} else {
		WARN_ON_ONCE(1);
		ret = -1;
	}

	rcu_nocb_unlock_irqrestore(rdp, flags);

	return ret;
}

static void nocb_gp_sleep(struct rcu_data *my_rdp, int cpu)
{
	trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
	swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
					!READ_ONCE(my_rdp->nocb_gp_sleep));
	trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
}

/*
 * No-CBs GP kthreads come here to wait for additional callbacks to show up
 * or for grace periods to end.
 */
static void nocb_gp_wait(struct rcu_data *my_rdp)
{
	bool bypass = false;
	int __maybe_unused cpu = my_rdp->cpu;
	unsigned long cur_gp_seq;
	unsigned long flags;
	bool gotcbs = false;
	unsigned long j = jiffies;
	bool lazy = false;
	bool needwait_gp = false; // This prevents actual uninitialized use.
	bool needwake;
	bool needwake_gp;
	struct rcu_data *rdp, *rdp_toggling = NULL;
	struct rcu_node *rnp;
	unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
	bool wasempty = false;

	/*
	 * Each pass through the following loop checks for CBs and for the
	 * nearest grace period (if any) to wait for next.  The CB kthreads
	 * and the global grace-period kthread are awakened if needed.
	 */
	WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
	/*
	 * An rcu_data structure is removed from the list after its
	 * CPU is de-offloaded and added to the list before that CPU is
	 * (re-)offloaded.  If the following loop happens to be referencing
	 * that rcu_data structure during the time that the corresponding
	 * CPU is de-offloaded and then immediately re-offloaded, this
	 * loop's rdp pointer will be carried to the end of the list by
	 * the resulting pair of list operations.  This can cause the loop
	 * to skip over some of the rcu_data structures that were supposed
	 * to have been scanned.  Fortunately a new iteration through the
	 * entire loop is forced after a given CPU's rcu_data structure
	 * is added to the list, so the skipped-over rcu_data structures
	 * won't be ignored for long.
	 */
	list_for_each_entry(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp) {
		long bypass_ncbs;
		bool flush_bypass = false;
		long lazy_ncbs;

		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
		rcu_nocb_lock_irqsave(rdp, flags);
		lockdep_assert_held(&rdp->nocb_lock);
		bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
		lazy_ncbs = READ_ONCE(rdp->lazy_len);

		if (bypass_ncbs && (lazy_ncbs == bypass_ncbs) &&
		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + rcu_get_jiffies_lazy_flush()) ||
		     bypass_ncbs > 2 * qhimark)) {
			flush_bypass = true;
		} else if (bypass_ncbs && (lazy_ncbs != bypass_ncbs) &&
		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
		     bypass_ncbs > 2 * qhimark)) {
			flush_bypass = true;
		} else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
			rcu_nocb_unlock_irqrestore(rdp, flags);
			continue; /* No callbacks here, try next. */
		}

		if (flush_bypass) {
			// Bypass full or old, so flush it.
			(void)rcu_nocb_try_flush_bypass(rdp, j);
			bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
			lazy_ncbs = READ_ONCE(rdp->lazy_len);
		}

		if (bypass_ncbs) {
			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
					    bypass_ncbs == lazy_ncbs ? TPS("Lazy") : TPS("Bypass"));
			if (bypass_ncbs == lazy_ncbs)
				lazy = true;
			else
				bypass = true;
		}
		rnp = rdp->mynode;

		// Advance callbacks if helpful and low contention.
		needwake_gp = false;
		if (!rcu_segcblist_restempty(&rdp->cblist,
					     RCU_NEXT_READY_TAIL) ||
		    (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
		     rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
			raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
			needwake_gp = rcu_advance_cbs(rnp, rdp);
			wasempty = rcu_segcblist_restempty(&rdp->cblist,
							   RCU_NEXT_READY_TAIL);
			raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
		}
		// Need to wait on some grace period?
		WARN_ON_ONCE(wasempty &&
			     !rcu_segcblist_restempty(&rdp->cblist,
						      RCU_NEXT_READY_TAIL));
		if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
			if (!needwait_gp ||
			    ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
				wait_gp_seq = cur_gp_seq;
			needwait_gp = true;
			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
					    TPS("NeedWaitGP"));
		}
		if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
			needwake = rdp->nocb_cb_sleep;
			WRITE_ONCE(rdp->nocb_cb_sleep, false);
		} else {
			needwake = false;
		}
		rcu_nocb_unlock_irqrestore(rdp, flags);
		if (needwake) {
			swake_up_one(&rdp->nocb_cb_wq);
			gotcbs = true;
		}
		if (needwake_gp)
			rcu_gp_kthread_wake();
	}

	my_rdp->nocb_gp_bypass = bypass;
	my_rdp->nocb_gp_gp = needwait_gp;
	my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;

	// At least one child with non-empty ->nocb_bypass, so set
	// timer in order to avoid stranding its callbacks.
	if (!rcu_nocb_poll) {
		// If bypass list only has lazy CBs. Add a deferred lazy wake up.
		if (lazy && !bypass) {
			wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_LAZY,
					TPS("WakeLazyIsDeferred"));
		// Otherwise add a deferred bypass wake up.
		} else if (bypass) {
			wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS,
					TPS("WakeBypassIsDeferred"));
		}
	}

	if (rcu_nocb_poll) {
		/* Polling, so trace if first poll in the series. */
		if (gotcbs)
			trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
		if (list_empty(&my_rdp->nocb_head_rdp)) {
			raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
			if (!my_rdp->nocb_toggling_rdp)
				WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
			raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
			/* Wait for any offloading rdp */
			nocb_gp_sleep(my_rdp, cpu);
		} else {
			schedule_timeout_idle(1);
		}
	} else if (!needwait_gp) {
		/* Wait for callbacks to appear. */
		nocb_gp_sleep(my_rdp, cpu);
	} else {
		rnp = my_rdp->mynode;
		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
		swait_event_interruptible_exclusive(
			rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
			rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
			!READ_ONCE(my_rdp->nocb_gp_sleep));
		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
	}

	if (!rcu_nocb_poll) {
		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
		// (De-)queue an rdp to/from the group if its nocb state is changing
		rdp_toggling = my_rdp->nocb_toggling_rdp;
		if (rdp_toggling)
			my_rdp->nocb_toggling_rdp = NULL;

		if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
			WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
			del_timer(&my_rdp->nocb_timer);
		}
		WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
	} else {
		rdp_toggling = READ_ONCE(my_rdp->nocb_toggling_rdp);
		if (rdp_toggling) {
			/*
			 * Paranoid locking to make sure nocb_toggling_rdp is well
			 * reset *before* we (re)set SEGCBLIST_KTHREAD_GP or we could
			 * race with another round of nocb toggling for this rdp.
			 * Nocb locking should prevent from that already but we stick
			 * to paranoia, especially in rare path.
			 */
			raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
			my_rdp->nocb_toggling_rdp = NULL;
			raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
		}
	}

	if (rdp_toggling) {
		bool wake_state = false;
		int ret;

		ret = nocb_gp_toggle_rdp(rdp_toggling, &wake_state);
		if (ret == 1)
			list_add_tail(&rdp_toggling->nocb_entry_rdp, &my_rdp->nocb_head_rdp);
		else if (ret == 0)
			list_del(&rdp_toggling->nocb_entry_rdp);
		if (wake_state)
			swake_up_one(&rdp_toggling->nocb_state_wq);
	}

	my_rdp->nocb_gp_seq = -1;
	WARN_ON(signal_pending(current));
}

/*
 * No-CBs grace-period-wait kthread.  There is one of these per group
 * of CPUs, but only once at least one CPU in that group has come online
 * at least once since boot.  This kthread checks for newly posted
 * callbacks from any of the CPUs it is responsible for, waits for a
 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
 * that then have callback-invocation work to do.
 */
static int rcu_nocb_gp_kthread(void *arg)
{
	struct rcu_data *rdp = arg;

	for (;;) {
		WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
		nocb_gp_wait(rdp);
		cond_resched_tasks_rcu_qs();
	}
	return 0;
}

static inline bool nocb_cb_can_run(struct rcu_data *rdp)
{
	u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_CB;

	return rcu_segcblist_test_flags(&rdp->cblist, flags);
}

static inline bool nocb_cb_wait_cond(struct rcu_data *rdp)
{
	return nocb_cb_can_run(rdp) && !READ_ONCE(rdp->nocb_cb_sleep);
}

/*
 * Invoke any ready callbacks from the corresponding no-CBs CPU,
 * then, if there are no more, wait for more to appear.
 */
static void nocb_cb_wait(struct rcu_data *rdp)
{
	struct rcu_segcblist *cblist = &rdp->cblist;
	unsigned long cur_gp_seq;
	unsigned long flags;
	bool needwake_state = false;
	bool needwake_gp = false;
	bool can_sleep = true;
	struct rcu_node *rnp = rdp->mynode;

	do {
		swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
						    nocb_cb_wait_cond(rdp));

		if (READ_ONCE(rdp->nocb_cb_sleep)) {
			WARN_ON(signal_pending(current));
			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
		}
	} while (!nocb_cb_can_run(rdp));


	local_irq_save(flags);
	rcu_momentary_dyntick_idle();
	local_irq_restore(flags);
	/*
	 * Disable BH to provide the expected environment.  Also, when
	 * transitioning to/from NOCB mode, a self-requeuing callback might
	 * be invoked from softirq.  A short grace period could cause both
	 * instances of this callback would execute concurrently.
	 */
	local_bh_disable();
	rcu_do_batch(rdp);
	local_bh_enable();
	lockdep_assert_irqs_enabled();
	rcu_nocb_lock_irqsave(rdp, flags);
	if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) &&
	    rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
	    raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
		needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
	}

	if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
		if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) {
			rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_CB);
			if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
				needwake_state = true;
		}
		if (rcu_segcblist_ready_cbs(cblist))
			can_sleep = false;
	} else {
		/*
		 * De-offloading. Clear our flag and notify the de-offload worker.
		 * We won't touch the callbacks and keep sleeping until we ever
		 * get re-offloaded.
		 */
		WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB));
		rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_CB);
		if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
			needwake_state = true;
	}

	WRITE_ONCE(rdp->nocb_cb_sleep, can_sleep);

	if (rdp->nocb_cb_sleep)
		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));

	rcu_nocb_unlock_irqrestore(rdp, flags);
	if (needwake_gp)
		rcu_gp_kthread_wake();

	if (needwake_state)
		swake_up_one(&rdp->nocb_state_wq);
}

/*
 * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
 * nocb_cb_wait() to do the dirty work.
 */
static int rcu_nocb_cb_kthread(void *arg)
{
	struct rcu_data *rdp = arg;

	// Each pass through this loop does one callback batch, and,
	// if there are no more ready callbacks, waits for them.
	for (;;) {
		nocb_cb_wait(rdp);
		cond_resched_tasks_rcu_qs();
	}
	return 0;
}

/* Is a deferred wakeup of rcu_nocb_kthread() required? */
static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
{
	return READ_ONCE(rdp->nocb_defer_wakeup) >= level;
}

/* Do a deferred wakeup of rcu_nocb_kthread(). */
static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp,
					   struct rcu_data *rdp, int level,
					   unsigned long flags)
	__releases(rdp_gp->nocb_gp_lock)
{
	int ndw;
	int ret;

	if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) {
		raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
		return false;
	}

	ndw = rdp_gp->nocb_defer_wakeup;
	ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));

	return ret;
}

/* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
{
	unsigned long flags;
	struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);

	WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp);
	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));

	raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags);
	smp_mb__after_spinlock(); /* Timer expire before wakeup. */
	do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags);
}

/*
 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
 * This means we do an inexact common-case check.  Note that if
 * we miss, ->nocb_timer will eventually clean things up.
 */
static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
{
	unsigned long flags;
	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;

	if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE))
		return false;

	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
	return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags);
}

void rcu_nocb_flush_deferred_wakeup(void)
{
	do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data));
}
EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup);

static int rdp_offload_toggle(struct rcu_data *rdp,
			       bool offload, unsigned long flags)
	__releases(rdp->nocb_lock)
{
	struct rcu_segcblist *cblist = &rdp->cblist;
	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
	bool wake_gp = false;

	rcu_segcblist_offload(cblist, offload);

	if (rdp->nocb_cb_sleep)
		rdp->nocb_cb_sleep = false;
	rcu_nocb_unlock_irqrestore(rdp, flags);

	/*
	 * Ignore former value of nocb_cb_sleep and force wake up as it could
	 * have been spuriously set to false already.
	 */
	swake_up_one(&rdp->nocb_cb_wq);

	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
	// Queue this rdp for add/del to/from the list to iterate on rcuog
	WRITE_ONCE(rdp_gp->nocb_toggling_rdp, rdp);
	if (rdp_gp->nocb_gp_sleep) {
		rdp_gp->nocb_gp_sleep = false;
		wake_gp = true;
	}
	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);

	return wake_gp;
}

static long rcu_nocb_rdp_deoffload(void *arg)
{
	struct rcu_data *rdp = arg;
	struct rcu_segcblist *cblist = &rdp->cblist;
	unsigned long flags;
	int wake_gp;
	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;

	/*
	 * rcu_nocb_rdp_deoffload() may be called directly if
	 * rcuog/o[p] spawn failed, because at this time the rdp->cpu
	 * is not online yet.
	 */
	WARN_ON_ONCE((rdp->cpu != raw_smp_processor_id()) && cpu_online(rdp->cpu));

	pr_info("De-offloading %d\n", rdp->cpu);

	rcu_nocb_lock_irqsave(rdp, flags);
	/*
	 * Flush once and for all now. This suffices because we are
	 * running on the target CPU holding ->nocb_lock (thus having
	 * interrupts disabled), and because rdp_offload_toggle()
	 * invokes rcu_segcblist_offload(), which clears SEGCBLIST_OFFLOADED.
	 * Thus future calls to rcu_segcblist_completely_offloaded() will
	 * return false, which means that future calls to rcu_nocb_try_bypass()
	 * will refuse to put anything into the bypass.
	 */
	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
	/*
	 * Start with invoking rcu_core() early. This way if the current thread
	 * happens to preempt an ongoing call to rcu_core() in the middle,
	 * leaving some work dismissed because rcu_core() still thinks the rdp is
	 * completely offloaded, we are guaranteed a nearby future instance of
	 * rcu_core() to catch up.
	 */
	rcu_segcblist_set_flags(cblist, SEGCBLIST_RCU_CORE);
	invoke_rcu_core();
	wake_gp = rdp_offload_toggle(rdp, false, flags);

	mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
	if (rdp_gp->nocb_gp_kthread) {
		if (wake_gp)
			wake_up_process(rdp_gp->nocb_gp_kthread);

		/*
		 * If rcuo[p] kthread spawn failed, directly remove SEGCBLIST_KTHREAD_CB.
		 * Just wait SEGCBLIST_KTHREAD_GP to be cleared by rcuog.
		 */
		if (!rdp->nocb_cb_kthread) {
			rcu_nocb_lock_irqsave(rdp, flags);
			rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB);
			rcu_nocb_unlock_irqrestore(rdp, flags);
		}

		swait_event_exclusive(rdp->nocb_state_wq,
					!rcu_segcblist_test_flags(cblist,
					  SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP));
	} else {
		/*
		 * No kthread to clear the flags for us or remove the rdp from the nocb list
		 * to iterate. Do it here instead. Locking doesn't look stricly necessary
		 * but we stick to paranoia in this rare path.
		 */
		rcu_nocb_lock_irqsave(rdp, flags);
		rcu_segcblist_clear_flags(&rdp->cblist,
				SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP);
		rcu_nocb_unlock_irqrestore(rdp, flags);

		list_del(&rdp->nocb_entry_rdp);
	}
	mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);

	/*
	 * Lock one last time to acquire latest callback updates from kthreads
	 * so we can later handle callbacks locally without locking.
	 */
	rcu_nocb_lock_irqsave(rdp, flags);
	/*
	 * Theoretically we could clear SEGCBLIST_LOCKING after the nocb
	 * lock is released but how about being paranoid for once?
	 */
	rcu_segcblist_clear_flags(cblist, SEGCBLIST_LOCKING);
	/*
	 * Without SEGCBLIST_LOCKING, we can't use
	 * rcu_nocb_unlock_irqrestore() anymore.
	 */
	raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);

	/* Sanity check */
	WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));


	return 0;
}

int rcu_nocb_cpu_deoffload(int cpu)
{
	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
	int ret = 0;

	cpus_read_lock();
	mutex_lock(&rcu_state.barrier_mutex);
	if (rcu_rdp_is_offloaded(rdp)) {
		if (cpu_online(cpu)) {
			ret = work_on_cpu(cpu, rcu_nocb_rdp_deoffload, rdp);
			if (!ret)
				cpumask_clear_cpu(cpu, rcu_nocb_mask);
		} else {
			pr_info("NOCB: Cannot CB-deoffload offline CPU %d\n", rdp->cpu);
			ret = -EINVAL;
		}
	}
	mutex_unlock(&rcu_state.barrier_mutex);
	cpus_read_unlock();

	return ret;
}
EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload);

static long rcu_nocb_rdp_offload(void *arg)
{
	struct rcu_data *rdp = arg;
	struct rcu_segcblist *cblist = &rdp->cblist;
	unsigned long flags;
	int wake_gp;
	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;

	WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id());
	/*
	 * For now we only support re-offload, ie: the rdp must have been
	 * offloaded on boot first.
	 */
	if (!rdp->nocb_gp_rdp)
		return -EINVAL;

	if (WARN_ON_ONCE(!rdp_gp->nocb_gp_kthread))
		return -EINVAL;

	pr_info("Offloading %d\n", rdp->cpu);

	/*
	 * Can't use rcu_nocb_lock_irqsave() before SEGCBLIST_LOCKING
	 * is set.
	 */
	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);

	/*
	 * We didn't take the nocb lock while working on the
	 * rdp->cblist with SEGCBLIST_LOCKING cleared (pure softirq/rcuc mode).
	 * Every modifications that have been done previously on
	 * rdp->cblist must be visible remotely by the nocb kthreads
	 * upon wake up after reading the cblist flags.
	 *
	 * The layout against nocb_lock enforces that ordering:
	 *
	 *  __rcu_nocb_rdp_offload()   nocb_cb_wait()/nocb_gp_wait()
	 * -------------------------   ----------------------------
	 *      WRITE callbacks           rcu_nocb_lock()
	 *      rcu_nocb_lock()           READ flags
	 *      WRITE flags               READ callbacks
	 *      rcu_nocb_unlock()         rcu_nocb_unlock()
	 */
	wake_gp = rdp_offload_toggle(rdp, true, flags);
	if (wake_gp)
		wake_up_process(rdp_gp->nocb_gp_kthread);
	swait_event_exclusive(rdp->nocb_state_wq,
			      rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB) &&
			      rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP));

	/*
	 * All kthreads are ready to work, we can finally relieve rcu_core() and
	 * enable nocb bypass.
	 */
	rcu_nocb_lock_irqsave(rdp, flags);
	rcu_segcblist_clear_flags(cblist, SEGCBLIST_RCU_CORE);
	rcu_nocb_unlock_irqrestore(rdp, flags);

	return 0;
}

int rcu_nocb_cpu_offload(int cpu)
{
	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
	int ret = 0;

	cpus_read_lock();
	mutex_lock(&rcu_state.barrier_mutex);
	if (!rcu_rdp_is_offloaded(rdp)) {
		if (cpu_online(cpu)) {
			ret = work_on_cpu(cpu, rcu_nocb_rdp_offload, rdp);
			if (!ret)
				cpumask_set_cpu(cpu, rcu_nocb_mask);
		} else {
			pr_info("NOCB: Cannot CB-offload offline CPU %d\n", rdp->cpu);
			ret = -EINVAL;
		}
	}
	mutex_unlock(&rcu_state.barrier_mutex);
	cpus_read_unlock();

	return ret;
}
EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload);

#ifdef CONFIG_RCU_LAZY
static unsigned long
lazy_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
	int cpu;
	unsigned long count = 0;

	if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask)))
		return 0;

	/*  Protect rcu_nocb_mask against concurrent (de-)offloading. */
	if (!mutex_trylock(&rcu_state.barrier_mutex))
		return 0;

	/* Snapshot count of all CPUs */
	for_each_cpu(cpu, rcu_nocb_mask) {
		struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);

		count +=  READ_ONCE(rdp->lazy_len);
	}

	mutex_unlock(&rcu_state.barrier_mutex);

	return count ? count : SHRINK_EMPTY;
}

static unsigned long
lazy_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
{
	int cpu;
	unsigned long flags;
	unsigned long count = 0;

	if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask)))
		return 0;
	/*
	 * Protect against concurrent (de-)offloading. Otherwise nocb locking
	 * may be ignored or imbalanced.
	 */
	if (!mutex_trylock(&rcu_state.barrier_mutex)) {
		/*
		 * But really don't insist if barrier_mutex is contended since we
		 * can't guarantee that it will never engage in a dependency
		 * chain involving memory allocation. The lock is seldom contended
		 * anyway.
		 */
		return 0;
	}

	/* Snapshot count of all CPUs */
	for_each_cpu(cpu, rcu_nocb_mask) {
		struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
		int _count;

		if (WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp)))
			continue;

		if (!READ_ONCE(rdp->lazy_len))
			continue;

		rcu_nocb_lock_irqsave(rdp, flags);
		/*
		 * Recheck under the nocb lock. Since we are not holding the bypass
		 * lock we may still race with increments from the enqueuer but still
		 * we know for sure if there is at least one lazy callback.
		 */
		_count = READ_ONCE(rdp->lazy_len);
		if (!_count) {
			rcu_nocb_unlock_irqrestore(rdp, flags);
			continue;
		}
		rcu_nocb_try_flush_bypass(rdp, jiffies);
		rcu_nocb_unlock_irqrestore(rdp, flags);
		wake_nocb_gp(rdp, false);
		sc->nr_to_scan -= _count;
		count += _count;
		if (sc->nr_to_scan <= 0)
			break;
	}

	mutex_unlock(&rcu_state.barrier_mutex);

	return count ? count : SHRINK_STOP;
}
#endif // #ifdef CONFIG_RCU_LAZY

void __init rcu_init_nohz(void)
{
	int cpu;
	struct rcu_data *rdp;
	const struct cpumask *cpumask = NULL;
	struct shrinker * __maybe_unused lazy_rcu_shrinker;

#if defined(CONFIG_NO_HZ_FULL)
	if (tick_nohz_full_running && !cpumask_empty(tick_nohz_full_mask))
		cpumask = tick_nohz_full_mask;
#endif

	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL) &&
	    !rcu_state.nocb_is_setup && !cpumask)
		cpumask = cpu_possible_mask;

	if (cpumask) {
		if (!cpumask_available(rcu_nocb_mask)) {
			if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
				pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
				return;
			}
		}

		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, cpumask);
		rcu_state.nocb_is_setup = true;
	}

	if (!rcu_state.nocb_is_setup)
		return;

#ifdef CONFIG_RCU_LAZY
	lazy_rcu_shrinker = shrinker_alloc(0, "rcu-lazy");
	if (!lazy_rcu_shrinker) {
		pr_err("Failed to allocate lazy_rcu shrinker!\n");
	} else {
		lazy_rcu_shrinker->count_objects = lazy_rcu_shrink_count;
		lazy_rcu_shrinker->scan_objects = lazy_rcu_shrink_scan;

		shrinker_register(lazy_rcu_shrinker);
	}
#endif // #ifdef CONFIG_RCU_LAZY

	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
		pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
			    rcu_nocb_mask);
	}
	if (cpumask_empty(rcu_nocb_mask))
		pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
	else
		pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
			cpumask_pr_args(rcu_nocb_mask));
	if (rcu_nocb_poll)
		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");

	for_each_cpu(cpu, rcu_nocb_mask) {
		rdp = per_cpu_ptr(&rcu_data, cpu);
		if (rcu_segcblist_empty(&rdp->cblist))
			rcu_segcblist_init(&rdp->cblist);
		rcu_segcblist_offload(&rdp->cblist, true);
		rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP);
		rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_RCU_CORE);
	}
	rcu_organize_nocb_kthreads();
}

/* Initialize per-rcu_data variables for no-CBs CPUs. */
static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
	init_swait_queue_head(&rdp->nocb_cb_wq);
	init_swait_queue_head(&rdp->nocb_gp_wq);
	init_swait_queue_head(&rdp->nocb_state_wq);
	raw_spin_lock_init(&rdp->nocb_lock);
	raw_spin_lock_init(&rdp->nocb_bypass_lock);
	raw_spin_lock_init(&rdp->nocb_gp_lock);
	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
	rcu_cblist_init(&rdp->nocb_bypass);
	WRITE_ONCE(rdp->lazy_len, 0);
	mutex_init(&rdp->nocb_gp_kthread_mutex);
}

/*
 * If the specified CPU is a no-CBs CPU that does not already have its
 * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
 * for this CPU's group has not yet been created, spawn it as well.
 */
static void rcu_spawn_cpu_nocb_kthread(int cpu)
{
	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
	struct rcu_data *rdp_gp;
	struct task_struct *t;
	struct sched_param sp;

	if (!rcu_scheduler_fully_active || !rcu_state.nocb_is_setup)
		return;

	/* If there already is an rcuo kthread, then nothing to do. */
	if (rdp->nocb_cb_kthread)
		return;

	/* If we didn't spawn the GP kthread first, reorganize! */
	sp.sched_priority = kthread_prio;
	rdp_gp = rdp->nocb_gp_rdp;
	mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
	if (!rdp_gp->nocb_gp_kthread) {
		t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
				"rcuog/%d", rdp_gp->cpu);
		if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) {
			mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
			goto end;
		}
		WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
		if (kthread_prio)
			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
	}
	mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);

	/* Spawn the kthread for this CPU. */
	t = kthread_run(rcu_nocb_cb_kthread, rdp,
			"rcuo%c/%d", rcu_state.abbr, cpu);
	if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
		goto end;

	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_CB_BOOST) && kthread_prio)
		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);

	WRITE_ONCE(rdp->nocb_cb_kthread, t);
	WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
	return;
end:
	mutex_lock(&rcu_state.barrier_mutex);
	if (rcu_rdp_is_offloaded(rdp)) {
		rcu_nocb_rdp_deoffload(rdp);
		cpumask_clear_cpu(cpu, rcu_nocb_mask);
	}
	mutex_unlock(&rcu_state.barrier_mutex);
}

/* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
static int rcu_nocb_gp_stride = -1;
module_param(rcu_nocb_gp_stride, int, 0444);

/*
 * Initialize GP-CB relationships for all no-CBs CPU.
 */
static void __init rcu_organize_nocb_kthreads(void)
{
	int cpu;
	bool firsttime = true;
	bool gotnocbs = false;
	bool gotnocbscbs = true;
	int ls = rcu_nocb_gp_stride;
	int nl = 0;  /* Next GP kthread. */
	struct rcu_data *rdp;
	struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */

	if (!cpumask_available(rcu_nocb_mask))
		return;
	if (ls == -1) {
		ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
		rcu_nocb_gp_stride = ls;
	}

	/*
	 * Each pass through this loop sets up one rcu_data structure.
	 * Should the corresponding CPU come online in the future, then
	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
	 */
	for_each_possible_cpu(cpu) {
		rdp = per_cpu_ptr(&rcu_data, cpu);
		if (rdp->cpu >= nl) {
			/* New GP kthread, set up for CBs & next GP. */
			gotnocbs = true;
			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
			rdp_gp = rdp;
			INIT_LIST_HEAD(&rdp->nocb_head_rdp);
			if (dump_tree) {
				if (!firsttime)
					pr_cont("%s\n", gotnocbscbs
							? "" : " (self only)");
				gotnocbscbs = false;
				firsttime = false;
				pr_alert("%s: No-CB GP kthread CPU %d:",
					 __func__, cpu);
			}
		} else {
			/* Another CB kthread, link to previous GP kthread. */
			gotnocbscbs = true;
			if (dump_tree)
				pr_cont(" %d", cpu);
		}
		rdp->nocb_gp_rdp = rdp_gp;
		if (cpumask_test_cpu(cpu, rcu_nocb_mask))
			list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp);
	}
	if (gotnocbs && dump_tree)
		pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
}

/*
 * Bind the current task to the offloaded CPUs.  If there are no offloaded
 * CPUs, leave the task unbound.  Splat if the bind attempt fails.
 */
void rcu_bind_current_to_nocb(void)
{
	if (cpumask_available(rcu_nocb_mask) && !cpumask_empty(rcu_nocb_mask))
		WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
}
EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);

// The ->on_cpu field is available only in CONFIG_SMP=y, so...
#ifdef CONFIG_SMP
static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
{
	return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : "";
}
#else // #ifdef CONFIG_SMP
static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
{
	return "";
}
#endif // #else #ifdef CONFIG_SMP

/*
 * Dump out nocb grace-period kthread state for the specified rcu_data
 * structure.
 */
static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
{
	struct rcu_node *rnp = rdp->mynode;

	pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n",
		rdp->cpu,
		"kK"[!!rdp->nocb_gp_kthread],
		"lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
		"dD"[!!rdp->nocb_defer_wakeup],
		"tT"[timer_pending(&rdp->nocb_timer)],
		"sS"[!!rdp->nocb_gp_sleep],
		".W"[swait_active(&rdp->nocb_gp_wq)],
		".W"[swait_active(&rnp->nocb_gp_wq[0])],
		".W"[swait_active(&rnp->nocb_gp_wq[1])],
		".B"[!!rdp->nocb_gp_bypass],
		".G"[!!rdp->nocb_gp_gp],
		(long)rdp->nocb_gp_seq,
		rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops),
		rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.',
		rdp->nocb_gp_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
		show_rcu_should_be_on_cpu(rdp->nocb_gp_kthread));
}

/* Dump out nocb kthread state for the specified rcu_data structure. */
static void show_rcu_nocb_state(struct rcu_data *rdp)
{
	char bufw[20];
	char bufr[20];
	struct rcu_data *nocb_next_rdp;
	struct rcu_segcblist *rsclp = &rdp->cblist;
	bool waslocked;
	bool wassleep;

	if (rdp->nocb_gp_rdp == rdp)
		show_rcu_nocb_gp_state(rdp);

	nocb_next_rdp = list_next_or_null_rcu(&rdp->nocb_gp_rdp->nocb_head_rdp,
					      &rdp->nocb_entry_rdp,
					      typeof(*rdp),
					      nocb_entry_rdp);

	sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]);
	sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]);
	pr_info("   CB %d^%d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n",
		rdp->cpu, rdp->nocb_gp_rdp->cpu,
		nocb_next_rdp ? nocb_next_rdp->cpu : -1,
		"kK"[!!rdp->nocb_cb_kthread],
		"bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
		"cC"[!!atomic_read(&rdp->nocb_lock_contended)],
		"lL"[raw_spin_is_locked(&rdp->nocb_lock)],
		"sS"[!!rdp->nocb_cb_sleep],
		".W"[swait_active(&rdp->nocb_cb_wq)],
		jiffies - rdp->nocb_bypass_first,
		jiffies - rdp->nocb_nobypass_last,
		rdp->nocb_nobypass_count,
		".D"[rcu_segcblist_ready_cbs(rsclp)],
		".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)],
		rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw,
		".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)],
		rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr,
		".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)],
		".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
		rcu_segcblist_n_cbs(&rdp->cblist),
		rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.',
		rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_cb_kthread) : -1,
		show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));

	/* It is OK for GP kthreads to have GP state. */
	if (rdp->nocb_gp_rdp == rdp)
		return;

	waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
	wassleep = swait_active(&rdp->nocb_gp_wq);
	if (!rdp->nocb_gp_sleep && !waslocked && !wassleep)
		return;  /* Nothing untoward. */

	pr_info("   nocb GP activity on CB-only CPU!!! %c%c%c %c\n",
		"lL"[waslocked],
		"dD"[!!rdp->nocb_defer_wakeup],
		"sS"[!!rdp->nocb_gp_sleep],
		".W"[wassleep]);
}

#else /* #ifdef CONFIG_RCU_NOCB_CPU */

static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
{
	return 0;
}

static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
{
	return false;
}

/* No ->nocb_lock to acquire.  */
static void rcu_nocb_lock(struct rcu_data *rdp)
{
}

/* No ->nocb_lock to release.  */
static void rcu_nocb_unlock(struct rcu_data *rdp)
{
}

/* No ->nocb_lock to release.  */
static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
				       unsigned long flags)
{
	local_irq_restore(flags);
}

/* Lockdep check that ->cblist may be safely accessed. */
static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
{
	lockdep_assert_irqs_disabled();
}

static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
{
}

static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
{
	return NULL;
}

static void rcu_init_one_nocb(struct rcu_node *rnp)
{
}

static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
{
	return false;
}

static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
				  unsigned long j, bool lazy)
{
	return true;
}

static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head,
			  rcu_callback_t func, unsigned long flags, bool lazy)
{
	WARN_ON_ONCE(1);  /* Should be dead code! */
}

static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
				 unsigned long flags)
{
	WARN_ON_ONCE(1);  /* Should be dead code! */
}

static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
}

static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
{
	return false;
}

static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
{
	return false;
}

static void rcu_spawn_cpu_nocb_kthread(int cpu)
{
}

static void show_rcu_nocb_state(struct rcu_data *rdp)
{
}

#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */