Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
/* SPDX-License-Identifier: GPL-2.0+ */
/*
 * Task-based RCU implementations.
 *
 * Copyright (C) 2020 Paul E. McKenney
 */

#ifdef CONFIG_TASKS_RCU_GENERIC
#include "rcu_segcblist.h"

////////////////////////////////////////////////////////////////////////
//
// Generic data structures.

struct rcu_tasks;
typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp);
typedef void (*pregp_func_t)(struct list_head *hop);
typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop);
typedef void (*postscan_func_t)(struct list_head *hop);
typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp);
typedef void (*postgp_func_t)(struct rcu_tasks *rtp);

/**
 * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism.
 * @cblist: Callback list.
 * @lock: Lock protecting per-CPU callback list.
 * @rtp_jiffies: Jiffies counter value for statistics.
 * @lazy_timer: Timer to unlazify callbacks.
 * @urgent_gp: Number of additional non-lazy grace periods.
 * @rtp_n_lock_retries: Rough lock-contention statistic.
 * @rtp_work: Work queue for invoking callbacks.
 * @rtp_irq_work: IRQ work queue for deferred wakeups.
 * @barrier_q_head: RCU callback for barrier operation.
 * @rtp_blkd_tasks: List of tasks blocked as readers.
 * @rtp_exit_list: List of tasks in the latter portion of do_exit().
 * @cpu: CPU number corresponding to this entry.
 * @rtpp: Pointer to the rcu_tasks structure.
 */
struct rcu_tasks_percpu {
	struct rcu_segcblist cblist;
	raw_spinlock_t __private lock;
	unsigned long rtp_jiffies;
	unsigned long rtp_n_lock_retries;
	struct timer_list lazy_timer;
	unsigned int urgent_gp;
	struct work_struct rtp_work;
	struct irq_work rtp_irq_work;
	struct rcu_head barrier_q_head;
	struct list_head rtp_blkd_tasks;
	struct list_head rtp_exit_list;
	int cpu;
	struct rcu_tasks *rtpp;
};

/**
 * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism.
 * @cbs_wait: RCU wait allowing a new callback to get kthread's attention.
 * @cbs_gbl_lock: Lock protecting callback list.
 * @tasks_gp_mutex: Mutex protecting grace period, needed during mid-boot dead zone.
 * @gp_func: This flavor's grace-period-wait function.
 * @gp_state: Grace period's most recent state transition (debugging).
 * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping.
 * @init_fract: Initial backoff sleep interval.
 * @gp_jiffies: Time of last @gp_state transition.
 * @gp_start: Most recent grace-period start in jiffies.
 * @tasks_gp_seq: Number of grace periods completed since boot.
 * @n_ipis: Number of IPIs sent to encourage grace periods to end.
 * @n_ipis_fails: Number of IPI-send failures.
 * @kthread_ptr: This flavor's grace-period/callback-invocation kthread.
 * @lazy_jiffies: Number of jiffies to allow callbacks to be lazy.
 * @pregp_func: This flavor's pre-grace-period function (optional).
 * @pertask_func: This flavor's per-task scan function (optional).
 * @postscan_func: This flavor's post-task scan function (optional).
 * @holdouts_func: This flavor's holdout-list scan function (optional).
 * @postgp_func: This flavor's post-grace-period function (optional).
 * @call_func: This flavor's call_rcu()-equivalent function.
 * @rtpcpu: This flavor's rcu_tasks_percpu structure.
 * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks.
 * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing.
 * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing.
 * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers.
 * @barrier_q_mutex: Serialize barrier operations.
 * @barrier_q_count: Number of queues being waited on.
 * @barrier_q_completion: Barrier wait/wakeup mechanism.
 * @barrier_q_seq: Sequence number for barrier operations.
 * @name: This flavor's textual name.
 * @kname: This flavor's kthread name.
 */
struct rcu_tasks {
	struct rcuwait cbs_wait;
	raw_spinlock_t cbs_gbl_lock;
	struct mutex tasks_gp_mutex;
	int gp_state;
	int gp_sleep;
	int init_fract;
	unsigned long gp_jiffies;
	unsigned long gp_start;
	unsigned long tasks_gp_seq;
	unsigned long n_ipis;
	unsigned long n_ipis_fails;
	struct task_struct *kthread_ptr;
	unsigned long lazy_jiffies;
	rcu_tasks_gp_func_t gp_func;
	pregp_func_t pregp_func;
	pertask_func_t pertask_func;
	postscan_func_t postscan_func;
	holdouts_func_t holdouts_func;
	postgp_func_t postgp_func;
	call_rcu_func_t call_func;
	struct rcu_tasks_percpu __percpu *rtpcpu;
	int percpu_enqueue_shift;
	int percpu_enqueue_lim;
	int percpu_dequeue_lim;
	unsigned long percpu_dequeue_gpseq;
	struct mutex barrier_q_mutex;
	atomic_t barrier_q_count;
	struct completion barrier_q_completion;
	unsigned long barrier_q_seq;
	char *name;
	char *kname;
};

static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp);

#define DEFINE_RCU_TASKS(rt_name, gp, call, n)						\
static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = {			\
	.lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock),		\
	.rtp_irq_work = IRQ_WORK_INIT_HARD(call_rcu_tasks_iw_wakeup),			\
};											\
static struct rcu_tasks rt_name =							\
{											\
	.cbs_wait = __RCUWAIT_INITIALIZER(rt_name.wait),				\
	.cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock),			\
	.tasks_gp_mutex = __MUTEX_INITIALIZER(rt_name.tasks_gp_mutex),			\
	.gp_func = gp,									\
	.call_func = call,								\
	.rtpcpu = &rt_name ## __percpu,							\
	.lazy_jiffies = DIV_ROUND_UP(HZ, 4),						\
	.name = n,									\
	.percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS),				\
	.percpu_enqueue_lim = 1,							\
	.percpu_dequeue_lim = 1,							\
	.barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex),		\
	.barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT,				\
	.kname = #rt_name,								\
}

#ifdef CONFIG_TASKS_RCU

/* Report delay in synchronize_srcu() completion in rcu_tasks_postscan(). */
static void tasks_rcu_exit_srcu_stall(struct timer_list *unused);
static DEFINE_TIMER(tasks_rcu_exit_srcu_stall_timer, tasks_rcu_exit_srcu_stall);
#endif

/* Avoid IPIing CPUs early in the grace period. */
#define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0)
static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY;
module_param(rcu_task_ipi_delay, int, 0644);

/* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
#define RCU_TASK_BOOT_STALL_TIMEOUT (HZ * 30)
#define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
module_param(rcu_task_stall_timeout, int, 0644);
#define RCU_TASK_STALL_INFO (HZ * 10)
static int rcu_task_stall_info __read_mostly = RCU_TASK_STALL_INFO;
module_param(rcu_task_stall_info, int, 0644);
static int rcu_task_stall_info_mult __read_mostly = 3;
module_param(rcu_task_stall_info_mult, int, 0444);

static int rcu_task_enqueue_lim __read_mostly = -1;
module_param(rcu_task_enqueue_lim, int, 0444);

static bool rcu_task_cb_adjust;
static int rcu_task_contend_lim __read_mostly = 100;
module_param(rcu_task_contend_lim, int, 0444);
static int rcu_task_collapse_lim __read_mostly = 10;
module_param(rcu_task_collapse_lim, int, 0444);
static int rcu_task_lazy_lim __read_mostly = 32;
module_param(rcu_task_lazy_lim, int, 0444);

/* RCU tasks grace-period state for debugging. */
#define RTGS_INIT		 0
#define RTGS_WAIT_WAIT_CBS	 1
#define RTGS_WAIT_GP		 2
#define RTGS_PRE_WAIT_GP	 3
#define RTGS_SCAN_TASKLIST	 4
#define RTGS_POST_SCAN_TASKLIST	 5
#define RTGS_WAIT_SCAN_HOLDOUTS	 6
#define RTGS_SCAN_HOLDOUTS	 7
#define RTGS_POST_GP		 8
#define RTGS_WAIT_READERS	 9
#define RTGS_INVOKE_CBS		10
#define RTGS_WAIT_CBS		11
#ifndef CONFIG_TINY_RCU
static const char * const rcu_tasks_gp_state_names[] = {
	"RTGS_INIT",
	"RTGS_WAIT_WAIT_CBS",
	"RTGS_WAIT_GP",
	"RTGS_PRE_WAIT_GP",
	"RTGS_SCAN_TASKLIST",
	"RTGS_POST_SCAN_TASKLIST",
	"RTGS_WAIT_SCAN_HOLDOUTS",
	"RTGS_SCAN_HOLDOUTS",
	"RTGS_POST_GP",
	"RTGS_WAIT_READERS",
	"RTGS_INVOKE_CBS",
	"RTGS_WAIT_CBS",
};
#endif /* #ifndef CONFIG_TINY_RCU */

////////////////////////////////////////////////////////////////////////
//
// Generic code.

static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp);

/* Record grace-period phase and time. */
static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate)
{
	rtp->gp_state = newstate;
	rtp->gp_jiffies = jiffies;
}

#ifndef CONFIG_TINY_RCU
/* Return state name. */
static const char *tasks_gp_state_getname(struct rcu_tasks *rtp)
{
	int i = data_race(rtp->gp_state); // Let KCSAN detect update races
	int j = READ_ONCE(i); // Prevent the compiler from reading twice

	if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names))
		return "???";
	return rcu_tasks_gp_state_names[j];
}
#endif /* #ifndef CONFIG_TINY_RCU */

// Initialize per-CPU callback lists for the specified flavor of
// Tasks RCU.  Do not enqueue callbacks before this function is invoked.
static void cblist_init_generic(struct rcu_tasks *rtp)
{
	int cpu;
	int lim;
	int shift;

	if (rcu_task_enqueue_lim < 0) {
		rcu_task_enqueue_lim = 1;
		rcu_task_cb_adjust = true;
	} else if (rcu_task_enqueue_lim == 0) {
		rcu_task_enqueue_lim = 1;
	}
	lim = rcu_task_enqueue_lim;

	if (lim > nr_cpu_ids)
		lim = nr_cpu_ids;
	shift = ilog2(nr_cpu_ids / lim);
	if (((nr_cpu_ids - 1) >> shift) >= lim)
		shift++;
	WRITE_ONCE(rtp->percpu_enqueue_shift, shift);
	WRITE_ONCE(rtp->percpu_dequeue_lim, lim);
	smp_store_release(&rtp->percpu_enqueue_lim, lim);
	for_each_possible_cpu(cpu) {
		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);

		WARN_ON_ONCE(!rtpcp);
		if (cpu)
			raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock));
		if (rcu_segcblist_empty(&rtpcp->cblist))
			rcu_segcblist_init(&rtpcp->cblist);
		INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq);
		rtpcp->cpu = cpu;
		rtpcp->rtpp = rtp;
		if (!rtpcp->rtp_blkd_tasks.next)
			INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks);
		if (!rtpcp->rtp_exit_list.next)
			INIT_LIST_HEAD(&rtpcp->rtp_exit_list);
	}

	pr_info("%s: Setting shift to %d and lim to %d rcu_task_cb_adjust=%d.\n", rtp->name,
			data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim), rcu_task_cb_adjust);
}

// Compute wakeup time for lazy callback timer.
static unsigned long rcu_tasks_lazy_time(struct rcu_tasks *rtp)
{
	return jiffies + rtp->lazy_jiffies;
}

// Timer handler that unlazifies lazy callbacks.
static void call_rcu_tasks_generic_timer(struct timer_list *tlp)
{
	unsigned long flags;
	bool needwake = false;
	struct rcu_tasks *rtp;
	struct rcu_tasks_percpu *rtpcp = from_timer(rtpcp, tlp, lazy_timer);

	rtp = rtpcp->rtpp;
	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
	if (!rcu_segcblist_empty(&rtpcp->cblist) && rtp->lazy_jiffies) {
		if (!rtpcp->urgent_gp)
			rtpcp->urgent_gp = 1;
		needwake = true;
		mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp));
	}
	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
	if (needwake)
		rcuwait_wake_up(&rtp->cbs_wait);
}

// IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic().
static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp)
{
	struct rcu_tasks *rtp;
	struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work);

	rtp = rtpcp->rtpp;
	rcuwait_wake_up(&rtp->cbs_wait);
}

// Enqueue a callback for the specified flavor of Tasks RCU.
static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func,
				   struct rcu_tasks *rtp)
{
	int chosen_cpu;
	unsigned long flags;
	bool havekthread = smp_load_acquire(&rtp->kthread_ptr);
	int ideal_cpu;
	unsigned long j;
	bool needadjust = false;
	bool needwake;
	struct rcu_tasks_percpu *rtpcp;

	rhp->next = NULL;
	rhp->func = func;
	local_irq_save(flags);
	rcu_read_lock();
	ideal_cpu = smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift);
	chosen_cpu = cpumask_next(ideal_cpu - 1, cpu_possible_mask);
	rtpcp = per_cpu_ptr(rtp->rtpcpu, chosen_cpu);
	if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled.
		raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
		j = jiffies;
		if (rtpcp->rtp_jiffies != j) {
			rtpcp->rtp_jiffies = j;
			rtpcp->rtp_n_lock_retries = 0;
		}
		if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim &&
		    READ_ONCE(rtp->percpu_enqueue_lim) != nr_cpu_ids)
			needadjust = true;  // Defer adjustment to avoid deadlock.
	}
	// Queuing callbacks before initialization not yet supported.
	if (WARN_ON_ONCE(!rcu_segcblist_is_enabled(&rtpcp->cblist)))
		rcu_segcblist_init(&rtpcp->cblist);
	needwake = (func == wakeme_after_rcu) ||
		   (rcu_segcblist_n_cbs(&rtpcp->cblist) == rcu_task_lazy_lim);
	if (havekthread && !needwake && !timer_pending(&rtpcp->lazy_timer)) {
		if (rtp->lazy_jiffies)
			mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp));
		else
			needwake = rcu_segcblist_empty(&rtpcp->cblist);
	}
	if (needwake)
		rtpcp->urgent_gp = 3;
	rcu_segcblist_enqueue(&rtpcp->cblist, rhp);
	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
	if (unlikely(needadjust)) {
		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
		if (rtp->percpu_enqueue_lim != nr_cpu_ids) {
			WRITE_ONCE(rtp->percpu_enqueue_shift, 0);
			WRITE_ONCE(rtp->percpu_dequeue_lim, nr_cpu_ids);
			smp_store_release(&rtp->percpu_enqueue_lim, nr_cpu_ids);
			pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name);
		}
		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
	}
	rcu_read_unlock();
	/* We can't create the thread unless interrupts are enabled. */
	if (needwake && READ_ONCE(rtp->kthread_ptr))
		irq_work_queue(&rtpcp->rtp_irq_work);
}

// RCU callback function for rcu_barrier_tasks_generic().
static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp)
{
	struct rcu_tasks *rtp;
	struct rcu_tasks_percpu *rtpcp;

	rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head);
	rtp = rtpcp->rtpp;
	if (atomic_dec_and_test(&rtp->barrier_q_count))
		complete(&rtp->barrier_q_completion);
}

// Wait for all in-flight callbacks for the specified RCU Tasks flavor.
// Operates in a manner similar to rcu_barrier().
static void rcu_barrier_tasks_generic(struct rcu_tasks *rtp)
{
	int cpu;
	unsigned long flags;
	struct rcu_tasks_percpu *rtpcp;
	unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq);

	mutex_lock(&rtp->barrier_q_mutex);
	if (rcu_seq_done(&rtp->barrier_q_seq, s)) {
		smp_mb();
		mutex_unlock(&rtp->barrier_q_mutex);
		return;
	}
	rcu_seq_start(&rtp->barrier_q_seq);
	init_completion(&rtp->barrier_q_completion);
	atomic_set(&rtp->barrier_q_count, 2);
	for_each_possible_cpu(cpu) {
		if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim))
			break;
		rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
		rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb;
		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
		if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head))
			atomic_inc(&rtp->barrier_q_count);
		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
	}
	if (atomic_sub_and_test(2, &rtp->barrier_q_count))
		complete(&rtp->barrier_q_completion);
	wait_for_completion(&rtp->barrier_q_completion);
	rcu_seq_end(&rtp->barrier_q_seq);
	mutex_unlock(&rtp->barrier_q_mutex);
}

// Advance callbacks and indicate whether either a grace period or
// callback invocation is needed.
static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp)
{
	int cpu;
	int dequeue_limit;
	unsigned long flags;
	bool gpdone = poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq);
	long n;
	long ncbs = 0;
	long ncbsnz = 0;
	int needgpcb = 0;

	dequeue_limit = smp_load_acquire(&rtp->percpu_dequeue_lim);
	for (cpu = 0; cpu < dequeue_limit; cpu++) {
		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);

		/* Advance and accelerate any new callbacks. */
		if (!rcu_segcblist_n_cbs(&rtpcp->cblist))
			continue;
		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
		// Should we shrink down to a single callback queue?
		n = rcu_segcblist_n_cbs(&rtpcp->cblist);
		if (n) {
			ncbs += n;
			if (cpu > 0)
				ncbsnz += n;
		}
		rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
		(void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
		if (rtpcp->urgent_gp > 0 && rcu_segcblist_pend_cbs(&rtpcp->cblist)) {
			if (rtp->lazy_jiffies)
				rtpcp->urgent_gp--;
			needgpcb |= 0x3;
		} else if (rcu_segcblist_empty(&rtpcp->cblist)) {
			rtpcp->urgent_gp = 0;
		}
		if (rcu_segcblist_ready_cbs(&rtpcp->cblist))
			needgpcb |= 0x1;
		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
	}

	// Shrink down to a single callback queue if appropriate.
	// This is done in two stages: (1) If there are no more than
	// rcu_task_collapse_lim callbacks on CPU 0 and none on any other
	// CPU, limit enqueueing to CPU 0.  (2) After an RCU grace period,
	// if there has not been an increase in callbacks, limit dequeuing
	// to CPU 0.  Note the matching RCU read-side critical section in
	// call_rcu_tasks_generic().
	if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) {
		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
		if (rtp->percpu_enqueue_lim > 1) {
			WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(nr_cpu_ids));
			smp_store_release(&rtp->percpu_enqueue_lim, 1);
			rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu();
			gpdone = false;
			pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name);
		}
		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
	}
	if (rcu_task_cb_adjust && !ncbsnz && gpdone) {
		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
		if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) {
			WRITE_ONCE(rtp->percpu_dequeue_lim, 1);
			pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name);
		}
		if (rtp->percpu_dequeue_lim == 1) {
			for (cpu = rtp->percpu_dequeue_lim; cpu < nr_cpu_ids; cpu++) {
				struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);

				WARN_ON_ONCE(rcu_segcblist_n_cbs(&rtpcp->cblist));
			}
		}
		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
	}

	return needgpcb;
}

// Advance callbacks and invoke any that are ready.
static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp)
{
	int cpu;
	int cpunext;
	int cpuwq;
	unsigned long flags;
	int len;
	struct rcu_head *rhp;
	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
	struct rcu_tasks_percpu *rtpcp_next;

	cpu = rtpcp->cpu;
	cpunext = cpu * 2 + 1;
	if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
		rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext);
		cpuwq = rcu_cpu_beenfullyonline(cpunext) ? cpunext : WORK_CPU_UNBOUND;
		queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work);
		cpunext++;
		if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
			rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext);
			cpuwq = rcu_cpu_beenfullyonline(cpunext) ? cpunext : WORK_CPU_UNBOUND;
			queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work);
		}
	}

	if (rcu_segcblist_empty(&rtpcp->cblist) || !cpu_possible(cpu))
		return;
	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
	rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
	rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl);
	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
	len = rcl.len;
	for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) {
		debug_rcu_head_callback(rhp);
		local_bh_disable();
		rhp->func(rhp);
		local_bh_enable();
		cond_resched();
	}
	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
	rcu_segcblist_add_len(&rtpcp->cblist, -len);
	(void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
}

// Workqueue flood to advance callbacks and invoke any that are ready.
static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp)
{
	struct rcu_tasks *rtp;
	struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work);

	rtp = rtpcp->rtpp;
	rcu_tasks_invoke_cbs(rtp, rtpcp);
}

// Wait for one grace period.
static void rcu_tasks_one_gp(struct rcu_tasks *rtp, bool midboot)
{
	int needgpcb;

	mutex_lock(&rtp->tasks_gp_mutex);

	// If there were none, wait a bit and start over.
	if (unlikely(midboot)) {
		needgpcb = 0x2;
	} else {
		mutex_unlock(&rtp->tasks_gp_mutex);
		set_tasks_gp_state(rtp, RTGS_WAIT_CBS);
		rcuwait_wait_event(&rtp->cbs_wait,
				   (needgpcb = rcu_tasks_need_gpcb(rtp)),
				   TASK_IDLE);
		mutex_lock(&rtp->tasks_gp_mutex);
	}

	if (needgpcb & 0x2) {
		// Wait for one grace period.
		set_tasks_gp_state(rtp, RTGS_WAIT_GP);
		rtp->gp_start = jiffies;
		rcu_seq_start(&rtp->tasks_gp_seq);
		rtp->gp_func(rtp);
		rcu_seq_end(&rtp->tasks_gp_seq);
	}

	// Invoke callbacks.
	set_tasks_gp_state(rtp, RTGS_INVOKE_CBS);
	rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0));
	mutex_unlock(&rtp->tasks_gp_mutex);
}

// RCU-tasks kthread that detects grace periods and invokes callbacks.
static int __noreturn rcu_tasks_kthread(void *arg)
{
	int cpu;
	struct rcu_tasks *rtp = arg;

	for_each_possible_cpu(cpu) {
		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);

		timer_setup(&rtpcp->lazy_timer, call_rcu_tasks_generic_timer, 0);
		rtpcp->urgent_gp = 1;
	}

	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
	housekeeping_affine(current, HK_TYPE_RCU);
	smp_store_release(&rtp->kthread_ptr, current); // Let GPs start!

	/*
	 * Each pass through the following loop makes one check for
	 * newly arrived callbacks, and, if there are some, waits for
	 * one RCU-tasks grace period and then invokes the callbacks.
	 * This loop is terminated by the system going down.  ;-)
	 */
	for (;;) {
		// Wait for one grace period and invoke any callbacks
		// that are ready.
		rcu_tasks_one_gp(rtp, false);

		// Paranoid sleep to keep this from entering a tight loop.
		schedule_timeout_idle(rtp->gp_sleep);
	}
}

// Wait for a grace period for the specified flavor of Tasks RCU.
static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp)
{
	/* Complain if the scheduler has not started.  */
	if (WARN_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
			 "synchronize_%s() called too soon", rtp->name))
		return;

	// If the grace-period kthread is running, use it.
	if (READ_ONCE(rtp->kthread_ptr)) {
		wait_rcu_gp(rtp->call_func);
		return;
	}
	rcu_tasks_one_gp(rtp, true);
}

/* Spawn RCU-tasks grace-period kthread. */
static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp)
{
	struct task_struct *t;

	t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname);
	if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name))
		return;
	smp_mb(); /* Ensure others see full kthread. */
}

#ifndef CONFIG_TINY_RCU

/*
 * Print any non-default Tasks RCU settings.
 */
static void __init rcu_tasks_bootup_oddness(void)
{
#if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
	int rtsimc;

	if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
		pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
	rtsimc = clamp(rcu_task_stall_info_mult, 1, 10);
	if (rtsimc != rcu_task_stall_info_mult) {
		pr_info("\tTasks-RCU CPU stall info multiplier clamped to %d (rcu_task_stall_info_mult).\n", rtsimc);
		rcu_task_stall_info_mult = rtsimc;
	}
#endif /* #ifdef CONFIG_TASKS_RCU */
#ifdef CONFIG_TASKS_RCU
	pr_info("\tTrampoline variant of Tasks RCU enabled.\n");
#endif /* #ifdef CONFIG_TASKS_RCU */
#ifdef CONFIG_TASKS_RUDE_RCU
	pr_info("\tRude variant of Tasks RCU enabled.\n");
#endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
#ifdef CONFIG_TASKS_TRACE_RCU
	pr_info("\tTracing variant of Tasks RCU enabled.\n");
#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
}

#endif /* #ifndef CONFIG_TINY_RCU */

#ifndef CONFIG_TINY_RCU
/* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */
static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s)
{
	int cpu;
	bool havecbs = false;
	bool haveurgent = false;
	bool haveurgentcbs = false;

	for_each_possible_cpu(cpu) {
		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);

		if (!data_race(rcu_segcblist_empty(&rtpcp->cblist)))
			havecbs = true;
		if (data_race(rtpcp->urgent_gp))
			haveurgent = true;
		if (!data_race(rcu_segcblist_empty(&rtpcp->cblist)) && data_race(rtpcp->urgent_gp))
			haveurgentcbs = true;
		if (havecbs && haveurgent && haveurgentcbs)
			break;
	}
	pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c%c%c l:%lu %s\n",
		rtp->kname,
		tasks_gp_state_getname(rtp), data_race(rtp->gp_state),
		jiffies - data_race(rtp->gp_jiffies),
		data_race(rcu_seq_current(&rtp->tasks_gp_seq)),
		data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis),
		".k"[!!data_race(rtp->kthread_ptr)],
		".C"[havecbs],
		".u"[haveurgent],
		".U"[haveurgentcbs],
		rtp->lazy_jiffies,
		s);
}
#endif // #ifndef CONFIG_TINY_RCU

static void exit_tasks_rcu_finish_trace(struct task_struct *t);

#if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)

////////////////////////////////////////////////////////////////////////
//
// Shared code between task-list-scanning variants of Tasks RCU.

/* Wait for one RCU-tasks grace period. */
static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
{
	struct task_struct *g;
	int fract;
	LIST_HEAD(holdouts);
	unsigned long j;
	unsigned long lastinfo;
	unsigned long lastreport;
	bool reported = false;
	int rtsi;
	struct task_struct *t;

	set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP);
	rtp->pregp_func(&holdouts);

	/*
	 * There were callbacks, so we need to wait for an RCU-tasks
	 * grace period.  Start off by scanning the task list for tasks
	 * that are not already voluntarily blocked.  Mark these tasks
	 * and make a list of them in holdouts.
	 */
	set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST);
	if (rtp->pertask_func) {
		rcu_read_lock();
		for_each_process_thread(g, t)
			rtp->pertask_func(t, &holdouts);
		rcu_read_unlock();
	}

	set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST);
	rtp->postscan_func(&holdouts);

	/*
	 * Each pass through the following loop scans the list of holdout
	 * tasks, removing any that are no longer holdouts.  When the list
	 * is empty, we are done.
	 */
	lastreport = jiffies;
	lastinfo = lastreport;
	rtsi = READ_ONCE(rcu_task_stall_info);

	// Start off with initial wait and slowly back off to 1 HZ wait.
	fract = rtp->init_fract;

	while (!list_empty(&holdouts)) {
		ktime_t exp;
		bool firstreport;
		bool needreport;
		int rtst;

		// Slowly back off waiting for holdouts
		set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS);
		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
			schedule_timeout_idle(fract);
		} else {
			exp = jiffies_to_nsecs(fract);
			__set_current_state(TASK_IDLE);
			schedule_hrtimeout_range(&exp, jiffies_to_nsecs(HZ / 2), HRTIMER_MODE_REL_HARD);
		}

		if (fract < HZ)
			fract++;

		rtst = READ_ONCE(rcu_task_stall_timeout);
		needreport = rtst > 0 && time_after(jiffies, lastreport + rtst);
		if (needreport) {
			lastreport = jiffies;
			reported = true;
		}
		firstreport = true;
		WARN_ON(signal_pending(current));
		set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS);
		rtp->holdouts_func(&holdouts, needreport, &firstreport);

		// Print pre-stall informational messages if needed.
		j = jiffies;
		if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) {
			lastinfo = j;
			rtsi = rtsi * rcu_task_stall_info_mult;
			pr_info("%s: %s grace period number %lu (since boot) is %lu jiffies old.\n",
				__func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start);
		}
	}

	set_tasks_gp_state(rtp, RTGS_POST_GP);
	rtp->postgp_func(rtp);
}

#endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */

#ifdef CONFIG_TASKS_RCU

////////////////////////////////////////////////////////////////////////
//
// Simple variant of RCU whose quiescent states are voluntary context
// switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle.
// As such, grace periods can take one good long time.  There are no
// read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
// because this implementation is intended to get the system into a safe
// state for some of the manipulations involved in tracing and the like.
// Finally, this implementation does not support high call_rcu_tasks()
// rates from multiple CPUs.  If this is required, per-CPU callback lists
// will be needed.
//
// The implementation uses rcu_tasks_wait_gp(), which relies on function
// pointers in the rcu_tasks structure.  The rcu_spawn_tasks_kthread()
// function sets these function pointers up so that rcu_tasks_wait_gp()
// invokes these functions in this order:
//
// rcu_tasks_pregp_step():
//	Invokes synchronize_rcu() in order to wait for all in-flight
//	t->on_rq and t->nvcsw transitions to complete.	This works because
//	all such transitions are carried out with interrupts disabled.
// rcu_tasks_pertask(), invoked on every non-idle task:
//	For every runnable non-idle task other than the current one, use
//	get_task_struct() to pin down that task, snapshot that task's
//	number of voluntary context switches, and add that task to the
//	holdout list.
// rcu_tasks_postscan():
//	Gather per-CPU lists of tasks in do_exit() to ensure that all
//	tasks that were in the process of exiting (and which thus might
//	not know to synchronize with this RCU Tasks grace period) have
//	completed exiting.  The synchronize_rcu() in rcu_tasks_postgp()
//	will take care of any tasks stuck in the non-preemptible region
//	of do_exit() following its call to exit_tasks_rcu_stop().
// check_all_holdout_tasks(), repeatedly until holdout list is empty:
//	Scans the holdout list, attempting to identify a quiescent state
//	for each task on the list.  If there is a quiescent state, the
//	corresponding task is removed from the holdout list.
// rcu_tasks_postgp():
//	Invokes synchronize_rcu() in order to ensure that all prior
//	t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks
//	to have happened before the end of this RCU Tasks grace period.
//	Again, this works because all such transitions are carried out
//	with interrupts disabled.
//
// For each exiting task, the exit_tasks_rcu_start() and
// exit_tasks_rcu_finish() functions add and remove, respectively, the
// current task to a per-CPU list of tasks that rcu_tasks_postscan() must
// wait on.  This is necessary because rcu_tasks_postscan() must wait on
// tasks that have already been removed from the global list of tasks.
//
// Pre-grace-period update-side code is ordered before the grace
// via the raw_spin_lock.*rcu_node().  Pre-grace-period read-side code
// is ordered before the grace period via synchronize_rcu() call in
// rcu_tasks_pregp_step() and by the scheduler's locks and interrupt
// disabling.

/* Pre-grace-period preparation. */
static void rcu_tasks_pregp_step(struct list_head *hop)
{
	/*
	 * Wait for all pre-existing t->on_rq and t->nvcsw transitions
	 * to complete.  Invoking synchronize_rcu() suffices because all
	 * these transitions occur with interrupts disabled.  Without this
	 * synchronize_rcu(), a read-side critical section that started
	 * before the grace period might be incorrectly seen as having
	 * started after the grace period.
	 *
	 * This synchronize_rcu() also dispenses with the need for a
	 * memory barrier on the first store to t->rcu_tasks_holdout,
	 * as it forces the store to happen after the beginning of the
	 * grace period.
	 */
	synchronize_rcu();
}

/* Check for quiescent states since the pregp's synchronize_rcu() */
static bool rcu_tasks_is_holdout(struct task_struct *t)
{
	int cpu;

	/* Has the task been seen voluntarily sleeping? */
	if (!READ_ONCE(t->on_rq))
		return false;

	/*
	 * Idle tasks (or idle injection) within the idle loop are RCU-tasks
	 * quiescent states. But CPU boot code performed by the idle task
	 * isn't a quiescent state.
	 */
	if (is_idle_task(t))
		return false;

	cpu = task_cpu(t);

	/* Idle tasks on offline CPUs are RCU-tasks quiescent states. */
	if (t == idle_task(cpu) && !rcu_cpu_online(cpu))
		return false;

	return true;
}

/* Per-task initial processing. */
static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop)
{
	if (t != current && rcu_tasks_is_holdout(t)) {
		get_task_struct(t);
		t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
		WRITE_ONCE(t->rcu_tasks_holdout, true);
		list_add(&t->rcu_tasks_holdout_list, hop);
	}
}

void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks");

/* Processing between scanning taskslist and draining the holdout list. */
static void rcu_tasks_postscan(struct list_head *hop)
{
	int cpu;
	int rtsi = READ_ONCE(rcu_task_stall_info);

	if (!IS_ENABLED(CONFIG_TINY_RCU)) {
		tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi;
		add_timer(&tasks_rcu_exit_srcu_stall_timer);
	}

	/*
	 * Exiting tasks may escape the tasklist scan. Those are vulnerable
	 * until their final schedule() with TASK_DEAD state. To cope with
	 * this, divide the fragile exit path part in two intersecting
	 * read side critical sections:
	 *
	 * 1) A task_struct list addition before calling exit_notify(),
	 *    which may remove the task from the tasklist, with the
	 *    removal after the final preempt_disable() call in do_exit().
	 *
	 * 2) An _RCU_ read side starting with the final preempt_disable()
	 *    call in do_exit() and ending with the final call to schedule()
	 *    with TASK_DEAD state.
	 *
	 * This handles the part 1). And postgp will handle part 2) with a
	 * call to synchronize_rcu().
	 */

	for_each_possible_cpu(cpu) {
		unsigned long j = jiffies + 1;
		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rcu_tasks.rtpcpu, cpu);
		struct task_struct *t;
		struct task_struct *t1;
		struct list_head tmp;

		raw_spin_lock_irq_rcu_node(rtpcp);
		list_for_each_entry_safe(t, t1, &rtpcp->rtp_exit_list, rcu_tasks_exit_list) {
			if (list_empty(&t->rcu_tasks_holdout_list))
				rcu_tasks_pertask(t, hop);

			// RT kernels need frequent pauses, otherwise
			// pause at least once per pair of jiffies.
			if (!IS_ENABLED(CONFIG_PREEMPT_RT) && time_before(jiffies, j))
				continue;

			// Keep our place in the list while pausing.
			// Nothing else traverses this list, so adding a
			// bare list_head is OK.
			list_add(&tmp, &t->rcu_tasks_exit_list);
			raw_spin_unlock_irq_rcu_node(rtpcp);
			cond_resched(); // For CONFIG_PREEMPT=n kernels
			raw_spin_lock_irq_rcu_node(rtpcp);
			t1 = list_entry(tmp.next, struct task_struct, rcu_tasks_exit_list);
			list_del(&tmp);
			j = jiffies + 1;
		}
		raw_spin_unlock_irq_rcu_node(rtpcp);
	}

	if (!IS_ENABLED(CONFIG_TINY_RCU))
		del_timer_sync(&tasks_rcu_exit_srcu_stall_timer);
}

/* See if tasks are still holding out, complain if so. */
static void check_holdout_task(struct task_struct *t,
			       bool needreport, bool *firstreport)
{
	int cpu;

	if (!READ_ONCE(t->rcu_tasks_holdout) ||
	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
	    !rcu_tasks_is_holdout(t) ||
	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
	     !is_idle_task(t) && READ_ONCE(t->rcu_tasks_idle_cpu) >= 0)) {
		WRITE_ONCE(t->rcu_tasks_holdout, false);
		list_del_init(&t->rcu_tasks_holdout_list);
		put_task_struct(t);
		return;
	}
	rcu_request_urgent_qs_task(t);
	if (!needreport)
		return;
	if (*firstreport) {
		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
		*firstreport = false;
	}
	cpu = task_cpu(t);
	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
		 t, ".I"[is_idle_task(t)],
		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
		 data_race(t->rcu_tasks_idle_cpu), cpu);
	sched_show_task(t);
}

/* Scan the holdout lists for tasks no longer holding out. */
static void check_all_holdout_tasks(struct list_head *hop,
				    bool needreport, bool *firstreport)
{
	struct task_struct *t, *t1;

	list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) {
		check_holdout_task(t, needreport, firstreport);
		cond_resched();
	}
}

/* Finish off the Tasks-RCU grace period. */
static void rcu_tasks_postgp(struct rcu_tasks *rtp)
{
	/*
	 * Because ->on_rq and ->nvcsw are not guaranteed to have a full
	 * memory barriers prior to them in the schedule() path, memory
	 * reordering on other CPUs could cause their RCU-tasks read-side
	 * critical sections to extend past the end of the grace period.
	 * However, because these ->nvcsw updates are carried out with
	 * interrupts disabled, we can use synchronize_rcu() to force the
	 * needed ordering on all such CPUs.
	 *
	 * This synchronize_rcu() also confines all ->rcu_tasks_holdout
	 * accesses to be within the grace period, avoiding the need for
	 * memory barriers for ->rcu_tasks_holdout accesses.
	 *
	 * In addition, this synchronize_rcu() waits for exiting tasks
	 * to complete their final preempt_disable() region of execution,
	 * enforcing the whole region before tasklist removal until
	 * the final schedule() with TASK_DEAD state to be an RCU TASKS
	 * read side critical section.
	 */
	synchronize_rcu();
}

static void tasks_rcu_exit_srcu_stall(struct timer_list *unused)
{
#ifndef CONFIG_TINY_RCU
	int rtsi;

	rtsi = READ_ONCE(rcu_task_stall_info);
	pr_info("%s: %s grace period number %lu (since boot) gp_state: %s is %lu jiffies old.\n",
		__func__, rcu_tasks.kname, rcu_tasks.tasks_gp_seq,
		tasks_gp_state_getname(&rcu_tasks), jiffies - rcu_tasks.gp_jiffies);
	pr_info("Please check any exiting tasks stuck between calls to exit_tasks_rcu_start() and exit_tasks_rcu_finish()\n");
	tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi;
	add_timer(&tasks_rcu_exit_srcu_stall_timer);
#endif // #ifndef CONFIG_TINY_RCU
}

/**
 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
 * @rhp: structure to be used for queueing the RCU updates.
 * @func: actual callback function to be invoked after the grace period
 *
 * The callback function will be invoked some time after a full grace
 * period elapses, in other words after all currently executing RCU
 * read-side critical sections have completed. call_rcu_tasks() assumes
 * that the read-side critical sections end at a voluntary context
 * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle,
 * or transition to usermode execution.  As such, there are no read-side
 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
 * this primitive is intended to determine that all tasks have passed
 * through a safe state, not so much for data-structure synchronization.
 *
 * See the description of call_rcu() for more detailed information on
 * memory ordering guarantees.
 */
void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
{
	call_rcu_tasks_generic(rhp, func, &rcu_tasks);
}
EXPORT_SYMBOL_GPL(call_rcu_tasks);

/**
 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-tasks
 * grace period has elapsed, in other words after all currently
 * executing rcu-tasks read-side critical sections have elapsed.  These
 * read-side critical sections are delimited by calls to schedule(),
 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
 *
 * This is a very specialized primitive, intended only for a few uses in
 * tracing and other situations requiring manipulation of function
 * preambles and profiling hooks.  The synchronize_rcu_tasks() function
 * is not (yet) intended for heavy use from multiple CPUs.
 *
 * See the description of synchronize_rcu() for more detailed information
 * on memory ordering guarantees.
 */
void synchronize_rcu_tasks(void)
{
	synchronize_rcu_tasks_generic(&rcu_tasks);
}
EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);

/**
 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
 *
 * Although the current implementation is guaranteed to wait, it is not
 * obligated to, for example, if there are no pending callbacks.
 */
void rcu_barrier_tasks(void)
{
	rcu_barrier_tasks_generic(&rcu_tasks);
}
EXPORT_SYMBOL_GPL(rcu_barrier_tasks);

static int rcu_tasks_lazy_ms = -1;
module_param(rcu_tasks_lazy_ms, int, 0444);

static int __init rcu_spawn_tasks_kthread(void)
{
	rcu_tasks.gp_sleep = HZ / 10;
	rcu_tasks.init_fract = HZ / 10;
	if (rcu_tasks_lazy_ms >= 0)
		rcu_tasks.lazy_jiffies = msecs_to_jiffies(rcu_tasks_lazy_ms);
	rcu_tasks.pregp_func = rcu_tasks_pregp_step;
	rcu_tasks.pertask_func = rcu_tasks_pertask;
	rcu_tasks.postscan_func = rcu_tasks_postscan;
	rcu_tasks.holdouts_func = check_all_holdout_tasks;
	rcu_tasks.postgp_func = rcu_tasks_postgp;
	rcu_spawn_tasks_kthread_generic(&rcu_tasks);
	return 0;
}

#if !defined(CONFIG_TINY_RCU)
void show_rcu_tasks_classic_gp_kthread(void)
{
	show_rcu_tasks_generic_gp_kthread(&rcu_tasks, "");
}
EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread);
#endif // !defined(CONFIG_TINY_RCU)

struct task_struct *get_rcu_tasks_gp_kthread(void)
{
	return rcu_tasks.kthread_ptr;
}
EXPORT_SYMBOL_GPL(get_rcu_tasks_gp_kthread);

/*
 * Protect against tasklist scan blind spot while the task is exiting and
 * may be removed from the tasklist.  Do this by adding the task to yet
 * another list.
 *
 * Note that the task will remove itself from this list, so there is no
 * need for get_task_struct(), except in the case where rcu_tasks_pertask()
 * adds it to the holdout list, in which case rcu_tasks_pertask() supplies
 * the needed get_task_struct().
 */
void exit_tasks_rcu_start(void)
{
	unsigned long flags;
	struct rcu_tasks_percpu *rtpcp;
	struct task_struct *t = current;

	WARN_ON_ONCE(!list_empty(&t->rcu_tasks_exit_list));
	preempt_disable();
	rtpcp = this_cpu_ptr(rcu_tasks.rtpcpu);
	t->rcu_tasks_exit_cpu = smp_processor_id();
	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
	if (!rtpcp->rtp_exit_list.next)
		INIT_LIST_HEAD(&rtpcp->rtp_exit_list);
	list_add(&t->rcu_tasks_exit_list, &rtpcp->rtp_exit_list);
	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
	preempt_enable();
}

/*
 * Remove the task from the "yet another list" because do_exit() is now
 * non-preemptible, allowing synchronize_rcu() to wait beyond this point.
 */
void exit_tasks_rcu_stop(void)
{
	unsigned long flags;
	struct rcu_tasks_percpu *rtpcp;
	struct task_struct *t = current;

	WARN_ON_ONCE(list_empty(&t->rcu_tasks_exit_list));
	rtpcp = per_cpu_ptr(rcu_tasks.rtpcpu, t->rcu_tasks_exit_cpu);
	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
	list_del_init(&t->rcu_tasks_exit_list);
	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
}

/*
 * Contribute to protect against tasklist scan blind spot while the
 * task is exiting and may be removed from the tasklist. See
 * corresponding synchronize_srcu() for further details.
 */
void exit_tasks_rcu_finish(void)
{
	exit_tasks_rcu_stop();
	exit_tasks_rcu_finish_trace(current);
}

#else /* #ifdef CONFIG_TASKS_RCU */
void exit_tasks_rcu_start(void) { }
void exit_tasks_rcu_stop(void) { }
void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); }
#endif /* #else #ifdef CONFIG_TASKS_RCU */

#ifdef CONFIG_TASKS_RUDE_RCU

////////////////////////////////////////////////////////////////////////
//
// "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of
// passing an empty function to schedule_on_each_cpu().  This approach
// provides an asynchronous call_rcu_tasks_rude() API and batching of
// concurrent calls to the synchronous synchronize_rcu_tasks_rude() API.
// This invokes schedule_on_each_cpu() in order to send IPIs far and wide
// and induces otherwise unnecessary context switches on all online CPUs,
// whether idle or not.
//
// Callback handling is provided by the rcu_tasks_kthread() function.
//
// Ordering is provided by the scheduler's context-switch code.

// Empty function to allow workqueues to force a context switch.
static void rcu_tasks_be_rude(struct work_struct *work)
{
}

// Wait for one rude RCU-tasks grace period.
static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp)
{
	rtp->n_ipis += cpumask_weight(cpu_online_mask);
	schedule_on_each_cpu(rcu_tasks_be_rude);
}

void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func);
DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude,
		 "RCU Tasks Rude");

/**
 * call_rcu_tasks_rude() - Queue a callback rude task-based grace period
 * @rhp: structure to be used for queueing the RCU updates.
 * @func: actual callback function to be invoked after the grace period
 *
 * The callback function will be invoked some time after a full grace
 * period elapses, in other words after all currently executing RCU
 * read-side critical sections have completed. call_rcu_tasks_rude()
 * assumes that the read-side critical sections end at context switch,
 * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as
 * usermode execution is schedulable). As such, there are no read-side
 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
 * this primitive is intended to determine that all tasks have passed
 * through a safe state, not so much for data-structure synchronization.
 *
 * See the description of call_rcu() for more detailed information on
 * memory ordering guarantees.
 */
void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func)
{
	call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude);
}
EXPORT_SYMBOL_GPL(call_rcu_tasks_rude);

/**
 * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period
 *
 * Control will return to the caller some time after a rude rcu-tasks
 * grace period has elapsed, in other words after all currently
 * executing rcu-tasks read-side critical sections have elapsed.  These
 * read-side critical sections are delimited by calls to schedule(),
 * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable
 * context), and (in theory, anyway) cond_resched().
 *
 * This is a very specialized primitive, intended only for a few uses in
 * tracing and other situations requiring manipulation of function preambles
 * and profiling hooks.  The synchronize_rcu_tasks_rude() function is not
 * (yet) intended for heavy use from multiple CPUs.
 *
 * See the description of synchronize_rcu() for more detailed information
 * on memory ordering guarantees.
 */
void synchronize_rcu_tasks_rude(void)
{
	synchronize_rcu_tasks_generic(&rcu_tasks_rude);
}
EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude);

/**
 * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks.
 *
 * Although the current implementation is guaranteed to wait, it is not
 * obligated to, for example, if there are no pending callbacks.
 */
void rcu_barrier_tasks_rude(void)
{
	rcu_barrier_tasks_generic(&rcu_tasks_rude);
}
EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude);

int rcu_tasks_rude_lazy_ms = -1;
module_param(rcu_tasks_rude_lazy_ms, int, 0444);

static int __init rcu_spawn_tasks_rude_kthread(void)
{
	rcu_tasks_rude.gp_sleep = HZ / 10;
	if (rcu_tasks_rude_lazy_ms >= 0)
		rcu_tasks_rude.lazy_jiffies = msecs_to_jiffies(rcu_tasks_rude_lazy_ms);
	rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude);
	return 0;
}

#if !defined(CONFIG_TINY_RCU)
void show_rcu_tasks_rude_gp_kthread(void)
{
	show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, "");
}
EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread);
#endif // !defined(CONFIG_TINY_RCU)

struct task_struct *get_rcu_tasks_rude_gp_kthread(void)
{
	return rcu_tasks_rude.kthread_ptr;
}
EXPORT_SYMBOL_GPL(get_rcu_tasks_rude_gp_kthread);

#endif /* #ifdef CONFIG_TASKS_RUDE_RCU */

////////////////////////////////////////////////////////////////////////
//
// Tracing variant of Tasks RCU.  This variant is designed to be used
// to protect tracing hooks, including those of BPF.  This variant
// therefore:
//
// 1.	Has explicit read-side markers to allow finite grace periods
//	in the face of in-kernel loops for PREEMPT=n builds.
//
// 2.	Protects code in the idle loop, exception entry/exit, and
//	CPU-hotplug code paths, similar to the capabilities of SRCU.
//
// 3.	Avoids expensive read-side instructions, having overhead similar
//	to that of Preemptible RCU.
//
// There are of course downsides.  For example, the grace-period code
// can send IPIs to CPUs, even when those CPUs are in the idle loop or
// in nohz_full userspace.  If needed, these downsides can be at least
// partially remedied.
//
// Perhaps most important, this variant of RCU does not affect the vanilla
// flavors, rcu_preempt and rcu_sched.  The fact that RCU Tasks Trace
// readers can operate from idle, offline, and exception entry/exit in no
// way allows rcu_preempt and rcu_sched readers to also do so.
//
// The implementation uses rcu_tasks_wait_gp(), which relies on function
// pointers in the rcu_tasks structure.  The rcu_spawn_tasks_trace_kthread()
// function sets these function pointers up so that rcu_tasks_wait_gp()
// invokes these functions in this order:
//
// rcu_tasks_trace_pregp_step():
//	Disables CPU hotplug, adds all currently executing tasks to the
//	holdout list, then checks the state of all tasks that blocked
//	or were preempted within their current RCU Tasks Trace read-side
//	critical section, adding them to the holdout list if appropriate.
//	Finally, this function re-enables CPU hotplug.
// The ->pertask_func() pointer is NULL, so there is no per-task processing.
// rcu_tasks_trace_postscan():
//	Invokes synchronize_rcu() to wait for late-stage exiting tasks
//	to finish exiting.
// check_all_holdout_tasks_trace(), repeatedly until holdout list is empty:
//	Scans the holdout list, attempting to identify a quiescent state
//	for each task on the list.  If there is a quiescent state, the
//	corresponding task is removed from the holdout list.  Once this
//	list is empty, the grace period has completed.
// rcu_tasks_trace_postgp():
//	Provides the needed full memory barrier and does debug checks.
//
// The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks.
//
// Pre-grace-period update-side code is ordered before the grace period
// via the ->cbs_lock and barriers in rcu_tasks_kthread().  Pre-grace-period
// read-side code is ordered before the grace period by atomic operations
// on .b.need_qs flag of each task involved in this process, or by scheduler
// context-switch ordering (for locked-down non-running readers).

// The lockdep state must be outside of #ifdef to be useful.
#ifdef CONFIG_DEBUG_LOCK_ALLOC
static struct lock_class_key rcu_lock_trace_key;
struct lockdep_map rcu_trace_lock_map =
	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key);
EXPORT_SYMBOL_GPL(rcu_trace_lock_map);
#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */

#ifdef CONFIG_TASKS_TRACE_RCU

// Record outstanding IPIs to each CPU.  No point in sending two...
static DEFINE_PER_CPU(bool, trc_ipi_to_cpu);

// The number of detections of task quiescent state relying on
// heavyweight readers executing explicit memory barriers.
static unsigned long n_heavy_reader_attempts;
static unsigned long n_heavy_reader_updates;
static unsigned long n_heavy_reader_ofl_updates;
static unsigned long n_trc_holdouts;

void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func);
DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace,
		 "RCU Tasks Trace");

/* Load from ->trc_reader_special.b.need_qs with proper ordering. */
static u8 rcu_ld_need_qs(struct task_struct *t)
{
	smp_mb(); // Enforce full grace-period ordering.
	return smp_load_acquire(&t->trc_reader_special.b.need_qs);
}

/* Store to ->trc_reader_special.b.need_qs with proper ordering. */
static void rcu_st_need_qs(struct task_struct *t, u8 v)
{
	smp_store_release(&t->trc_reader_special.b.need_qs, v);
	smp_mb(); // Enforce full grace-period ordering.
}

/*
 * Do a cmpxchg() on ->trc_reader_special.b.need_qs, allowing for
 * the four-byte operand-size restriction of some platforms.
 * Returns the old value, which is often ignored.
 */
u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new)
{
	union rcu_special ret;
	union rcu_special trs_old = READ_ONCE(t->trc_reader_special);
	union rcu_special trs_new = trs_old;

	if (trs_old.b.need_qs != old)
		return trs_old.b.need_qs;
	trs_new.b.need_qs = new;
	ret.s = cmpxchg(&t->trc_reader_special.s, trs_old.s, trs_new.s);
	return ret.b.need_qs;
}
EXPORT_SYMBOL_GPL(rcu_trc_cmpxchg_need_qs);

/*
 * If we are the last reader, signal the grace-period kthread.
 * Also remove from the per-CPU list of blocked tasks.
 */
void rcu_read_unlock_trace_special(struct task_struct *t)
{
	unsigned long flags;
	struct rcu_tasks_percpu *rtpcp;
	union rcu_special trs;

	// Open-coded full-word version of rcu_ld_need_qs().
	smp_mb(); // Enforce full grace-period ordering.
	trs = smp_load_acquire(&t->trc_reader_special);

	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && t->trc_reader_special.b.need_mb)
		smp_mb(); // Pairs with update-side barriers.
	// Update .need_qs before ->trc_reader_nesting for irq/NMI handlers.
	if (trs.b.need_qs == (TRC_NEED_QS_CHECKED | TRC_NEED_QS)) {
		u8 result = rcu_trc_cmpxchg_need_qs(t, TRC_NEED_QS_CHECKED | TRC_NEED_QS,
						       TRC_NEED_QS_CHECKED);

		WARN_ONCE(result != trs.b.need_qs, "%s: result = %d", __func__, result);
	}
	if (trs.b.blocked) {
		rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, t->trc_blkd_cpu);
		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
		list_del_init(&t->trc_blkd_node);
		WRITE_ONCE(t->trc_reader_special.b.blocked, false);
		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
	}
	WRITE_ONCE(t->trc_reader_nesting, 0);
}
EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special);

/* Add a newly blocked reader task to its CPU's list. */
void rcu_tasks_trace_qs_blkd(struct task_struct *t)
{
	unsigned long flags;
	struct rcu_tasks_percpu *rtpcp;

	local_irq_save(flags);
	rtpcp = this_cpu_ptr(rcu_tasks_trace.rtpcpu);
	raw_spin_lock_rcu_node(rtpcp); // irqs already disabled
	t->trc_blkd_cpu = smp_processor_id();
	if (!rtpcp->rtp_blkd_tasks.next)
		INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks);
	list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks);
	WRITE_ONCE(t->trc_reader_special.b.blocked, true);
	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
}
EXPORT_SYMBOL_GPL(rcu_tasks_trace_qs_blkd);

/* Add a task to the holdout list, if it is not already on the list. */
static void trc_add_holdout(struct task_struct *t, struct list_head *bhp)
{
	if (list_empty(&t->trc_holdout_list)) {
		get_task_struct(t);
		list_add(&t->trc_holdout_list, bhp);
		n_trc_holdouts++;
	}
}

/* Remove a task from the holdout list, if it is in fact present. */
static void trc_del_holdout(struct task_struct *t)
{
	if (!list_empty(&t->trc_holdout_list)) {
		list_del_init(&t->trc_holdout_list);
		put_task_struct(t);
		n_trc_holdouts--;
	}
}

/* IPI handler to check task state. */
static void trc_read_check_handler(void *t_in)
{
	int nesting;
	struct task_struct *t = current;
	struct task_struct *texp = t_in;

	// If the task is no longer running on this CPU, leave.
	if (unlikely(texp != t))
		goto reset_ipi; // Already on holdout list, so will check later.

	// If the task is not in a read-side critical section, and
	// if this is the last reader, awaken the grace-period kthread.
	nesting = READ_ONCE(t->trc_reader_nesting);
	if (likely(!nesting)) {
		rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
		goto reset_ipi;
	}
	// If we are racing with an rcu_read_unlock_trace(), try again later.
	if (unlikely(nesting < 0))
		goto reset_ipi;

	// Get here if the task is in a read-side critical section.
	// Set its state so that it will update state for the grace-period
	// kthread upon exit from that critical section.
	rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED);

reset_ipi:
	// Allow future IPIs to be sent on CPU and for task.
	// Also order this IPI handler against any later manipulations of
	// the intended task.
	smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^
	smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^
}

/* Callback function for scheduler to check locked-down task.  */
static int trc_inspect_reader(struct task_struct *t, void *bhp_in)
{
	struct list_head *bhp = bhp_in;
	int cpu = task_cpu(t);
	int nesting;
	bool ofl = cpu_is_offline(cpu);

	if (task_curr(t) && !ofl) {
		// If no chance of heavyweight readers, do it the hard way.
		if (!IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
			return -EINVAL;

		// If heavyweight readers are enabled on the remote task,
		// we can inspect its state despite its currently running.
		// However, we cannot safely change its state.
		n_heavy_reader_attempts++;
		// Check for "running" idle tasks on offline CPUs.
		if (!rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting))
			return -EINVAL; // No quiescent state, do it the hard way.
		n_heavy_reader_updates++;
		nesting = 0;
	} else {
		// The task is not running, so C-language access is safe.
		nesting = t->trc_reader_nesting;
		WARN_ON_ONCE(ofl && task_curr(t) && (t != idle_task(task_cpu(t))));
		if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && ofl)
			n_heavy_reader_ofl_updates++;
	}

	// If not exiting a read-side critical section, mark as checked
	// so that the grace-period kthread will remove it from the
	// holdout list.
	if (!nesting) {
		rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
		return 0;  // In QS, so done.
	}
	if (nesting < 0)
		return -EINVAL; // Reader transitioning, try again later.

	// The task is in a read-side critical section, so set up its
	// state so that it will update state upon exit from that critical
	// section.
	if (!rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED))
		trc_add_holdout(t, bhp);
	return 0;
}

/* Attempt to extract the state for the specified task. */
static void trc_wait_for_one_reader(struct task_struct *t,
				    struct list_head *bhp)
{
	int cpu;

	// If a previous IPI is still in flight, let it complete.
	if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI
		return;

	// The current task had better be in a quiescent state.
	if (t == current) {
		rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
		WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
		return;
	}

	// Attempt to nail down the task for inspection.
	get_task_struct(t);
	if (!task_call_func(t, trc_inspect_reader, bhp)) {
		put_task_struct(t);
		return;
	}
	put_task_struct(t);

	// If this task is not yet on the holdout list, then we are in
	// an RCU read-side critical section.  Otherwise, the invocation of
	// trc_add_holdout() that added it to the list did the necessary
	// get_task_struct().  Either way, the task cannot be freed out
	// from under this code.

	// If currently running, send an IPI, either way, add to list.
	trc_add_holdout(t, bhp);
	if (task_curr(t) &&
	    time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) {
		// The task is currently running, so try IPIing it.
		cpu = task_cpu(t);

		// If there is already an IPI outstanding, let it happen.
		if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0)
			return;

		per_cpu(trc_ipi_to_cpu, cpu) = true;
		t->trc_ipi_to_cpu = cpu;
		rcu_tasks_trace.n_ipis++;
		if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) {
			// Just in case there is some other reason for
			// failure than the target CPU being offline.
			WARN_ONCE(1, "%s():  smp_call_function_single() failed for CPU: %d\n",
				  __func__, cpu);
			rcu_tasks_trace.n_ipis_fails++;
			per_cpu(trc_ipi_to_cpu, cpu) = false;
			t->trc_ipi_to_cpu = -1;
		}
	}
}

/*
 * Initialize for first-round processing for the specified task.
 * Return false if task is NULL or already taken care of, true otherwise.
 */
static bool rcu_tasks_trace_pertask_prep(struct task_struct *t, bool notself)
{
	// During early boot when there is only the one boot CPU, there
	// is no idle task for the other CPUs.	Also, the grace-period
	// kthread is always in a quiescent state.  In addition, just return
	// if this task is already on the list.
	if (unlikely(t == NULL) || (t == current && notself) || !list_empty(&t->trc_holdout_list))
		return false;

	rcu_st_need_qs(t, 0);
	t->trc_ipi_to_cpu = -1;
	return true;
}

/* Do first-round processing for the specified task. */
static void rcu_tasks_trace_pertask(struct task_struct *t, struct list_head *hop)
{
	if (rcu_tasks_trace_pertask_prep(t, true))
		trc_wait_for_one_reader(t, hop);
}

/* Initialize for a new RCU-tasks-trace grace period. */
static void rcu_tasks_trace_pregp_step(struct list_head *hop)
{
	LIST_HEAD(blkd_tasks);
	int cpu;
	unsigned long flags;
	struct rcu_tasks_percpu *rtpcp;
	struct task_struct *t;

	// There shouldn't be any old IPIs, but...
	for_each_possible_cpu(cpu)
		WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu));

	// Disable CPU hotplug across the CPU scan for the benefit of
	// any IPIs that might be needed.  This also waits for all readers
	// in CPU-hotplug code paths.
	cpus_read_lock();

	// These rcu_tasks_trace_pertask_prep() calls are serialized to
	// allow safe access to the hop list.
	for_each_online_cpu(cpu) {
		rcu_read_lock();
		t = cpu_curr_snapshot(cpu);
		if (rcu_tasks_trace_pertask_prep(t, true))
			trc_add_holdout(t, hop);
		rcu_read_unlock();
		cond_resched_tasks_rcu_qs();
	}

	// Only after all running tasks have been accounted for is it
	// safe to take care of the tasks that have blocked within their
	// current RCU tasks trace read-side critical section.
	for_each_possible_cpu(cpu) {
		rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, cpu);
		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
		list_splice_init(&rtpcp->rtp_blkd_tasks, &blkd_tasks);
		while (!list_empty(&blkd_tasks)) {
			rcu_read_lock();
			t = list_first_entry(&blkd_tasks, struct task_struct, trc_blkd_node);
			list_del_init(&t->trc_blkd_node);
			list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks);
			raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
			rcu_tasks_trace_pertask(t, hop);
			rcu_read_unlock();
			raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
		}
		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
		cond_resched_tasks_rcu_qs();
	}

	// Re-enable CPU hotplug now that the holdout list is populated.
	cpus_read_unlock();
}

/*
 * Do intermediate processing between task and holdout scans.
 */
static void rcu_tasks_trace_postscan(struct list_head *hop)
{
	// Wait for late-stage exiting tasks to finish exiting.
	// These might have passed the call to exit_tasks_rcu_finish().

	// If you remove the following line, update rcu_trace_implies_rcu_gp()!!!
	synchronize_rcu();
	// Any tasks that exit after this point will set
	// TRC_NEED_QS_CHECKED in ->trc_reader_special.b.need_qs.
}

/* Communicate task state back to the RCU tasks trace stall warning request. */
struct trc_stall_chk_rdr {
	int nesting;
	int ipi_to_cpu;
	u8 needqs;
};

static int trc_check_slow_task(struct task_struct *t, void *arg)
{
	struct trc_stall_chk_rdr *trc_rdrp = arg;

	if (task_curr(t) && cpu_online(task_cpu(t)))
		return false; // It is running, so decline to inspect it.
	trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting);
	trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu);
	trc_rdrp->needqs = rcu_ld_need_qs(t);
	return true;
}

/* Show the state of a task stalling the current RCU tasks trace GP. */
static void show_stalled_task_trace(struct task_struct *t, bool *firstreport)
{
	int cpu;
	struct trc_stall_chk_rdr trc_rdr;
	bool is_idle_tsk = is_idle_task(t);

	if (*firstreport) {
		pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n");
		*firstreport = false;
	}
	cpu = task_cpu(t);
	if (!task_call_func(t, trc_check_slow_task, &trc_rdr))
		pr_alert("P%d: %c%c\n",
			 t->pid,
			 ".I"[t->trc_ipi_to_cpu >= 0],
			 ".i"[is_idle_tsk]);
	else
		pr_alert("P%d: %c%c%c%c nesting: %d%c%c cpu: %d%s\n",
			 t->pid,
			 ".I"[trc_rdr.ipi_to_cpu >= 0],
			 ".i"[is_idle_tsk],
			 ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)],
			 ".B"[!!data_race(t->trc_reader_special.b.blocked)],
			 trc_rdr.nesting,
			 " !CN"[trc_rdr.needqs & 0x3],
			 " ?"[trc_rdr.needqs > 0x3],
			 cpu, cpu_online(cpu) ? "" : "(offline)");
	sched_show_task(t);
}

/* List stalled IPIs for RCU tasks trace. */
static void show_stalled_ipi_trace(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		if (per_cpu(trc_ipi_to_cpu, cpu))
			pr_alert("\tIPI outstanding to CPU %d\n", cpu);
}

/* Do one scan of the holdout list. */
static void check_all_holdout_tasks_trace(struct list_head *hop,
					  bool needreport, bool *firstreport)
{
	struct task_struct *g, *t;

	// Disable CPU hotplug across the holdout list scan for IPIs.
	cpus_read_lock();

	list_for_each_entry_safe(t, g, hop, trc_holdout_list) {
		// If safe and needed, try to check the current task.
		if (READ_ONCE(t->trc_ipi_to_cpu) == -1 &&
		    !(rcu_ld_need_qs(t) & TRC_NEED_QS_CHECKED))
			trc_wait_for_one_reader(t, hop);

		// If check succeeded, remove this task from the list.
		if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 &&
		    rcu_ld_need_qs(t) == TRC_NEED_QS_CHECKED)
			trc_del_holdout(t);
		else if (needreport)
			show_stalled_task_trace(t, firstreport);
		cond_resched_tasks_rcu_qs();
	}

	// Re-enable CPU hotplug now that the holdout list scan has completed.
	cpus_read_unlock();

	if (needreport) {
		if (*firstreport)
			pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n");
		show_stalled_ipi_trace();
	}
}

static void rcu_tasks_trace_empty_fn(void *unused)
{
}

/* Wait for grace period to complete and provide ordering. */
static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp)
{
	int cpu;

	// Wait for any lingering IPI handlers to complete.  Note that
	// if a CPU has gone offline or transitioned to userspace in the
	// meantime, all IPI handlers should have been drained beforehand.
	// Yes, this assumes that CPUs process IPIs in order.  If that ever
	// changes, there will need to be a recheck and/or timed wait.
	for_each_online_cpu(cpu)
		if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu))))
			smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1);

	smp_mb(); // Caller's code must be ordered after wakeup.
		  // Pairs with pretty much every ordering primitive.
}

/* Report any needed quiescent state for this exiting task. */
static void exit_tasks_rcu_finish_trace(struct task_struct *t)
{
	union rcu_special trs = READ_ONCE(t->trc_reader_special);

	rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
	WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
	if (WARN_ON_ONCE(rcu_ld_need_qs(t) & TRC_NEED_QS || trs.b.blocked))
		rcu_read_unlock_trace_special(t);
	else
		WRITE_ONCE(t->trc_reader_nesting, 0);
}

/**
 * call_rcu_tasks_trace() - Queue a callback trace task-based grace period
 * @rhp: structure to be used for queueing the RCU updates.
 * @func: actual callback function to be invoked after the grace period
 *
 * The callback function will be invoked some time after a trace rcu-tasks
 * grace period elapses, in other words after all currently executing
 * trace rcu-tasks read-side critical sections have completed. These
 * read-side critical sections are delimited by calls to rcu_read_lock_trace()
 * and rcu_read_unlock_trace().
 *
 * See the description of call_rcu() for more detailed information on
 * memory ordering guarantees.
 */
void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func)
{
	call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace);
}
EXPORT_SYMBOL_GPL(call_rcu_tasks_trace);

/**
 * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period
 *
 * Control will return to the caller some time after a trace rcu-tasks
 * grace period has elapsed, in other words after all currently executing
 * trace rcu-tasks read-side critical sections have elapsed. These read-side
 * critical sections are delimited by calls to rcu_read_lock_trace()
 * and rcu_read_unlock_trace().
 *
 * This is a very specialized primitive, intended only for a few uses in
 * tracing and other situations requiring manipulation of function preambles
 * and profiling hooks.  The synchronize_rcu_tasks_trace() function is not
 * (yet) intended for heavy use from multiple CPUs.
 *
 * See the description of synchronize_rcu() for more detailed information
 * on memory ordering guarantees.
 */
void synchronize_rcu_tasks_trace(void)
{
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section");
	synchronize_rcu_tasks_generic(&rcu_tasks_trace);
}
EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace);

/**
 * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks.
 *
 * Although the current implementation is guaranteed to wait, it is not
 * obligated to, for example, if there are no pending callbacks.
 */
void rcu_barrier_tasks_trace(void)
{
	rcu_barrier_tasks_generic(&rcu_tasks_trace);
}
EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace);

int rcu_tasks_trace_lazy_ms = -1;
module_param(rcu_tasks_trace_lazy_ms, int, 0444);

static int __init rcu_spawn_tasks_trace_kthread(void)
{
	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) {
		rcu_tasks_trace.gp_sleep = HZ / 10;
		rcu_tasks_trace.init_fract = HZ / 10;
	} else {
		rcu_tasks_trace.gp_sleep = HZ / 200;
		if (rcu_tasks_trace.gp_sleep <= 0)
			rcu_tasks_trace.gp_sleep = 1;
		rcu_tasks_trace.init_fract = HZ / 200;
		if (rcu_tasks_trace.init_fract <= 0)
			rcu_tasks_trace.init_fract = 1;
	}
	if (rcu_tasks_trace_lazy_ms >= 0)
		rcu_tasks_trace.lazy_jiffies = msecs_to_jiffies(rcu_tasks_trace_lazy_ms);
	rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step;
	rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan;
	rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace;
	rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp;
	rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace);
	return 0;
}

#if !defined(CONFIG_TINY_RCU)
void show_rcu_tasks_trace_gp_kthread(void)
{
	char buf[64];

	sprintf(buf, "N%lu h:%lu/%lu/%lu",
		data_race(n_trc_holdouts),
		data_race(n_heavy_reader_ofl_updates),
		data_race(n_heavy_reader_updates),
		data_race(n_heavy_reader_attempts));
	show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf);
}
EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread);
#endif // !defined(CONFIG_TINY_RCU)

struct task_struct *get_rcu_tasks_trace_gp_kthread(void)
{
	return rcu_tasks_trace.kthread_ptr;
}
EXPORT_SYMBOL_GPL(get_rcu_tasks_trace_gp_kthread);

#else /* #ifdef CONFIG_TASKS_TRACE_RCU */
static void exit_tasks_rcu_finish_trace(struct task_struct *t) { }
#endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */

#ifndef CONFIG_TINY_RCU
void show_rcu_tasks_gp_kthreads(void)
{
	show_rcu_tasks_classic_gp_kthread();
	show_rcu_tasks_rude_gp_kthread();
	show_rcu_tasks_trace_gp_kthread();
}
#endif /* #ifndef CONFIG_TINY_RCU */

#ifdef CONFIG_PROVE_RCU
struct rcu_tasks_test_desc {
	struct rcu_head rh;
	const char *name;
	bool notrun;
	unsigned long runstart;
};

static struct rcu_tasks_test_desc tests[] = {
	{
		.name = "call_rcu_tasks()",
		/* If not defined, the test is skipped. */
		.notrun = IS_ENABLED(CONFIG_TASKS_RCU),
	},
	{
		.name = "call_rcu_tasks_rude()",
		/* If not defined, the test is skipped. */
		.notrun = IS_ENABLED(CONFIG_TASKS_RUDE_RCU),
	},
	{
		.name = "call_rcu_tasks_trace()",
		/* If not defined, the test is skipped. */
		.notrun = IS_ENABLED(CONFIG_TASKS_TRACE_RCU)
	}
};

static void test_rcu_tasks_callback(struct rcu_head *rhp)
{
	struct rcu_tasks_test_desc *rttd =
		container_of(rhp, struct rcu_tasks_test_desc, rh);

	pr_info("Callback from %s invoked.\n", rttd->name);

	rttd->notrun = false;
}

static void rcu_tasks_initiate_self_tests(void)
{
#ifdef CONFIG_TASKS_RCU
	pr_info("Running RCU Tasks wait API self tests\n");
	tests[0].runstart = jiffies;
	synchronize_rcu_tasks();
	call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback);
#endif

#ifdef CONFIG_TASKS_RUDE_RCU
	pr_info("Running RCU Tasks Rude wait API self tests\n");
	tests[1].runstart = jiffies;
	synchronize_rcu_tasks_rude();
	call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback);
#endif

#ifdef CONFIG_TASKS_TRACE_RCU
	pr_info("Running RCU Tasks Trace wait API self tests\n");
	tests[2].runstart = jiffies;
	synchronize_rcu_tasks_trace();
	call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback);
#endif
}

/*
 * Return:  0 - test passed
 *	    1 - test failed, but have not timed out yet
 *	   -1 - test failed and timed out
 */
static int rcu_tasks_verify_self_tests(void)
{
	int ret = 0;
	int i;
	unsigned long bst = rcu_task_stall_timeout;

	if (bst <= 0 || bst > RCU_TASK_BOOT_STALL_TIMEOUT)
		bst = RCU_TASK_BOOT_STALL_TIMEOUT;
	for (i = 0; i < ARRAY_SIZE(tests); i++) {
		while (tests[i].notrun) {		// still hanging.
			if (time_after(jiffies, tests[i].runstart + bst)) {
				pr_err("%s has failed boot-time tests.\n", tests[i].name);
				ret = -1;
				break;
			}
			ret = 1;
			break;
		}
	}
	WARN_ON(ret < 0);

	return ret;
}

/*
 * Repeat the rcu_tasks_verify_self_tests() call once every second until the
 * test passes or has timed out.
 */
static struct delayed_work rcu_tasks_verify_work;
static void rcu_tasks_verify_work_fn(struct work_struct *work __maybe_unused)
{
	int ret = rcu_tasks_verify_self_tests();

	if (ret <= 0)
		return;

	/* Test fails but not timed out yet, reschedule another check */
	schedule_delayed_work(&rcu_tasks_verify_work, HZ);
}

static int rcu_tasks_verify_schedule_work(void)
{
	INIT_DELAYED_WORK(&rcu_tasks_verify_work, rcu_tasks_verify_work_fn);
	rcu_tasks_verify_work_fn(NULL);
	return 0;
}
late_initcall(rcu_tasks_verify_schedule_work);
#else /* #ifdef CONFIG_PROVE_RCU */
static void rcu_tasks_initiate_self_tests(void) { }
#endif /* #else #ifdef CONFIG_PROVE_RCU */

void __init tasks_cblist_init_generic(void)
{
	lockdep_assert_irqs_disabled();
	WARN_ON(num_online_cpus() > 1);

#ifdef CONFIG_TASKS_RCU
	cblist_init_generic(&rcu_tasks);
#endif

#ifdef CONFIG_TASKS_RUDE_RCU
	cblist_init_generic(&rcu_tasks_rude);
#endif

#ifdef CONFIG_TASKS_TRACE_RCU
	cblist_init_generic(&rcu_tasks_trace);
#endif
}

void __init rcu_init_tasks_generic(void)
{
#ifdef CONFIG_TASKS_RCU
	rcu_spawn_tasks_kthread();
#endif

#ifdef CONFIG_TASKS_RUDE_RCU
	rcu_spawn_tasks_rude_kthread();
#endif

#ifdef CONFIG_TASKS_TRACE_RCU
	rcu_spawn_tasks_trace_kthread();
#endif

	// Run the self-tests.
	rcu_tasks_initiate_self_tests();
}

#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
static inline void rcu_tasks_bootup_oddness(void) {}
#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */