Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 | /* SPDX-License-Identifier: GPL-2.0+ */ /* * Task-based RCU implementations. * * Copyright (C) 2020 Paul E. McKenney */ #ifdef CONFIG_TASKS_RCU_GENERIC #include "rcu_segcblist.h" //////////////////////////////////////////////////////////////////////// // // Generic data structures. struct rcu_tasks; typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp); typedef void (*pregp_func_t)(struct list_head *hop); typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop); typedef void (*postscan_func_t)(struct list_head *hop); typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp); typedef void (*postgp_func_t)(struct rcu_tasks *rtp); /** * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism. * @cblist: Callback list. * @lock: Lock protecting per-CPU callback list. * @rtp_jiffies: Jiffies counter value for statistics. * @lazy_timer: Timer to unlazify callbacks. * @urgent_gp: Number of additional non-lazy grace periods. * @rtp_n_lock_retries: Rough lock-contention statistic. * @rtp_work: Work queue for invoking callbacks. * @rtp_irq_work: IRQ work queue for deferred wakeups. * @barrier_q_head: RCU callback for barrier operation. * @rtp_blkd_tasks: List of tasks blocked as readers. * @rtp_exit_list: List of tasks in the latter portion of do_exit(). * @cpu: CPU number corresponding to this entry. * @rtpp: Pointer to the rcu_tasks structure. */ struct rcu_tasks_percpu { struct rcu_segcblist cblist; raw_spinlock_t __private lock; unsigned long rtp_jiffies; unsigned long rtp_n_lock_retries; struct timer_list lazy_timer; unsigned int urgent_gp; struct work_struct rtp_work; struct irq_work rtp_irq_work; struct rcu_head barrier_q_head; struct list_head rtp_blkd_tasks; struct list_head rtp_exit_list; int cpu; struct rcu_tasks *rtpp; }; /** * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism. * @cbs_wait: RCU wait allowing a new callback to get kthread's attention. * @cbs_gbl_lock: Lock protecting callback list. * @tasks_gp_mutex: Mutex protecting grace period, needed during mid-boot dead zone. * @gp_func: This flavor's grace-period-wait function. * @gp_state: Grace period's most recent state transition (debugging). * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping. * @init_fract: Initial backoff sleep interval. * @gp_jiffies: Time of last @gp_state transition. * @gp_start: Most recent grace-period start in jiffies. * @tasks_gp_seq: Number of grace periods completed since boot. * @n_ipis: Number of IPIs sent to encourage grace periods to end. * @n_ipis_fails: Number of IPI-send failures. * @kthread_ptr: This flavor's grace-period/callback-invocation kthread. * @lazy_jiffies: Number of jiffies to allow callbacks to be lazy. * @pregp_func: This flavor's pre-grace-period function (optional). * @pertask_func: This flavor's per-task scan function (optional). * @postscan_func: This flavor's post-task scan function (optional). * @holdouts_func: This flavor's holdout-list scan function (optional). * @postgp_func: This flavor's post-grace-period function (optional). * @call_func: This flavor's call_rcu()-equivalent function. * @rtpcpu: This flavor's rcu_tasks_percpu structure. * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks. * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing. * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing. * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers. * @barrier_q_mutex: Serialize barrier operations. * @barrier_q_count: Number of queues being waited on. * @barrier_q_completion: Barrier wait/wakeup mechanism. * @barrier_q_seq: Sequence number for barrier operations. * @name: This flavor's textual name. * @kname: This flavor's kthread name. */ struct rcu_tasks { struct rcuwait cbs_wait; raw_spinlock_t cbs_gbl_lock; struct mutex tasks_gp_mutex; int gp_state; int gp_sleep; int init_fract; unsigned long gp_jiffies; unsigned long gp_start; unsigned long tasks_gp_seq; unsigned long n_ipis; unsigned long n_ipis_fails; struct task_struct *kthread_ptr; unsigned long lazy_jiffies; rcu_tasks_gp_func_t gp_func; pregp_func_t pregp_func; pertask_func_t pertask_func; postscan_func_t postscan_func; holdouts_func_t holdouts_func; postgp_func_t postgp_func; call_rcu_func_t call_func; struct rcu_tasks_percpu __percpu *rtpcpu; int percpu_enqueue_shift; int percpu_enqueue_lim; int percpu_dequeue_lim; unsigned long percpu_dequeue_gpseq; struct mutex barrier_q_mutex; atomic_t barrier_q_count; struct completion barrier_q_completion; unsigned long barrier_q_seq; char *name; char *kname; }; static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp); #define DEFINE_RCU_TASKS(rt_name, gp, call, n) \ static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = { \ .lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock), \ .rtp_irq_work = IRQ_WORK_INIT_HARD(call_rcu_tasks_iw_wakeup), \ }; \ static struct rcu_tasks rt_name = \ { \ .cbs_wait = __RCUWAIT_INITIALIZER(rt_name.wait), \ .cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock), \ .tasks_gp_mutex = __MUTEX_INITIALIZER(rt_name.tasks_gp_mutex), \ .gp_func = gp, \ .call_func = call, \ .rtpcpu = &rt_name ## __percpu, \ .lazy_jiffies = DIV_ROUND_UP(HZ, 4), \ .name = n, \ .percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS), \ .percpu_enqueue_lim = 1, \ .percpu_dequeue_lim = 1, \ .barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex), \ .barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT, \ .kname = #rt_name, \ } #ifdef CONFIG_TASKS_RCU /* Report delay in synchronize_srcu() completion in rcu_tasks_postscan(). */ static void tasks_rcu_exit_srcu_stall(struct timer_list *unused); static DEFINE_TIMER(tasks_rcu_exit_srcu_stall_timer, tasks_rcu_exit_srcu_stall); #endif /* Avoid IPIing CPUs early in the grace period. */ #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0) static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY; module_param(rcu_task_ipi_delay, int, 0644); /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ #define RCU_TASK_BOOT_STALL_TIMEOUT (HZ * 30) #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10) static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT; module_param(rcu_task_stall_timeout, int, 0644); #define RCU_TASK_STALL_INFO (HZ * 10) static int rcu_task_stall_info __read_mostly = RCU_TASK_STALL_INFO; module_param(rcu_task_stall_info, int, 0644); static int rcu_task_stall_info_mult __read_mostly = 3; module_param(rcu_task_stall_info_mult, int, 0444); static int rcu_task_enqueue_lim __read_mostly = -1; module_param(rcu_task_enqueue_lim, int, 0444); static bool rcu_task_cb_adjust; static int rcu_task_contend_lim __read_mostly = 100; module_param(rcu_task_contend_lim, int, 0444); static int rcu_task_collapse_lim __read_mostly = 10; module_param(rcu_task_collapse_lim, int, 0444); static int rcu_task_lazy_lim __read_mostly = 32; module_param(rcu_task_lazy_lim, int, 0444); /* RCU tasks grace-period state for debugging. */ #define RTGS_INIT 0 #define RTGS_WAIT_WAIT_CBS 1 #define RTGS_WAIT_GP 2 #define RTGS_PRE_WAIT_GP 3 #define RTGS_SCAN_TASKLIST 4 #define RTGS_POST_SCAN_TASKLIST 5 #define RTGS_WAIT_SCAN_HOLDOUTS 6 #define RTGS_SCAN_HOLDOUTS 7 #define RTGS_POST_GP 8 #define RTGS_WAIT_READERS 9 #define RTGS_INVOKE_CBS 10 #define RTGS_WAIT_CBS 11 #ifndef CONFIG_TINY_RCU static const char * const rcu_tasks_gp_state_names[] = { "RTGS_INIT", "RTGS_WAIT_WAIT_CBS", "RTGS_WAIT_GP", "RTGS_PRE_WAIT_GP", "RTGS_SCAN_TASKLIST", "RTGS_POST_SCAN_TASKLIST", "RTGS_WAIT_SCAN_HOLDOUTS", "RTGS_SCAN_HOLDOUTS", "RTGS_POST_GP", "RTGS_WAIT_READERS", "RTGS_INVOKE_CBS", "RTGS_WAIT_CBS", }; #endif /* #ifndef CONFIG_TINY_RCU */ //////////////////////////////////////////////////////////////////////// // // Generic code. static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp); /* Record grace-period phase and time. */ static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate) { rtp->gp_state = newstate; rtp->gp_jiffies = jiffies; } #ifndef CONFIG_TINY_RCU /* Return state name. */ static const char *tasks_gp_state_getname(struct rcu_tasks *rtp) { int i = data_race(rtp->gp_state); // Let KCSAN detect update races int j = READ_ONCE(i); // Prevent the compiler from reading twice if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names)) return "???"; return rcu_tasks_gp_state_names[j]; } #endif /* #ifndef CONFIG_TINY_RCU */ // Initialize per-CPU callback lists for the specified flavor of // Tasks RCU. Do not enqueue callbacks before this function is invoked. static void cblist_init_generic(struct rcu_tasks *rtp) { int cpu; int lim; int shift; if (rcu_task_enqueue_lim < 0) { rcu_task_enqueue_lim = 1; rcu_task_cb_adjust = true; } else if (rcu_task_enqueue_lim == 0) { rcu_task_enqueue_lim = 1; } lim = rcu_task_enqueue_lim; if (lim > nr_cpu_ids) lim = nr_cpu_ids; shift = ilog2(nr_cpu_ids / lim); if (((nr_cpu_ids - 1) >> shift) >= lim) shift++; WRITE_ONCE(rtp->percpu_enqueue_shift, shift); WRITE_ONCE(rtp->percpu_dequeue_lim, lim); smp_store_release(&rtp->percpu_enqueue_lim, lim); for_each_possible_cpu(cpu) { struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); WARN_ON_ONCE(!rtpcp); if (cpu) raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock)); if (rcu_segcblist_empty(&rtpcp->cblist)) rcu_segcblist_init(&rtpcp->cblist); INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq); rtpcp->cpu = cpu; rtpcp->rtpp = rtp; if (!rtpcp->rtp_blkd_tasks.next) INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks); if (!rtpcp->rtp_exit_list.next) INIT_LIST_HEAD(&rtpcp->rtp_exit_list); } pr_info("%s: Setting shift to %d and lim to %d rcu_task_cb_adjust=%d.\n", rtp->name, data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim), rcu_task_cb_adjust); } // Compute wakeup time for lazy callback timer. static unsigned long rcu_tasks_lazy_time(struct rcu_tasks *rtp) { return jiffies + rtp->lazy_jiffies; } // Timer handler that unlazifies lazy callbacks. static void call_rcu_tasks_generic_timer(struct timer_list *tlp) { unsigned long flags; bool needwake = false; struct rcu_tasks *rtp; struct rcu_tasks_percpu *rtpcp = from_timer(rtpcp, tlp, lazy_timer); rtp = rtpcp->rtpp; raw_spin_lock_irqsave_rcu_node(rtpcp, flags); if (!rcu_segcblist_empty(&rtpcp->cblist) && rtp->lazy_jiffies) { if (!rtpcp->urgent_gp) rtpcp->urgent_gp = 1; needwake = true; mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp)); } raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); if (needwake) rcuwait_wake_up(&rtp->cbs_wait); } // IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic(). static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp) { struct rcu_tasks *rtp; struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work); rtp = rtpcp->rtpp; rcuwait_wake_up(&rtp->cbs_wait); } // Enqueue a callback for the specified flavor of Tasks RCU. static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func, struct rcu_tasks *rtp) { int chosen_cpu; unsigned long flags; bool havekthread = smp_load_acquire(&rtp->kthread_ptr); int ideal_cpu; unsigned long j; bool needadjust = false; bool needwake; struct rcu_tasks_percpu *rtpcp; rhp->next = NULL; rhp->func = func; local_irq_save(flags); rcu_read_lock(); ideal_cpu = smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift); chosen_cpu = cpumask_next(ideal_cpu - 1, cpu_possible_mask); rtpcp = per_cpu_ptr(rtp->rtpcpu, chosen_cpu); if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled. raw_spin_lock_rcu_node(rtpcp); // irqs already disabled. j = jiffies; if (rtpcp->rtp_jiffies != j) { rtpcp->rtp_jiffies = j; rtpcp->rtp_n_lock_retries = 0; } if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim && READ_ONCE(rtp->percpu_enqueue_lim) != nr_cpu_ids) needadjust = true; // Defer adjustment to avoid deadlock. } // Queuing callbacks before initialization not yet supported. if (WARN_ON_ONCE(!rcu_segcblist_is_enabled(&rtpcp->cblist))) rcu_segcblist_init(&rtpcp->cblist); needwake = (func == wakeme_after_rcu) || (rcu_segcblist_n_cbs(&rtpcp->cblist) == rcu_task_lazy_lim); if (havekthread && !needwake && !timer_pending(&rtpcp->lazy_timer)) { if (rtp->lazy_jiffies) mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp)); else needwake = rcu_segcblist_empty(&rtpcp->cblist); } if (needwake) rtpcp->urgent_gp = 3; rcu_segcblist_enqueue(&rtpcp->cblist, rhp); raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); if (unlikely(needadjust)) { raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); if (rtp->percpu_enqueue_lim != nr_cpu_ids) { WRITE_ONCE(rtp->percpu_enqueue_shift, 0); WRITE_ONCE(rtp->percpu_dequeue_lim, nr_cpu_ids); smp_store_release(&rtp->percpu_enqueue_lim, nr_cpu_ids); pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name); } raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); } rcu_read_unlock(); /* We can't create the thread unless interrupts are enabled. */ if (needwake && READ_ONCE(rtp->kthread_ptr)) irq_work_queue(&rtpcp->rtp_irq_work); } // RCU callback function for rcu_barrier_tasks_generic(). static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp) { struct rcu_tasks *rtp; struct rcu_tasks_percpu *rtpcp; rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head); rtp = rtpcp->rtpp; if (atomic_dec_and_test(&rtp->barrier_q_count)) complete(&rtp->barrier_q_completion); } // Wait for all in-flight callbacks for the specified RCU Tasks flavor. // Operates in a manner similar to rcu_barrier(). static void rcu_barrier_tasks_generic(struct rcu_tasks *rtp) { int cpu; unsigned long flags; struct rcu_tasks_percpu *rtpcp; unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq); mutex_lock(&rtp->barrier_q_mutex); if (rcu_seq_done(&rtp->barrier_q_seq, s)) { smp_mb(); mutex_unlock(&rtp->barrier_q_mutex); return; } rcu_seq_start(&rtp->barrier_q_seq); init_completion(&rtp->barrier_q_completion); atomic_set(&rtp->barrier_q_count, 2); for_each_possible_cpu(cpu) { if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim)) break; rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb; raw_spin_lock_irqsave_rcu_node(rtpcp, flags); if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head)) atomic_inc(&rtp->barrier_q_count); raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); } if (atomic_sub_and_test(2, &rtp->barrier_q_count)) complete(&rtp->barrier_q_completion); wait_for_completion(&rtp->barrier_q_completion); rcu_seq_end(&rtp->barrier_q_seq); mutex_unlock(&rtp->barrier_q_mutex); } // Advance callbacks and indicate whether either a grace period or // callback invocation is needed. static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp) { int cpu; int dequeue_limit; unsigned long flags; bool gpdone = poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq); long n; long ncbs = 0; long ncbsnz = 0; int needgpcb = 0; dequeue_limit = smp_load_acquire(&rtp->percpu_dequeue_lim); for (cpu = 0; cpu < dequeue_limit; cpu++) { struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); /* Advance and accelerate any new callbacks. */ if (!rcu_segcblist_n_cbs(&rtpcp->cblist)) continue; raw_spin_lock_irqsave_rcu_node(rtpcp, flags); // Should we shrink down to a single callback queue? n = rcu_segcblist_n_cbs(&rtpcp->cblist); if (n) { ncbs += n; if (cpu > 0) ncbsnz += n; } rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq)); (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq)); if (rtpcp->urgent_gp > 0 && rcu_segcblist_pend_cbs(&rtpcp->cblist)) { if (rtp->lazy_jiffies) rtpcp->urgent_gp--; needgpcb |= 0x3; } else if (rcu_segcblist_empty(&rtpcp->cblist)) { rtpcp->urgent_gp = 0; } if (rcu_segcblist_ready_cbs(&rtpcp->cblist)) needgpcb |= 0x1; raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); } // Shrink down to a single callback queue if appropriate. // This is done in two stages: (1) If there are no more than // rcu_task_collapse_lim callbacks on CPU 0 and none on any other // CPU, limit enqueueing to CPU 0. (2) After an RCU grace period, // if there has not been an increase in callbacks, limit dequeuing // to CPU 0. Note the matching RCU read-side critical section in // call_rcu_tasks_generic(). if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) { raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); if (rtp->percpu_enqueue_lim > 1) { WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(nr_cpu_ids)); smp_store_release(&rtp->percpu_enqueue_lim, 1); rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu(); gpdone = false; pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name); } raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); } if (rcu_task_cb_adjust && !ncbsnz && gpdone) { raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) { WRITE_ONCE(rtp->percpu_dequeue_lim, 1); pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name); } if (rtp->percpu_dequeue_lim == 1) { for (cpu = rtp->percpu_dequeue_lim; cpu < nr_cpu_ids; cpu++) { struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); WARN_ON_ONCE(rcu_segcblist_n_cbs(&rtpcp->cblist)); } } raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); } return needgpcb; } // Advance callbacks and invoke any that are ready. static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp) { int cpu; int cpunext; int cpuwq; unsigned long flags; int len; struct rcu_head *rhp; struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); struct rcu_tasks_percpu *rtpcp_next; cpu = rtpcp->cpu; cpunext = cpu * 2 + 1; if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) { rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext); cpuwq = rcu_cpu_beenfullyonline(cpunext) ? cpunext : WORK_CPU_UNBOUND; queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work); cpunext++; if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) { rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext); cpuwq = rcu_cpu_beenfullyonline(cpunext) ? cpunext : WORK_CPU_UNBOUND; queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work); } } if (rcu_segcblist_empty(&rtpcp->cblist) || !cpu_possible(cpu)) return; raw_spin_lock_irqsave_rcu_node(rtpcp, flags); rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq)); rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl); raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); len = rcl.len; for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) { debug_rcu_head_callback(rhp); local_bh_disable(); rhp->func(rhp); local_bh_enable(); cond_resched(); } raw_spin_lock_irqsave_rcu_node(rtpcp, flags); rcu_segcblist_add_len(&rtpcp->cblist, -len); (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq)); raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); } // Workqueue flood to advance callbacks and invoke any that are ready. static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp) { struct rcu_tasks *rtp; struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work); rtp = rtpcp->rtpp; rcu_tasks_invoke_cbs(rtp, rtpcp); } // Wait for one grace period. static void rcu_tasks_one_gp(struct rcu_tasks *rtp, bool midboot) { int needgpcb; mutex_lock(&rtp->tasks_gp_mutex); // If there were none, wait a bit and start over. if (unlikely(midboot)) { needgpcb = 0x2; } else { mutex_unlock(&rtp->tasks_gp_mutex); set_tasks_gp_state(rtp, RTGS_WAIT_CBS); rcuwait_wait_event(&rtp->cbs_wait, (needgpcb = rcu_tasks_need_gpcb(rtp)), TASK_IDLE); mutex_lock(&rtp->tasks_gp_mutex); } if (needgpcb & 0x2) { // Wait for one grace period. set_tasks_gp_state(rtp, RTGS_WAIT_GP); rtp->gp_start = jiffies; rcu_seq_start(&rtp->tasks_gp_seq); rtp->gp_func(rtp); rcu_seq_end(&rtp->tasks_gp_seq); } // Invoke callbacks. set_tasks_gp_state(rtp, RTGS_INVOKE_CBS); rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0)); mutex_unlock(&rtp->tasks_gp_mutex); } // RCU-tasks kthread that detects grace periods and invokes callbacks. static int __noreturn rcu_tasks_kthread(void *arg) { int cpu; struct rcu_tasks *rtp = arg; for_each_possible_cpu(cpu) { struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); timer_setup(&rtpcp->lazy_timer, call_rcu_tasks_generic_timer, 0); rtpcp->urgent_gp = 1; } /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ housekeeping_affine(current, HK_TYPE_RCU); smp_store_release(&rtp->kthread_ptr, current); // Let GPs start! /* * Each pass through the following loop makes one check for * newly arrived callbacks, and, if there are some, waits for * one RCU-tasks grace period and then invokes the callbacks. * This loop is terminated by the system going down. ;-) */ for (;;) { // Wait for one grace period and invoke any callbacks // that are ready. rcu_tasks_one_gp(rtp, false); // Paranoid sleep to keep this from entering a tight loop. schedule_timeout_idle(rtp->gp_sleep); } } // Wait for a grace period for the specified flavor of Tasks RCU. static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp) { /* Complain if the scheduler has not started. */ if (WARN_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, "synchronize_%s() called too soon", rtp->name)) return; // If the grace-period kthread is running, use it. if (READ_ONCE(rtp->kthread_ptr)) { wait_rcu_gp(rtp->call_func); return; } rcu_tasks_one_gp(rtp, true); } /* Spawn RCU-tasks grace-period kthread. */ static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp) { struct task_struct *t; t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname); if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name)) return; smp_mb(); /* Ensure others see full kthread. */ } #ifndef CONFIG_TINY_RCU /* * Print any non-default Tasks RCU settings. */ static void __init rcu_tasks_bootup_oddness(void) { #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) int rtsimc; if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT) pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout); rtsimc = clamp(rcu_task_stall_info_mult, 1, 10); if (rtsimc != rcu_task_stall_info_mult) { pr_info("\tTasks-RCU CPU stall info multiplier clamped to %d (rcu_task_stall_info_mult).\n", rtsimc); rcu_task_stall_info_mult = rtsimc; } #endif /* #ifdef CONFIG_TASKS_RCU */ #ifdef CONFIG_TASKS_RCU pr_info("\tTrampoline variant of Tasks RCU enabled.\n"); #endif /* #ifdef CONFIG_TASKS_RCU */ #ifdef CONFIG_TASKS_RUDE_RCU pr_info("\tRude variant of Tasks RCU enabled.\n"); #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ #ifdef CONFIG_TASKS_TRACE_RCU pr_info("\tTracing variant of Tasks RCU enabled.\n"); #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ } #endif /* #ifndef CONFIG_TINY_RCU */ #ifndef CONFIG_TINY_RCU /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */ static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s) { int cpu; bool havecbs = false; bool haveurgent = false; bool haveurgentcbs = false; for_each_possible_cpu(cpu) { struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); if (!data_race(rcu_segcblist_empty(&rtpcp->cblist))) havecbs = true; if (data_race(rtpcp->urgent_gp)) haveurgent = true; if (!data_race(rcu_segcblist_empty(&rtpcp->cblist)) && data_race(rtpcp->urgent_gp)) haveurgentcbs = true; if (havecbs && haveurgent && haveurgentcbs) break; } pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c%c%c l:%lu %s\n", rtp->kname, tasks_gp_state_getname(rtp), data_race(rtp->gp_state), jiffies - data_race(rtp->gp_jiffies), data_race(rcu_seq_current(&rtp->tasks_gp_seq)), data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis), ".k"[!!data_race(rtp->kthread_ptr)], ".C"[havecbs], ".u"[haveurgent], ".U"[haveurgentcbs], rtp->lazy_jiffies, s); } #endif // #ifndef CONFIG_TINY_RCU static void exit_tasks_rcu_finish_trace(struct task_struct *t); #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) //////////////////////////////////////////////////////////////////////// // // Shared code between task-list-scanning variants of Tasks RCU. /* Wait for one RCU-tasks grace period. */ static void rcu_tasks_wait_gp(struct rcu_tasks *rtp) { struct task_struct *g; int fract; LIST_HEAD(holdouts); unsigned long j; unsigned long lastinfo; unsigned long lastreport; bool reported = false; int rtsi; struct task_struct *t; set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP); rtp->pregp_func(&holdouts); /* * There were callbacks, so we need to wait for an RCU-tasks * grace period. Start off by scanning the task list for tasks * that are not already voluntarily blocked. Mark these tasks * and make a list of them in holdouts. */ set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST); if (rtp->pertask_func) { rcu_read_lock(); for_each_process_thread(g, t) rtp->pertask_func(t, &holdouts); rcu_read_unlock(); } set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST); rtp->postscan_func(&holdouts); /* * Each pass through the following loop scans the list of holdout * tasks, removing any that are no longer holdouts. When the list * is empty, we are done. */ lastreport = jiffies; lastinfo = lastreport; rtsi = READ_ONCE(rcu_task_stall_info); // Start off with initial wait and slowly back off to 1 HZ wait. fract = rtp->init_fract; while (!list_empty(&holdouts)) { ktime_t exp; bool firstreport; bool needreport; int rtst; // Slowly back off waiting for holdouts set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS); if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { schedule_timeout_idle(fract); } else { exp = jiffies_to_nsecs(fract); __set_current_state(TASK_IDLE); schedule_hrtimeout_range(&exp, jiffies_to_nsecs(HZ / 2), HRTIMER_MODE_REL_HARD); } if (fract < HZ) fract++; rtst = READ_ONCE(rcu_task_stall_timeout); needreport = rtst > 0 && time_after(jiffies, lastreport + rtst); if (needreport) { lastreport = jiffies; reported = true; } firstreport = true; WARN_ON(signal_pending(current)); set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS); rtp->holdouts_func(&holdouts, needreport, &firstreport); // Print pre-stall informational messages if needed. j = jiffies; if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) { lastinfo = j; rtsi = rtsi * rcu_task_stall_info_mult; pr_info("%s: %s grace period number %lu (since boot) is %lu jiffies old.\n", __func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start); } } set_tasks_gp_state(rtp, RTGS_POST_GP); rtp->postgp_func(rtp); } #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */ #ifdef CONFIG_TASKS_RCU //////////////////////////////////////////////////////////////////////// // // Simple variant of RCU whose quiescent states are voluntary context // switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle. // As such, grace periods can take one good long time. There are no // read-side primitives similar to rcu_read_lock() and rcu_read_unlock() // because this implementation is intended to get the system into a safe // state for some of the manipulations involved in tracing and the like. // Finally, this implementation does not support high call_rcu_tasks() // rates from multiple CPUs. If this is required, per-CPU callback lists // will be needed. // // The implementation uses rcu_tasks_wait_gp(), which relies on function // pointers in the rcu_tasks structure. The rcu_spawn_tasks_kthread() // function sets these function pointers up so that rcu_tasks_wait_gp() // invokes these functions in this order: // // rcu_tasks_pregp_step(): // Invokes synchronize_rcu() in order to wait for all in-flight // t->on_rq and t->nvcsw transitions to complete. This works because // all such transitions are carried out with interrupts disabled. // rcu_tasks_pertask(), invoked on every non-idle task: // For every runnable non-idle task other than the current one, use // get_task_struct() to pin down that task, snapshot that task's // number of voluntary context switches, and add that task to the // holdout list. // rcu_tasks_postscan(): // Gather per-CPU lists of tasks in do_exit() to ensure that all // tasks that were in the process of exiting (and which thus might // not know to synchronize with this RCU Tasks grace period) have // completed exiting. The synchronize_rcu() in rcu_tasks_postgp() // will take care of any tasks stuck in the non-preemptible region // of do_exit() following its call to exit_tasks_rcu_stop(). // check_all_holdout_tasks(), repeatedly until holdout list is empty: // Scans the holdout list, attempting to identify a quiescent state // for each task on the list. If there is a quiescent state, the // corresponding task is removed from the holdout list. // rcu_tasks_postgp(): // Invokes synchronize_rcu() in order to ensure that all prior // t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks // to have happened before the end of this RCU Tasks grace period. // Again, this works because all such transitions are carried out // with interrupts disabled. // // For each exiting task, the exit_tasks_rcu_start() and // exit_tasks_rcu_finish() functions add and remove, respectively, the // current task to a per-CPU list of tasks that rcu_tasks_postscan() must // wait on. This is necessary because rcu_tasks_postscan() must wait on // tasks that have already been removed from the global list of tasks. // // Pre-grace-period update-side code is ordered before the grace // via the raw_spin_lock.*rcu_node(). Pre-grace-period read-side code // is ordered before the grace period via synchronize_rcu() call in // rcu_tasks_pregp_step() and by the scheduler's locks and interrupt // disabling. /* Pre-grace-period preparation. */ static void rcu_tasks_pregp_step(struct list_head *hop) { /* * Wait for all pre-existing t->on_rq and t->nvcsw transitions * to complete. Invoking synchronize_rcu() suffices because all * these transitions occur with interrupts disabled. Without this * synchronize_rcu(), a read-side critical section that started * before the grace period might be incorrectly seen as having * started after the grace period. * * This synchronize_rcu() also dispenses with the need for a * memory barrier on the first store to t->rcu_tasks_holdout, * as it forces the store to happen after the beginning of the * grace period. */ synchronize_rcu(); } /* Check for quiescent states since the pregp's synchronize_rcu() */ static bool rcu_tasks_is_holdout(struct task_struct *t) { int cpu; /* Has the task been seen voluntarily sleeping? */ if (!READ_ONCE(t->on_rq)) return false; /* * Idle tasks (or idle injection) within the idle loop are RCU-tasks * quiescent states. But CPU boot code performed by the idle task * isn't a quiescent state. */ if (is_idle_task(t)) return false; cpu = task_cpu(t); /* Idle tasks on offline CPUs are RCU-tasks quiescent states. */ if (t == idle_task(cpu) && !rcu_cpu_online(cpu)) return false; return true; } /* Per-task initial processing. */ static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop) { if (t != current && rcu_tasks_is_holdout(t)) { get_task_struct(t); t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); WRITE_ONCE(t->rcu_tasks_holdout, true); list_add(&t->rcu_tasks_holdout_list, hop); } } void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func); DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks"); /* Processing between scanning taskslist and draining the holdout list. */ static void rcu_tasks_postscan(struct list_head *hop) { int cpu; int rtsi = READ_ONCE(rcu_task_stall_info); if (!IS_ENABLED(CONFIG_TINY_RCU)) { tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi; add_timer(&tasks_rcu_exit_srcu_stall_timer); } /* * Exiting tasks may escape the tasklist scan. Those are vulnerable * until their final schedule() with TASK_DEAD state. To cope with * this, divide the fragile exit path part in two intersecting * read side critical sections: * * 1) A task_struct list addition before calling exit_notify(), * which may remove the task from the tasklist, with the * removal after the final preempt_disable() call in do_exit(). * * 2) An _RCU_ read side starting with the final preempt_disable() * call in do_exit() and ending with the final call to schedule() * with TASK_DEAD state. * * This handles the part 1). And postgp will handle part 2) with a * call to synchronize_rcu(). */ for_each_possible_cpu(cpu) { unsigned long j = jiffies + 1; struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rcu_tasks.rtpcpu, cpu); struct task_struct *t; struct task_struct *t1; struct list_head tmp; raw_spin_lock_irq_rcu_node(rtpcp); list_for_each_entry_safe(t, t1, &rtpcp->rtp_exit_list, rcu_tasks_exit_list) { if (list_empty(&t->rcu_tasks_holdout_list)) rcu_tasks_pertask(t, hop); // RT kernels need frequent pauses, otherwise // pause at least once per pair of jiffies. if (!IS_ENABLED(CONFIG_PREEMPT_RT) && time_before(jiffies, j)) continue; // Keep our place in the list while pausing. // Nothing else traverses this list, so adding a // bare list_head is OK. list_add(&tmp, &t->rcu_tasks_exit_list); raw_spin_unlock_irq_rcu_node(rtpcp); cond_resched(); // For CONFIG_PREEMPT=n kernels raw_spin_lock_irq_rcu_node(rtpcp); t1 = list_entry(tmp.next, struct task_struct, rcu_tasks_exit_list); list_del(&tmp); j = jiffies + 1; } raw_spin_unlock_irq_rcu_node(rtpcp); } if (!IS_ENABLED(CONFIG_TINY_RCU)) del_timer_sync(&tasks_rcu_exit_srcu_stall_timer); } /* See if tasks are still holding out, complain if so. */ static void check_holdout_task(struct task_struct *t, bool needreport, bool *firstreport) { int cpu; if (!READ_ONCE(t->rcu_tasks_holdout) || t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || !rcu_tasks_is_holdout(t) || (IS_ENABLED(CONFIG_NO_HZ_FULL) && !is_idle_task(t) && READ_ONCE(t->rcu_tasks_idle_cpu) >= 0)) { WRITE_ONCE(t->rcu_tasks_holdout, false); list_del_init(&t->rcu_tasks_holdout_list); put_task_struct(t); return; } rcu_request_urgent_qs_task(t); if (!needreport) return; if (*firstreport) { pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); *firstreport = false; } cpu = task_cpu(t); pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", t, ".I"[is_idle_task(t)], "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, data_race(t->rcu_tasks_idle_cpu), cpu); sched_show_task(t); } /* Scan the holdout lists for tasks no longer holding out. */ static void check_all_holdout_tasks(struct list_head *hop, bool needreport, bool *firstreport) { struct task_struct *t, *t1; list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) { check_holdout_task(t, needreport, firstreport); cond_resched(); } } /* Finish off the Tasks-RCU grace period. */ static void rcu_tasks_postgp(struct rcu_tasks *rtp) { /* * Because ->on_rq and ->nvcsw are not guaranteed to have a full * memory barriers prior to them in the schedule() path, memory * reordering on other CPUs could cause their RCU-tasks read-side * critical sections to extend past the end of the grace period. * However, because these ->nvcsw updates are carried out with * interrupts disabled, we can use synchronize_rcu() to force the * needed ordering on all such CPUs. * * This synchronize_rcu() also confines all ->rcu_tasks_holdout * accesses to be within the grace period, avoiding the need for * memory barriers for ->rcu_tasks_holdout accesses. * * In addition, this synchronize_rcu() waits for exiting tasks * to complete their final preempt_disable() region of execution, * enforcing the whole region before tasklist removal until * the final schedule() with TASK_DEAD state to be an RCU TASKS * read side critical section. */ synchronize_rcu(); } static void tasks_rcu_exit_srcu_stall(struct timer_list *unused) { #ifndef CONFIG_TINY_RCU int rtsi; rtsi = READ_ONCE(rcu_task_stall_info); pr_info("%s: %s grace period number %lu (since boot) gp_state: %s is %lu jiffies old.\n", __func__, rcu_tasks.kname, rcu_tasks.tasks_gp_seq, tasks_gp_state_getname(&rcu_tasks), jiffies - rcu_tasks.gp_jiffies); pr_info("Please check any exiting tasks stuck between calls to exit_tasks_rcu_start() and exit_tasks_rcu_finish()\n"); tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi; add_timer(&tasks_rcu_exit_srcu_stall_timer); #endif // #ifndef CONFIG_TINY_RCU } /** * call_rcu_tasks() - Queue an RCU for invocation task-based grace period * @rhp: structure to be used for queueing the RCU updates. * @func: actual callback function to be invoked after the grace period * * The callback function will be invoked some time after a full grace * period elapses, in other words after all currently executing RCU * read-side critical sections have completed. call_rcu_tasks() assumes * that the read-side critical sections end at a voluntary context * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle, * or transition to usermode execution. As such, there are no read-side * primitives analogous to rcu_read_lock() and rcu_read_unlock() because * this primitive is intended to determine that all tasks have passed * through a safe state, not so much for data-structure synchronization. * * See the description of call_rcu() for more detailed information on * memory ordering guarantees. */ void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) { call_rcu_tasks_generic(rhp, func, &rcu_tasks); } EXPORT_SYMBOL_GPL(call_rcu_tasks); /** * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. * * Control will return to the caller some time after a full rcu-tasks * grace period has elapsed, in other words after all currently * executing rcu-tasks read-side critical sections have elapsed. These * read-side critical sections are delimited by calls to schedule(), * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). * * This is a very specialized primitive, intended only for a few uses in * tracing and other situations requiring manipulation of function * preambles and profiling hooks. The synchronize_rcu_tasks() function * is not (yet) intended for heavy use from multiple CPUs. * * See the description of synchronize_rcu() for more detailed information * on memory ordering guarantees. */ void synchronize_rcu_tasks(void) { synchronize_rcu_tasks_generic(&rcu_tasks); } EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); /** * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. * * Although the current implementation is guaranteed to wait, it is not * obligated to, for example, if there are no pending callbacks. */ void rcu_barrier_tasks(void) { rcu_barrier_tasks_generic(&rcu_tasks); } EXPORT_SYMBOL_GPL(rcu_barrier_tasks); static int rcu_tasks_lazy_ms = -1; module_param(rcu_tasks_lazy_ms, int, 0444); static int __init rcu_spawn_tasks_kthread(void) { rcu_tasks.gp_sleep = HZ / 10; rcu_tasks.init_fract = HZ / 10; if (rcu_tasks_lazy_ms >= 0) rcu_tasks.lazy_jiffies = msecs_to_jiffies(rcu_tasks_lazy_ms); rcu_tasks.pregp_func = rcu_tasks_pregp_step; rcu_tasks.pertask_func = rcu_tasks_pertask; rcu_tasks.postscan_func = rcu_tasks_postscan; rcu_tasks.holdouts_func = check_all_holdout_tasks; rcu_tasks.postgp_func = rcu_tasks_postgp; rcu_spawn_tasks_kthread_generic(&rcu_tasks); return 0; } #if !defined(CONFIG_TINY_RCU) void show_rcu_tasks_classic_gp_kthread(void) { show_rcu_tasks_generic_gp_kthread(&rcu_tasks, ""); } EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread); #endif // !defined(CONFIG_TINY_RCU) struct task_struct *get_rcu_tasks_gp_kthread(void) { return rcu_tasks.kthread_ptr; } EXPORT_SYMBOL_GPL(get_rcu_tasks_gp_kthread); /* * Protect against tasklist scan blind spot while the task is exiting and * may be removed from the tasklist. Do this by adding the task to yet * another list. * * Note that the task will remove itself from this list, so there is no * need for get_task_struct(), except in the case where rcu_tasks_pertask() * adds it to the holdout list, in which case rcu_tasks_pertask() supplies * the needed get_task_struct(). */ void exit_tasks_rcu_start(void) { unsigned long flags; struct rcu_tasks_percpu *rtpcp; struct task_struct *t = current; WARN_ON_ONCE(!list_empty(&t->rcu_tasks_exit_list)); preempt_disable(); rtpcp = this_cpu_ptr(rcu_tasks.rtpcpu); t->rcu_tasks_exit_cpu = smp_processor_id(); raw_spin_lock_irqsave_rcu_node(rtpcp, flags); if (!rtpcp->rtp_exit_list.next) INIT_LIST_HEAD(&rtpcp->rtp_exit_list); list_add(&t->rcu_tasks_exit_list, &rtpcp->rtp_exit_list); raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); preempt_enable(); } /* * Remove the task from the "yet another list" because do_exit() is now * non-preemptible, allowing synchronize_rcu() to wait beyond this point. */ void exit_tasks_rcu_stop(void) { unsigned long flags; struct rcu_tasks_percpu *rtpcp; struct task_struct *t = current; WARN_ON_ONCE(list_empty(&t->rcu_tasks_exit_list)); rtpcp = per_cpu_ptr(rcu_tasks.rtpcpu, t->rcu_tasks_exit_cpu); raw_spin_lock_irqsave_rcu_node(rtpcp, flags); list_del_init(&t->rcu_tasks_exit_list); raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); } /* * Contribute to protect against tasklist scan blind spot while the * task is exiting and may be removed from the tasklist. See * corresponding synchronize_srcu() for further details. */ void exit_tasks_rcu_finish(void) { exit_tasks_rcu_stop(); exit_tasks_rcu_finish_trace(current); } #else /* #ifdef CONFIG_TASKS_RCU */ void exit_tasks_rcu_start(void) { } void exit_tasks_rcu_stop(void) { } void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); } #endif /* #else #ifdef CONFIG_TASKS_RCU */ #ifdef CONFIG_TASKS_RUDE_RCU //////////////////////////////////////////////////////////////////////// // // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of // passing an empty function to schedule_on_each_cpu(). This approach // provides an asynchronous call_rcu_tasks_rude() API and batching of // concurrent calls to the synchronous synchronize_rcu_tasks_rude() API. // This invokes schedule_on_each_cpu() in order to send IPIs far and wide // and induces otherwise unnecessary context switches on all online CPUs, // whether idle or not. // // Callback handling is provided by the rcu_tasks_kthread() function. // // Ordering is provided by the scheduler's context-switch code. // Empty function to allow workqueues to force a context switch. static void rcu_tasks_be_rude(struct work_struct *work) { } // Wait for one rude RCU-tasks grace period. static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp) { rtp->n_ipis += cpumask_weight(cpu_online_mask); schedule_on_each_cpu(rcu_tasks_be_rude); } void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func); DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude, "RCU Tasks Rude"); /** * call_rcu_tasks_rude() - Queue a callback rude task-based grace period * @rhp: structure to be used for queueing the RCU updates. * @func: actual callback function to be invoked after the grace period * * The callback function will be invoked some time after a full grace * period elapses, in other words after all currently executing RCU * read-side critical sections have completed. call_rcu_tasks_rude() * assumes that the read-side critical sections end at context switch, * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as * usermode execution is schedulable). As such, there are no read-side * primitives analogous to rcu_read_lock() and rcu_read_unlock() because * this primitive is intended to determine that all tasks have passed * through a safe state, not so much for data-structure synchronization. * * See the description of call_rcu() for more detailed information on * memory ordering guarantees. */ void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func) { call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude); } EXPORT_SYMBOL_GPL(call_rcu_tasks_rude); /** * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period * * Control will return to the caller some time after a rude rcu-tasks * grace period has elapsed, in other words after all currently * executing rcu-tasks read-side critical sections have elapsed. These * read-side critical sections are delimited by calls to schedule(), * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable * context), and (in theory, anyway) cond_resched(). * * This is a very specialized primitive, intended only for a few uses in * tracing and other situations requiring manipulation of function preambles * and profiling hooks. The synchronize_rcu_tasks_rude() function is not * (yet) intended for heavy use from multiple CPUs. * * See the description of synchronize_rcu() for more detailed information * on memory ordering guarantees. */ void synchronize_rcu_tasks_rude(void) { synchronize_rcu_tasks_generic(&rcu_tasks_rude); } EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude); /** * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks. * * Although the current implementation is guaranteed to wait, it is not * obligated to, for example, if there are no pending callbacks. */ void rcu_barrier_tasks_rude(void) { rcu_barrier_tasks_generic(&rcu_tasks_rude); } EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude); int rcu_tasks_rude_lazy_ms = -1; module_param(rcu_tasks_rude_lazy_ms, int, 0444); static int __init rcu_spawn_tasks_rude_kthread(void) { rcu_tasks_rude.gp_sleep = HZ / 10; if (rcu_tasks_rude_lazy_ms >= 0) rcu_tasks_rude.lazy_jiffies = msecs_to_jiffies(rcu_tasks_rude_lazy_ms); rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude); return 0; } #if !defined(CONFIG_TINY_RCU) void show_rcu_tasks_rude_gp_kthread(void) { show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, ""); } EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread); #endif // !defined(CONFIG_TINY_RCU) struct task_struct *get_rcu_tasks_rude_gp_kthread(void) { return rcu_tasks_rude.kthread_ptr; } EXPORT_SYMBOL_GPL(get_rcu_tasks_rude_gp_kthread); #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ //////////////////////////////////////////////////////////////////////// // // Tracing variant of Tasks RCU. This variant is designed to be used // to protect tracing hooks, including those of BPF. This variant // therefore: // // 1. Has explicit read-side markers to allow finite grace periods // in the face of in-kernel loops for PREEMPT=n builds. // // 2. Protects code in the idle loop, exception entry/exit, and // CPU-hotplug code paths, similar to the capabilities of SRCU. // // 3. Avoids expensive read-side instructions, having overhead similar // to that of Preemptible RCU. // // There are of course downsides. For example, the grace-period code // can send IPIs to CPUs, even when those CPUs are in the idle loop or // in nohz_full userspace. If needed, these downsides can be at least // partially remedied. // // Perhaps most important, this variant of RCU does not affect the vanilla // flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace // readers can operate from idle, offline, and exception entry/exit in no // way allows rcu_preempt and rcu_sched readers to also do so. // // The implementation uses rcu_tasks_wait_gp(), which relies on function // pointers in the rcu_tasks structure. The rcu_spawn_tasks_trace_kthread() // function sets these function pointers up so that rcu_tasks_wait_gp() // invokes these functions in this order: // // rcu_tasks_trace_pregp_step(): // Disables CPU hotplug, adds all currently executing tasks to the // holdout list, then checks the state of all tasks that blocked // or were preempted within their current RCU Tasks Trace read-side // critical section, adding them to the holdout list if appropriate. // Finally, this function re-enables CPU hotplug. // The ->pertask_func() pointer is NULL, so there is no per-task processing. // rcu_tasks_trace_postscan(): // Invokes synchronize_rcu() to wait for late-stage exiting tasks // to finish exiting. // check_all_holdout_tasks_trace(), repeatedly until holdout list is empty: // Scans the holdout list, attempting to identify a quiescent state // for each task on the list. If there is a quiescent state, the // corresponding task is removed from the holdout list. Once this // list is empty, the grace period has completed. // rcu_tasks_trace_postgp(): // Provides the needed full memory barrier and does debug checks. // // The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks. // // Pre-grace-period update-side code is ordered before the grace period // via the ->cbs_lock and barriers in rcu_tasks_kthread(). Pre-grace-period // read-side code is ordered before the grace period by atomic operations // on .b.need_qs flag of each task involved in this process, or by scheduler // context-switch ordering (for locked-down non-running readers). // The lockdep state must be outside of #ifdef to be useful. #ifdef CONFIG_DEBUG_LOCK_ALLOC static struct lock_class_key rcu_lock_trace_key; struct lockdep_map rcu_trace_lock_map = STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key); EXPORT_SYMBOL_GPL(rcu_trace_lock_map); #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ #ifdef CONFIG_TASKS_TRACE_RCU // Record outstanding IPIs to each CPU. No point in sending two... static DEFINE_PER_CPU(bool, trc_ipi_to_cpu); // The number of detections of task quiescent state relying on // heavyweight readers executing explicit memory barriers. static unsigned long n_heavy_reader_attempts; static unsigned long n_heavy_reader_updates; static unsigned long n_heavy_reader_ofl_updates; static unsigned long n_trc_holdouts; void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func); DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace, "RCU Tasks Trace"); /* Load from ->trc_reader_special.b.need_qs with proper ordering. */ static u8 rcu_ld_need_qs(struct task_struct *t) { smp_mb(); // Enforce full grace-period ordering. return smp_load_acquire(&t->trc_reader_special.b.need_qs); } /* Store to ->trc_reader_special.b.need_qs with proper ordering. */ static void rcu_st_need_qs(struct task_struct *t, u8 v) { smp_store_release(&t->trc_reader_special.b.need_qs, v); smp_mb(); // Enforce full grace-period ordering. } /* * Do a cmpxchg() on ->trc_reader_special.b.need_qs, allowing for * the four-byte operand-size restriction of some platforms. * Returns the old value, which is often ignored. */ u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new) { union rcu_special ret; union rcu_special trs_old = READ_ONCE(t->trc_reader_special); union rcu_special trs_new = trs_old; if (trs_old.b.need_qs != old) return trs_old.b.need_qs; trs_new.b.need_qs = new; ret.s = cmpxchg(&t->trc_reader_special.s, trs_old.s, trs_new.s); return ret.b.need_qs; } EXPORT_SYMBOL_GPL(rcu_trc_cmpxchg_need_qs); /* * If we are the last reader, signal the grace-period kthread. * Also remove from the per-CPU list of blocked tasks. */ void rcu_read_unlock_trace_special(struct task_struct *t) { unsigned long flags; struct rcu_tasks_percpu *rtpcp; union rcu_special trs; // Open-coded full-word version of rcu_ld_need_qs(). smp_mb(); // Enforce full grace-period ordering. trs = smp_load_acquire(&t->trc_reader_special); if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && t->trc_reader_special.b.need_mb) smp_mb(); // Pairs with update-side barriers. // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers. if (trs.b.need_qs == (TRC_NEED_QS_CHECKED | TRC_NEED_QS)) { u8 result = rcu_trc_cmpxchg_need_qs(t, TRC_NEED_QS_CHECKED | TRC_NEED_QS, TRC_NEED_QS_CHECKED); WARN_ONCE(result != trs.b.need_qs, "%s: result = %d", __func__, result); } if (trs.b.blocked) { rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, t->trc_blkd_cpu); raw_spin_lock_irqsave_rcu_node(rtpcp, flags); list_del_init(&t->trc_blkd_node); WRITE_ONCE(t->trc_reader_special.b.blocked, false); raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); } WRITE_ONCE(t->trc_reader_nesting, 0); } EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special); /* Add a newly blocked reader task to its CPU's list. */ void rcu_tasks_trace_qs_blkd(struct task_struct *t) { unsigned long flags; struct rcu_tasks_percpu *rtpcp; local_irq_save(flags); rtpcp = this_cpu_ptr(rcu_tasks_trace.rtpcpu); raw_spin_lock_rcu_node(rtpcp); // irqs already disabled t->trc_blkd_cpu = smp_processor_id(); if (!rtpcp->rtp_blkd_tasks.next) INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks); list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks); WRITE_ONCE(t->trc_reader_special.b.blocked, true); raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); } EXPORT_SYMBOL_GPL(rcu_tasks_trace_qs_blkd); /* Add a task to the holdout list, if it is not already on the list. */ static void trc_add_holdout(struct task_struct *t, struct list_head *bhp) { if (list_empty(&t->trc_holdout_list)) { get_task_struct(t); list_add(&t->trc_holdout_list, bhp); n_trc_holdouts++; } } /* Remove a task from the holdout list, if it is in fact present. */ static void trc_del_holdout(struct task_struct *t) { if (!list_empty(&t->trc_holdout_list)) { list_del_init(&t->trc_holdout_list); put_task_struct(t); n_trc_holdouts--; } } /* IPI handler to check task state. */ static void trc_read_check_handler(void *t_in) { int nesting; struct task_struct *t = current; struct task_struct *texp = t_in; // If the task is no longer running on this CPU, leave. if (unlikely(texp != t)) goto reset_ipi; // Already on holdout list, so will check later. // If the task is not in a read-side critical section, and // if this is the last reader, awaken the grace-period kthread. nesting = READ_ONCE(t->trc_reader_nesting); if (likely(!nesting)) { rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); goto reset_ipi; } // If we are racing with an rcu_read_unlock_trace(), try again later. if (unlikely(nesting < 0)) goto reset_ipi; // Get here if the task is in a read-side critical section. // Set its state so that it will update state for the grace-period // kthread upon exit from that critical section. rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED); reset_ipi: // Allow future IPIs to be sent on CPU and for task. // Also order this IPI handler against any later manipulations of // the intended task. smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^ smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^ } /* Callback function for scheduler to check locked-down task. */ static int trc_inspect_reader(struct task_struct *t, void *bhp_in) { struct list_head *bhp = bhp_in; int cpu = task_cpu(t); int nesting; bool ofl = cpu_is_offline(cpu); if (task_curr(t) && !ofl) { // If no chance of heavyweight readers, do it the hard way. if (!IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) return -EINVAL; // If heavyweight readers are enabled on the remote task, // we can inspect its state despite its currently running. // However, we cannot safely change its state. n_heavy_reader_attempts++; // Check for "running" idle tasks on offline CPUs. if (!rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting)) return -EINVAL; // No quiescent state, do it the hard way. n_heavy_reader_updates++; nesting = 0; } else { // The task is not running, so C-language access is safe. nesting = t->trc_reader_nesting; WARN_ON_ONCE(ofl && task_curr(t) && (t != idle_task(task_cpu(t)))); if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && ofl) n_heavy_reader_ofl_updates++; } // If not exiting a read-side critical section, mark as checked // so that the grace-period kthread will remove it from the // holdout list. if (!nesting) { rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); return 0; // In QS, so done. } if (nesting < 0) return -EINVAL; // Reader transitioning, try again later. // The task is in a read-side critical section, so set up its // state so that it will update state upon exit from that critical // section. if (!rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED)) trc_add_holdout(t, bhp); return 0; } /* Attempt to extract the state for the specified task. */ static void trc_wait_for_one_reader(struct task_struct *t, struct list_head *bhp) { int cpu; // If a previous IPI is still in flight, let it complete. if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI return; // The current task had better be in a quiescent state. if (t == current) { rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting)); return; } // Attempt to nail down the task for inspection. get_task_struct(t); if (!task_call_func(t, trc_inspect_reader, bhp)) { put_task_struct(t); return; } put_task_struct(t); // If this task is not yet on the holdout list, then we are in // an RCU read-side critical section. Otherwise, the invocation of // trc_add_holdout() that added it to the list did the necessary // get_task_struct(). Either way, the task cannot be freed out // from under this code. // If currently running, send an IPI, either way, add to list. trc_add_holdout(t, bhp); if (task_curr(t) && time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) { // The task is currently running, so try IPIing it. cpu = task_cpu(t); // If there is already an IPI outstanding, let it happen. if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0) return; per_cpu(trc_ipi_to_cpu, cpu) = true; t->trc_ipi_to_cpu = cpu; rcu_tasks_trace.n_ipis++; if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) { // Just in case there is some other reason for // failure than the target CPU being offline. WARN_ONCE(1, "%s(): smp_call_function_single() failed for CPU: %d\n", __func__, cpu); rcu_tasks_trace.n_ipis_fails++; per_cpu(trc_ipi_to_cpu, cpu) = false; t->trc_ipi_to_cpu = -1; } } } /* * Initialize for first-round processing for the specified task. * Return false if task is NULL or already taken care of, true otherwise. */ static bool rcu_tasks_trace_pertask_prep(struct task_struct *t, bool notself) { // During early boot when there is only the one boot CPU, there // is no idle task for the other CPUs. Also, the grace-period // kthread is always in a quiescent state. In addition, just return // if this task is already on the list. if (unlikely(t == NULL) || (t == current && notself) || !list_empty(&t->trc_holdout_list)) return false; rcu_st_need_qs(t, 0); t->trc_ipi_to_cpu = -1; return true; } /* Do first-round processing for the specified task. */ static void rcu_tasks_trace_pertask(struct task_struct *t, struct list_head *hop) { if (rcu_tasks_trace_pertask_prep(t, true)) trc_wait_for_one_reader(t, hop); } /* Initialize for a new RCU-tasks-trace grace period. */ static void rcu_tasks_trace_pregp_step(struct list_head *hop) { LIST_HEAD(blkd_tasks); int cpu; unsigned long flags; struct rcu_tasks_percpu *rtpcp; struct task_struct *t; // There shouldn't be any old IPIs, but... for_each_possible_cpu(cpu) WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu)); // Disable CPU hotplug across the CPU scan for the benefit of // any IPIs that might be needed. This also waits for all readers // in CPU-hotplug code paths. cpus_read_lock(); // These rcu_tasks_trace_pertask_prep() calls are serialized to // allow safe access to the hop list. for_each_online_cpu(cpu) { rcu_read_lock(); t = cpu_curr_snapshot(cpu); if (rcu_tasks_trace_pertask_prep(t, true)) trc_add_holdout(t, hop); rcu_read_unlock(); cond_resched_tasks_rcu_qs(); } // Only after all running tasks have been accounted for is it // safe to take care of the tasks that have blocked within their // current RCU tasks trace read-side critical section. for_each_possible_cpu(cpu) { rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, cpu); raw_spin_lock_irqsave_rcu_node(rtpcp, flags); list_splice_init(&rtpcp->rtp_blkd_tasks, &blkd_tasks); while (!list_empty(&blkd_tasks)) { rcu_read_lock(); t = list_first_entry(&blkd_tasks, struct task_struct, trc_blkd_node); list_del_init(&t->trc_blkd_node); list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks); raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); rcu_tasks_trace_pertask(t, hop); rcu_read_unlock(); raw_spin_lock_irqsave_rcu_node(rtpcp, flags); } raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); cond_resched_tasks_rcu_qs(); } // Re-enable CPU hotplug now that the holdout list is populated. cpus_read_unlock(); } /* * Do intermediate processing between task and holdout scans. */ static void rcu_tasks_trace_postscan(struct list_head *hop) { // Wait for late-stage exiting tasks to finish exiting. // These might have passed the call to exit_tasks_rcu_finish(). // If you remove the following line, update rcu_trace_implies_rcu_gp()!!! synchronize_rcu(); // Any tasks that exit after this point will set // TRC_NEED_QS_CHECKED in ->trc_reader_special.b.need_qs. } /* Communicate task state back to the RCU tasks trace stall warning request. */ struct trc_stall_chk_rdr { int nesting; int ipi_to_cpu; u8 needqs; }; static int trc_check_slow_task(struct task_struct *t, void *arg) { struct trc_stall_chk_rdr *trc_rdrp = arg; if (task_curr(t) && cpu_online(task_cpu(t))) return false; // It is running, so decline to inspect it. trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting); trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu); trc_rdrp->needqs = rcu_ld_need_qs(t); return true; } /* Show the state of a task stalling the current RCU tasks trace GP. */ static void show_stalled_task_trace(struct task_struct *t, bool *firstreport) { int cpu; struct trc_stall_chk_rdr trc_rdr; bool is_idle_tsk = is_idle_task(t); if (*firstreport) { pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n"); *firstreport = false; } cpu = task_cpu(t); if (!task_call_func(t, trc_check_slow_task, &trc_rdr)) pr_alert("P%d: %c%c\n", t->pid, ".I"[t->trc_ipi_to_cpu >= 0], ".i"[is_idle_tsk]); else pr_alert("P%d: %c%c%c%c nesting: %d%c%c cpu: %d%s\n", t->pid, ".I"[trc_rdr.ipi_to_cpu >= 0], ".i"[is_idle_tsk], ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)], ".B"[!!data_race(t->trc_reader_special.b.blocked)], trc_rdr.nesting, " !CN"[trc_rdr.needqs & 0x3], " ?"[trc_rdr.needqs > 0x3], cpu, cpu_online(cpu) ? "" : "(offline)"); sched_show_task(t); } /* List stalled IPIs for RCU tasks trace. */ static void show_stalled_ipi_trace(void) { int cpu; for_each_possible_cpu(cpu) if (per_cpu(trc_ipi_to_cpu, cpu)) pr_alert("\tIPI outstanding to CPU %d\n", cpu); } /* Do one scan of the holdout list. */ static void check_all_holdout_tasks_trace(struct list_head *hop, bool needreport, bool *firstreport) { struct task_struct *g, *t; // Disable CPU hotplug across the holdout list scan for IPIs. cpus_read_lock(); list_for_each_entry_safe(t, g, hop, trc_holdout_list) { // If safe and needed, try to check the current task. if (READ_ONCE(t->trc_ipi_to_cpu) == -1 && !(rcu_ld_need_qs(t) & TRC_NEED_QS_CHECKED)) trc_wait_for_one_reader(t, hop); // If check succeeded, remove this task from the list. if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 && rcu_ld_need_qs(t) == TRC_NEED_QS_CHECKED) trc_del_holdout(t); else if (needreport) show_stalled_task_trace(t, firstreport); cond_resched_tasks_rcu_qs(); } // Re-enable CPU hotplug now that the holdout list scan has completed. cpus_read_unlock(); if (needreport) { if (*firstreport) pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n"); show_stalled_ipi_trace(); } } static void rcu_tasks_trace_empty_fn(void *unused) { } /* Wait for grace period to complete and provide ordering. */ static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp) { int cpu; // Wait for any lingering IPI handlers to complete. Note that // if a CPU has gone offline or transitioned to userspace in the // meantime, all IPI handlers should have been drained beforehand. // Yes, this assumes that CPUs process IPIs in order. If that ever // changes, there will need to be a recheck and/or timed wait. for_each_online_cpu(cpu) if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu)))) smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1); smp_mb(); // Caller's code must be ordered after wakeup. // Pairs with pretty much every ordering primitive. } /* Report any needed quiescent state for this exiting task. */ static void exit_tasks_rcu_finish_trace(struct task_struct *t) { union rcu_special trs = READ_ONCE(t->trc_reader_special); rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting)); if (WARN_ON_ONCE(rcu_ld_need_qs(t) & TRC_NEED_QS || trs.b.blocked)) rcu_read_unlock_trace_special(t); else WRITE_ONCE(t->trc_reader_nesting, 0); } /** * call_rcu_tasks_trace() - Queue a callback trace task-based grace period * @rhp: structure to be used for queueing the RCU updates. * @func: actual callback function to be invoked after the grace period * * The callback function will be invoked some time after a trace rcu-tasks * grace period elapses, in other words after all currently executing * trace rcu-tasks read-side critical sections have completed. These * read-side critical sections are delimited by calls to rcu_read_lock_trace() * and rcu_read_unlock_trace(). * * See the description of call_rcu() for more detailed information on * memory ordering guarantees. */ void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func) { call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace); } EXPORT_SYMBOL_GPL(call_rcu_tasks_trace); /** * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period * * Control will return to the caller some time after a trace rcu-tasks * grace period has elapsed, in other words after all currently executing * trace rcu-tasks read-side critical sections have elapsed. These read-side * critical sections are delimited by calls to rcu_read_lock_trace() * and rcu_read_unlock_trace(). * * This is a very specialized primitive, intended only for a few uses in * tracing and other situations requiring manipulation of function preambles * and profiling hooks. The synchronize_rcu_tasks_trace() function is not * (yet) intended for heavy use from multiple CPUs. * * See the description of synchronize_rcu() for more detailed information * on memory ordering guarantees. */ void synchronize_rcu_tasks_trace(void) { RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section"); synchronize_rcu_tasks_generic(&rcu_tasks_trace); } EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace); /** * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks. * * Although the current implementation is guaranteed to wait, it is not * obligated to, for example, if there are no pending callbacks. */ void rcu_barrier_tasks_trace(void) { rcu_barrier_tasks_generic(&rcu_tasks_trace); } EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace); int rcu_tasks_trace_lazy_ms = -1; module_param(rcu_tasks_trace_lazy_ms, int, 0444); static int __init rcu_spawn_tasks_trace_kthread(void) { if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) { rcu_tasks_trace.gp_sleep = HZ / 10; rcu_tasks_trace.init_fract = HZ / 10; } else { rcu_tasks_trace.gp_sleep = HZ / 200; if (rcu_tasks_trace.gp_sleep <= 0) rcu_tasks_trace.gp_sleep = 1; rcu_tasks_trace.init_fract = HZ / 200; if (rcu_tasks_trace.init_fract <= 0) rcu_tasks_trace.init_fract = 1; } if (rcu_tasks_trace_lazy_ms >= 0) rcu_tasks_trace.lazy_jiffies = msecs_to_jiffies(rcu_tasks_trace_lazy_ms); rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step; rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan; rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace; rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp; rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace); return 0; } #if !defined(CONFIG_TINY_RCU) void show_rcu_tasks_trace_gp_kthread(void) { char buf[64]; sprintf(buf, "N%lu h:%lu/%lu/%lu", data_race(n_trc_holdouts), data_race(n_heavy_reader_ofl_updates), data_race(n_heavy_reader_updates), data_race(n_heavy_reader_attempts)); show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf); } EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread); #endif // !defined(CONFIG_TINY_RCU) struct task_struct *get_rcu_tasks_trace_gp_kthread(void) { return rcu_tasks_trace.kthread_ptr; } EXPORT_SYMBOL_GPL(get_rcu_tasks_trace_gp_kthread); #else /* #ifdef CONFIG_TASKS_TRACE_RCU */ static void exit_tasks_rcu_finish_trace(struct task_struct *t) { } #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */ #ifndef CONFIG_TINY_RCU void show_rcu_tasks_gp_kthreads(void) { show_rcu_tasks_classic_gp_kthread(); show_rcu_tasks_rude_gp_kthread(); show_rcu_tasks_trace_gp_kthread(); } #endif /* #ifndef CONFIG_TINY_RCU */ #ifdef CONFIG_PROVE_RCU struct rcu_tasks_test_desc { struct rcu_head rh; const char *name; bool notrun; unsigned long runstart; }; static struct rcu_tasks_test_desc tests[] = { { .name = "call_rcu_tasks()", /* If not defined, the test is skipped. */ .notrun = IS_ENABLED(CONFIG_TASKS_RCU), }, { .name = "call_rcu_tasks_rude()", /* If not defined, the test is skipped. */ .notrun = IS_ENABLED(CONFIG_TASKS_RUDE_RCU), }, { .name = "call_rcu_tasks_trace()", /* If not defined, the test is skipped. */ .notrun = IS_ENABLED(CONFIG_TASKS_TRACE_RCU) } }; static void test_rcu_tasks_callback(struct rcu_head *rhp) { struct rcu_tasks_test_desc *rttd = container_of(rhp, struct rcu_tasks_test_desc, rh); pr_info("Callback from %s invoked.\n", rttd->name); rttd->notrun = false; } static void rcu_tasks_initiate_self_tests(void) { #ifdef CONFIG_TASKS_RCU pr_info("Running RCU Tasks wait API self tests\n"); tests[0].runstart = jiffies; synchronize_rcu_tasks(); call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback); #endif #ifdef CONFIG_TASKS_RUDE_RCU pr_info("Running RCU Tasks Rude wait API self tests\n"); tests[1].runstart = jiffies; synchronize_rcu_tasks_rude(); call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback); #endif #ifdef CONFIG_TASKS_TRACE_RCU pr_info("Running RCU Tasks Trace wait API self tests\n"); tests[2].runstart = jiffies; synchronize_rcu_tasks_trace(); call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback); #endif } /* * Return: 0 - test passed * 1 - test failed, but have not timed out yet * -1 - test failed and timed out */ static int rcu_tasks_verify_self_tests(void) { int ret = 0; int i; unsigned long bst = rcu_task_stall_timeout; if (bst <= 0 || bst > RCU_TASK_BOOT_STALL_TIMEOUT) bst = RCU_TASK_BOOT_STALL_TIMEOUT; for (i = 0; i < ARRAY_SIZE(tests); i++) { while (tests[i].notrun) { // still hanging. if (time_after(jiffies, tests[i].runstart + bst)) { pr_err("%s has failed boot-time tests.\n", tests[i].name); ret = -1; break; } ret = 1; break; } } WARN_ON(ret < 0); return ret; } /* * Repeat the rcu_tasks_verify_self_tests() call once every second until the * test passes or has timed out. */ static struct delayed_work rcu_tasks_verify_work; static void rcu_tasks_verify_work_fn(struct work_struct *work __maybe_unused) { int ret = rcu_tasks_verify_self_tests(); if (ret <= 0) return; /* Test fails but not timed out yet, reschedule another check */ schedule_delayed_work(&rcu_tasks_verify_work, HZ); } static int rcu_tasks_verify_schedule_work(void) { INIT_DELAYED_WORK(&rcu_tasks_verify_work, rcu_tasks_verify_work_fn); rcu_tasks_verify_work_fn(NULL); return 0; } late_initcall(rcu_tasks_verify_schedule_work); #else /* #ifdef CONFIG_PROVE_RCU */ static void rcu_tasks_initiate_self_tests(void) { } #endif /* #else #ifdef CONFIG_PROVE_RCU */ void __init tasks_cblist_init_generic(void) { lockdep_assert_irqs_disabled(); WARN_ON(num_online_cpus() > 1); #ifdef CONFIG_TASKS_RCU cblist_init_generic(&rcu_tasks); #endif #ifdef CONFIG_TASKS_RUDE_RCU cblist_init_generic(&rcu_tasks_rude); #endif #ifdef CONFIG_TASKS_TRACE_RCU cblist_init_generic(&rcu_tasks_trace); #endif } void __init rcu_init_tasks_generic(void) { #ifdef CONFIG_TASKS_RCU rcu_spawn_tasks_kthread(); #endif #ifdef CONFIG_TASKS_RUDE_RCU rcu_spawn_tasks_rude_kthread(); #endif #ifdef CONFIG_TASKS_TRACE_RCU rcu_spawn_tasks_trace_kthread(); #endif // Run the self-tests. rcu_tasks_initiate_self_tests(); } #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ static inline void rcu_tasks_bootup_oddness(void) {} #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ |