Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
// SPDX-License-Identifier: GPL-2.0
/*
 *  linux/fs/super.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  super.c contains code to handle: - mount structures
 *                                   - super-block tables
 *                                   - filesystem drivers list
 *                                   - mount system call
 *                                   - umount system call
 *                                   - ustat system call
 *
 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
 *
 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
 *  Added options to /proc/mounts:
 *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
 */

#include <linux/export.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/mount.h>
#include <linux/security.h>
#include <linux/writeback.h>		/* for the emergency remount stuff */
#include <linux/idr.h>
#include <linux/mutex.h>
#include <linux/backing-dev.h>
#include <linux/rculist_bl.h>
#include <linux/fscrypt.h>
#include <linux/fsnotify.h>
#include <linux/lockdep.h>
#include <linux/user_namespace.h>
#include <linux/fs_context.h>
#include <uapi/linux/mount.h>
#include "internal.h"

static int thaw_super_locked(struct super_block *sb, enum freeze_holder who);

static LIST_HEAD(super_blocks);
static DEFINE_SPINLOCK(sb_lock);

static char *sb_writers_name[SB_FREEZE_LEVELS] = {
	"sb_writers",
	"sb_pagefaults",
	"sb_internal",
};

static inline void __super_lock(struct super_block *sb, bool excl)
{
	if (excl)
		down_write(&sb->s_umount);
	else
		down_read(&sb->s_umount);
}

static inline void super_unlock(struct super_block *sb, bool excl)
{
	if (excl)
		up_write(&sb->s_umount);
	else
		up_read(&sb->s_umount);
}

static inline void __super_lock_excl(struct super_block *sb)
{
	__super_lock(sb, true);
}

static inline void super_unlock_excl(struct super_block *sb)
{
	super_unlock(sb, true);
}

static inline void super_unlock_shared(struct super_block *sb)
{
	super_unlock(sb, false);
}

static bool super_flags(const struct super_block *sb, unsigned int flags)
{
	/*
	 * Pairs with smp_store_release() in super_wake() and ensures
	 * that we see @flags after we're woken.
	 */
	return smp_load_acquire(&sb->s_flags) & flags;
}

/**
 * super_lock - wait for superblock to become ready and lock it
 * @sb: superblock to wait for
 * @excl: whether exclusive access is required
 *
 * If the superblock has neither passed through vfs_get_tree() or
 * generic_shutdown_super() yet wait for it to happen. Either superblock
 * creation will succeed and SB_BORN is set by vfs_get_tree() or we're
 * woken and we'll see SB_DYING.
 *
 * The caller must have acquired a temporary reference on @sb->s_count.
 *
 * Return: The function returns true if SB_BORN was set and with
 *         s_umount held. The function returns false if SB_DYING was
 *         set and without s_umount held.
 */
static __must_check bool super_lock(struct super_block *sb, bool excl)
{
	lockdep_assert_not_held(&sb->s_umount);

	/* wait until the superblock is ready or dying */
	wait_var_event(&sb->s_flags, super_flags(sb, SB_BORN | SB_DYING));

	/* Don't pointlessly acquire s_umount. */
	if (super_flags(sb, SB_DYING))
		return false;

	__super_lock(sb, excl);

	/*
	 * Has gone through generic_shutdown_super() in the meantime.
	 * @sb->s_root is NULL and @sb->s_active is 0. No one needs to
	 * grab a reference to this. Tell them so.
	 */
	if (sb->s_flags & SB_DYING) {
		super_unlock(sb, excl);
		return false;
	}

	WARN_ON_ONCE(!(sb->s_flags & SB_BORN));
	return true;
}

/* wait and try to acquire read-side of @sb->s_umount */
static inline bool super_lock_shared(struct super_block *sb)
{
	return super_lock(sb, false);
}

/* wait and try to acquire write-side of @sb->s_umount */
static inline bool super_lock_excl(struct super_block *sb)
{
	return super_lock(sb, true);
}

/* wake waiters */
#define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD)
static void super_wake(struct super_block *sb, unsigned int flag)
{
	WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS));
	WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1);

	/*
	 * Pairs with smp_load_acquire() in super_lock() to make sure
	 * all initializations in the superblock are seen by the user
	 * seeing SB_BORN sent.
	 */
	smp_store_release(&sb->s_flags, sb->s_flags | flag);
	/*
	 * Pairs with the barrier in prepare_to_wait_event() to make sure
	 * ___wait_var_event() either sees SB_BORN set or
	 * waitqueue_active() check in wake_up_var() sees the waiter.
	 */
	smp_mb();
	wake_up_var(&sb->s_flags);
}

/*
 * One thing we have to be careful of with a per-sb shrinker is that we don't
 * drop the last active reference to the superblock from within the shrinker.
 * If that happens we could trigger unregistering the shrinker from within the
 * shrinker path and that leads to deadlock on the shrinker_mutex. Hence we
 * take a passive reference to the superblock to avoid this from occurring.
 */
static unsigned long super_cache_scan(struct shrinker *shrink,
				      struct shrink_control *sc)
{
	struct super_block *sb;
	long	fs_objects = 0;
	long	total_objects;
	long	freed = 0;
	long	dentries;
	long	inodes;

	sb = shrink->private_data;

	/*
	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
	 * to recurse into the FS that called us in clear_inode() and friends..
	 */
	if (!(sc->gfp_mask & __GFP_FS))
		return SHRINK_STOP;

	if (!super_trylock_shared(sb))
		return SHRINK_STOP;

	if (sb->s_op->nr_cached_objects)
		fs_objects = sb->s_op->nr_cached_objects(sb, sc);

	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
	total_objects = dentries + inodes + fs_objects + 1;
	if (!total_objects)
		total_objects = 1;

	/* proportion the scan between the caches */
	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);

	/*
	 * prune the dcache first as the icache is pinned by it, then
	 * prune the icache, followed by the filesystem specific caches
	 *
	 * Ensure that we always scan at least one object - memcg kmem
	 * accounting uses this to fully empty the caches.
	 */
	sc->nr_to_scan = dentries + 1;
	freed = prune_dcache_sb(sb, sc);
	sc->nr_to_scan = inodes + 1;
	freed += prune_icache_sb(sb, sc);

	if (fs_objects) {
		sc->nr_to_scan = fs_objects + 1;
		freed += sb->s_op->free_cached_objects(sb, sc);
	}

	super_unlock_shared(sb);
	return freed;
}

static unsigned long super_cache_count(struct shrinker *shrink,
				       struct shrink_control *sc)
{
	struct super_block *sb;
	long	total_objects = 0;

	sb = shrink->private_data;

	/*
	 * We don't call super_trylock_shared() here as it is a scalability
	 * bottleneck, so we're exposed to partial setup state. The shrinker
	 * rwsem does not protect filesystem operations backing
	 * list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can
	 * change between super_cache_count and super_cache_scan, so we really
	 * don't need locks here.
	 *
	 * However, if we are currently mounting the superblock, the underlying
	 * filesystem might be in a state of partial construction and hence it
	 * is dangerous to access it.  super_trylock_shared() uses a SB_BORN check
	 * to avoid this situation, so do the same here. The memory barrier is
	 * matched with the one in mount_fs() as we don't hold locks here.
	 */
	if (!(sb->s_flags & SB_BORN))
		return 0;
	smp_rmb();

	if (sb->s_op && sb->s_op->nr_cached_objects)
		total_objects = sb->s_op->nr_cached_objects(sb, sc);

	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);

	if (!total_objects)
		return SHRINK_EMPTY;

	total_objects = vfs_pressure_ratio(total_objects);
	return total_objects;
}

static void destroy_super_work(struct work_struct *work)
{
	struct super_block *s = container_of(work, struct super_block,
							destroy_work);
	security_sb_free(s);
	put_user_ns(s->s_user_ns);
	kfree(s->s_subtype);
	for (int i = 0; i < SB_FREEZE_LEVELS; i++)
		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
	kfree(s);
}

static void destroy_super_rcu(struct rcu_head *head)
{
	struct super_block *s = container_of(head, struct super_block, rcu);
	INIT_WORK(&s->destroy_work, destroy_super_work);
	schedule_work(&s->destroy_work);
}

/* Free a superblock that has never been seen by anyone */
static void destroy_unused_super(struct super_block *s)
{
	if (!s)
		return;
	super_unlock_excl(s);
	list_lru_destroy(&s->s_dentry_lru);
	list_lru_destroy(&s->s_inode_lru);
	shrinker_free(s->s_shrink);
	/* no delays needed */
	destroy_super_work(&s->destroy_work);
}

/**
 *	alloc_super	-	create new superblock
 *	@type:	filesystem type superblock should belong to
 *	@flags: the mount flags
 *	@user_ns: User namespace for the super_block
 *
 *	Allocates and initializes a new &struct super_block.  alloc_super()
 *	returns a pointer new superblock or %NULL if allocation had failed.
 */
static struct super_block *alloc_super(struct file_system_type *type, int flags,
				       struct user_namespace *user_ns)
{
	struct super_block *s = kzalloc(sizeof(struct super_block), GFP_KERNEL);
	static const struct super_operations default_op;
	int i;

	if (!s)
		return NULL;

	INIT_LIST_HEAD(&s->s_mounts);
	s->s_user_ns = get_user_ns(user_ns);
	init_rwsem(&s->s_umount);
	lockdep_set_class(&s->s_umount, &type->s_umount_key);
	/*
	 * sget() can have s_umount recursion.
	 *
	 * When it cannot find a suitable sb, it allocates a new
	 * one (this one), and tries again to find a suitable old
	 * one.
	 *
	 * In case that succeeds, it will acquire the s_umount
	 * lock of the old one. Since these are clearly distrinct
	 * locks, and this object isn't exposed yet, there's no
	 * risk of deadlocks.
	 *
	 * Annotate this by putting this lock in a different
	 * subclass.
	 */
	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);

	if (security_sb_alloc(s))
		goto fail;

	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
					sb_writers_name[i],
					&type->s_writers_key[i]))
			goto fail;
	}
	s->s_bdi = &noop_backing_dev_info;
	s->s_flags = flags;
	if (s->s_user_ns != &init_user_ns)
		s->s_iflags |= SB_I_NODEV;
	INIT_HLIST_NODE(&s->s_instances);
	INIT_HLIST_BL_HEAD(&s->s_roots);
	mutex_init(&s->s_sync_lock);
	INIT_LIST_HEAD(&s->s_inodes);
	spin_lock_init(&s->s_inode_list_lock);
	INIT_LIST_HEAD(&s->s_inodes_wb);
	spin_lock_init(&s->s_inode_wblist_lock);

	s->s_count = 1;
	atomic_set(&s->s_active, 1);
	mutex_init(&s->s_vfs_rename_mutex);
	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
	init_rwsem(&s->s_dquot.dqio_sem);
	s->s_maxbytes = MAX_NON_LFS;
	s->s_op = &default_op;
	s->s_time_gran = 1000000000;
	s->s_time_min = TIME64_MIN;
	s->s_time_max = TIME64_MAX;

	s->s_shrink = shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
				     "sb-%s", type->name);
	if (!s->s_shrink)
		goto fail;

	s->s_shrink->scan_objects = super_cache_scan;
	s->s_shrink->count_objects = super_cache_count;
	s->s_shrink->batch = 1024;
	s->s_shrink->private_data = s;

	if (list_lru_init_memcg(&s->s_dentry_lru, s->s_shrink))
		goto fail;
	if (list_lru_init_memcg(&s->s_inode_lru, s->s_shrink))
		goto fail;
	return s;

fail:
	destroy_unused_super(s);
	return NULL;
}

/* Superblock refcounting  */

/*
 * Drop a superblock's refcount.  The caller must hold sb_lock.
 */
static void __put_super(struct super_block *s)
{
	if (!--s->s_count) {
		list_del_init(&s->s_list);
		WARN_ON(s->s_dentry_lru.node);
		WARN_ON(s->s_inode_lru.node);
		WARN_ON(!list_empty(&s->s_mounts));
		call_rcu(&s->rcu, destroy_super_rcu);
	}
}

/**
 *	put_super	-	drop a temporary reference to superblock
 *	@sb: superblock in question
 *
 *	Drops a temporary reference, frees superblock if there's no
 *	references left.
 */
void put_super(struct super_block *sb)
{
	spin_lock(&sb_lock);
	__put_super(sb);
	spin_unlock(&sb_lock);
}

static void kill_super_notify(struct super_block *sb)
{
	lockdep_assert_not_held(&sb->s_umount);

	/* already notified earlier */
	if (sb->s_flags & SB_DEAD)
		return;

	/*
	 * Remove it from @fs_supers so it isn't found by new
	 * sget{_fc}() walkers anymore. Any concurrent mounter still
	 * managing to grab a temporary reference is guaranteed to
	 * already see SB_DYING and will wait until we notify them about
	 * SB_DEAD.
	 */
	spin_lock(&sb_lock);
	hlist_del_init(&sb->s_instances);
	spin_unlock(&sb_lock);

	/*
	 * Let concurrent mounts know that this thing is really dead.
	 * We don't need @sb->s_umount here as every concurrent caller
	 * will see SB_DYING and either discard the superblock or wait
	 * for SB_DEAD.
	 */
	super_wake(sb, SB_DEAD);
}

/**
 *	deactivate_locked_super	-	drop an active reference to superblock
 *	@s: superblock to deactivate
 *
 *	Drops an active reference to superblock, converting it into a temporary
 *	one if there is no other active references left.  In that case we
 *	tell fs driver to shut it down and drop the temporary reference we
 *	had just acquired.
 *
 *	Caller holds exclusive lock on superblock; that lock is released.
 */
void deactivate_locked_super(struct super_block *s)
{
	struct file_system_type *fs = s->s_type;
	if (atomic_dec_and_test(&s->s_active)) {
		shrinker_free(s->s_shrink);
		fs->kill_sb(s);

		kill_super_notify(s);

		/*
		 * Since list_lru_destroy() may sleep, we cannot call it from
		 * put_super(), where we hold the sb_lock. Therefore we destroy
		 * the lru lists right now.
		 */
		list_lru_destroy(&s->s_dentry_lru);
		list_lru_destroy(&s->s_inode_lru);

		put_filesystem(fs);
		put_super(s);
	} else {
		super_unlock_excl(s);
	}
}

EXPORT_SYMBOL(deactivate_locked_super);

/**
 *	deactivate_super	-	drop an active reference to superblock
 *	@s: superblock to deactivate
 *
 *	Variant of deactivate_locked_super(), except that superblock is *not*
 *	locked by caller.  If we are going to drop the final active reference,
 *	lock will be acquired prior to that.
 */
void deactivate_super(struct super_block *s)
{
	if (!atomic_add_unless(&s->s_active, -1, 1)) {
		__super_lock_excl(s);
		deactivate_locked_super(s);
	}
}

EXPORT_SYMBOL(deactivate_super);

/**
 * grab_super - acquire an active reference to a superblock
 * @sb: superblock to acquire
 *
 * Acquire a temporary reference on a superblock and try to trade it for
 * an active reference. This is used in sget{_fc}() to wait for a
 * superblock to either become SB_BORN or for it to pass through
 * sb->kill() and be marked as SB_DEAD.
 *
 * Return: This returns true if an active reference could be acquired,
 *         false if not.
 */
static bool grab_super(struct super_block *sb)
{
	bool locked;

	sb->s_count++;
	spin_unlock(&sb_lock);
	locked = super_lock_excl(sb);
	if (locked) {
		if (atomic_inc_not_zero(&sb->s_active)) {
			put_super(sb);
			return true;
		}
		super_unlock_excl(sb);
	}
	wait_var_event(&sb->s_flags, super_flags(sb, SB_DEAD));
	put_super(sb);
	return false;
}

/*
 *	super_trylock_shared - try to grab ->s_umount shared
 *	@sb: reference we are trying to grab
 *
 *	Try to prevent fs shutdown.  This is used in places where we
 *	cannot take an active reference but we need to ensure that the
 *	filesystem is not shut down while we are working on it. It returns
 *	false if we cannot acquire s_umount or if we lose the race and
 *	filesystem already got into shutdown, and returns true with the s_umount
 *	lock held in read mode in case of success. On successful return,
 *	the caller must drop the s_umount lock when done.
 *
 *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
 *	The reason why it's safe is that we are OK with doing trylock instead
 *	of down_read().  There's a couple of places that are OK with that, but
 *	it's very much not a general-purpose interface.
 */
bool super_trylock_shared(struct super_block *sb)
{
	if (down_read_trylock(&sb->s_umount)) {
		if (!(sb->s_flags & SB_DYING) && sb->s_root &&
		    (sb->s_flags & SB_BORN))
			return true;
		super_unlock_shared(sb);
	}

	return false;
}

/**
 *	retire_super	-	prevents superblock from being reused
 *	@sb: superblock to retire
 *
 *	The function marks superblock to be ignored in superblock test, which
 *	prevents it from being reused for any new mounts.  If the superblock has
 *	a private bdi, it also unregisters it, but doesn't reduce the refcount
 *	of the superblock to prevent potential races.  The refcount is reduced
 *	by generic_shutdown_super().  The function can not be called
 *	concurrently with generic_shutdown_super().  It is safe to call the
 *	function multiple times, subsequent calls have no effect.
 *
 *	The marker will affect the re-use only for block-device-based
 *	superblocks.  Other superblocks will still get marked if this function
 *	is used, but that will not affect their reusability.
 */
void retire_super(struct super_block *sb)
{
	WARN_ON(!sb->s_bdev);
	__super_lock_excl(sb);
	if (sb->s_iflags & SB_I_PERSB_BDI) {
		bdi_unregister(sb->s_bdi);
		sb->s_iflags &= ~SB_I_PERSB_BDI;
	}
	sb->s_iflags |= SB_I_RETIRED;
	super_unlock_excl(sb);
}
EXPORT_SYMBOL(retire_super);

/**
 *	generic_shutdown_super	-	common helper for ->kill_sb()
 *	@sb: superblock to kill
 *
 *	generic_shutdown_super() does all fs-independent work on superblock
 *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
 *	that need destruction out of superblock, call generic_shutdown_super()
 *	and release aforementioned objects.  Note: dentries and inodes _are_
 *	taken care of and do not need specific handling.
 *
 *	Upon calling this function, the filesystem may no longer alter or
 *	rearrange the set of dentries belonging to this super_block, nor may it
 *	change the attachments of dentries to inodes.
 */
void generic_shutdown_super(struct super_block *sb)
{
	const struct super_operations *sop = sb->s_op;

	if (sb->s_root) {
		shrink_dcache_for_umount(sb);
		sync_filesystem(sb);
		sb->s_flags &= ~SB_ACTIVE;

		cgroup_writeback_umount();

		/* Evict all inodes with zero refcount. */
		evict_inodes(sb);

		/*
		 * Clean up and evict any inodes that still have references due
		 * to fsnotify or the security policy.
		 */
		fsnotify_sb_delete(sb);
		security_sb_delete(sb);

		if (sb->s_dio_done_wq) {
			destroy_workqueue(sb->s_dio_done_wq);
			sb->s_dio_done_wq = NULL;
		}

		if (sop->put_super)
			sop->put_super(sb);

		/*
		 * Now that all potentially-encrypted inodes have been evicted,
		 * the fscrypt keyring can be destroyed.
		 */
		fscrypt_destroy_keyring(sb);

		if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes),
				"VFS: Busy inodes after unmount of %s (%s)",
				sb->s_id, sb->s_type->name)) {
			/*
			 * Adding a proper bailout path here would be hard, but
			 * we can at least make it more likely that a later
			 * iput_final() or such crashes cleanly.
			 */
			struct inode *inode;

			spin_lock(&sb->s_inode_list_lock);
			list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
				inode->i_op = VFS_PTR_POISON;
				inode->i_sb = VFS_PTR_POISON;
				inode->i_mapping = VFS_PTR_POISON;
			}
			spin_unlock(&sb->s_inode_list_lock);
		}
	}
	/*
	 * Broadcast to everyone that grabbed a temporary reference to this
	 * superblock before we removed it from @fs_supers that the superblock
	 * is dying. Every walker of @fs_supers outside of sget{_fc}() will now
	 * discard this superblock and treat it as dead.
	 *
	 * We leave the superblock on @fs_supers so it can be found by
	 * sget{_fc}() until we passed sb->kill_sb().
	 */
	super_wake(sb, SB_DYING);
	super_unlock_excl(sb);
	if (sb->s_bdi != &noop_backing_dev_info) {
		if (sb->s_iflags & SB_I_PERSB_BDI)
			bdi_unregister(sb->s_bdi);
		bdi_put(sb->s_bdi);
		sb->s_bdi = &noop_backing_dev_info;
	}
}

EXPORT_SYMBOL(generic_shutdown_super);

bool mount_capable(struct fs_context *fc)
{
	if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
		return capable(CAP_SYS_ADMIN);
	else
		return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
}

/**
 * sget_fc - Find or create a superblock
 * @fc:	Filesystem context.
 * @test: Comparison callback
 * @set: Setup callback
 *
 * Create a new superblock or find an existing one.
 *
 * The @test callback is used to find a matching existing superblock.
 * Whether or not the requested parameters in @fc are taken into account
 * is specific to the @test callback that is used. They may even be
 * completely ignored.
 *
 * If an extant superblock is matched, it will be returned unless:
 *
 * (1) the namespace the filesystem context @fc and the extant
 *     superblock's namespace differ
 *
 * (2) the filesystem context @fc has requested that reusing an extant
 *     superblock is not allowed
 *
 * In both cases EBUSY will be returned.
 *
 * If no match is made, a new superblock will be allocated and basic
 * initialisation will be performed (s_type, s_fs_info and s_id will be
 * set and the @set callback will be invoked), the superblock will be
 * published and it will be returned in a partially constructed state
 * with SB_BORN and SB_ACTIVE as yet unset.
 *
 * Return: On success, an extant or newly created superblock is
 *         returned. On failure an error pointer is returned.
 */
struct super_block *sget_fc(struct fs_context *fc,
			    int (*test)(struct super_block *, struct fs_context *),
			    int (*set)(struct super_block *, struct fs_context *))
{
	struct super_block *s = NULL;
	struct super_block *old;
	struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
	int err;

retry:
	spin_lock(&sb_lock);
	if (test) {
		hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
			if (test(old, fc))
				goto share_extant_sb;
		}
	}
	if (!s) {
		spin_unlock(&sb_lock);
		s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
		if (!s)
			return ERR_PTR(-ENOMEM);
		goto retry;
	}

	s->s_fs_info = fc->s_fs_info;
	err = set(s, fc);
	if (err) {
		s->s_fs_info = NULL;
		spin_unlock(&sb_lock);
		destroy_unused_super(s);
		return ERR_PTR(err);
	}
	fc->s_fs_info = NULL;
	s->s_type = fc->fs_type;
	s->s_iflags |= fc->s_iflags;
	strscpy(s->s_id, s->s_type->name, sizeof(s->s_id));
	/*
	 * Make the superblock visible on @super_blocks and @fs_supers.
	 * It's in a nascent state and users should wait on SB_BORN or
	 * SB_DYING to be set.
	 */
	list_add_tail(&s->s_list, &super_blocks);
	hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
	spin_unlock(&sb_lock);
	get_filesystem(s->s_type);
	shrinker_register(s->s_shrink);
	return s;

share_extant_sb:
	if (user_ns != old->s_user_ns || fc->exclusive) {
		spin_unlock(&sb_lock);
		destroy_unused_super(s);
		if (fc->exclusive)
			warnfc(fc, "reusing existing filesystem not allowed");
		else
			warnfc(fc, "reusing existing filesystem in another namespace not allowed");
		return ERR_PTR(-EBUSY);
	}
	if (!grab_super(old))
		goto retry;
	destroy_unused_super(s);
	return old;
}
EXPORT_SYMBOL(sget_fc);

/**
 *	sget	-	find or create a superblock
 *	@type:	  filesystem type superblock should belong to
 *	@test:	  comparison callback
 *	@set:	  setup callback
 *	@flags:	  mount flags
 *	@data:	  argument to each of them
 */
struct super_block *sget(struct file_system_type *type,
			int (*test)(struct super_block *,void *),
			int (*set)(struct super_block *,void *),
			int flags,
			void *data)
{
	struct user_namespace *user_ns = current_user_ns();
	struct super_block *s = NULL;
	struct super_block *old;
	int err;

	/* We don't yet pass the user namespace of the parent
	 * mount through to here so always use &init_user_ns
	 * until that changes.
	 */
	if (flags & SB_SUBMOUNT)
		user_ns = &init_user_ns;

retry:
	spin_lock(&sb_lock);
	if (test) {
		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
			if (!test(old, data))
				continue;
			if (user_ns != old->s_user_ns) {
				spin_unlock(&sb_lock);
				destroy_unused_super(s);
				return ERR_PTR(-EBUSY);
			}
			if (!grab_super(old))
				goto retry;
			destroy_unused_super(s);
			return old;
		}
	}
	if (!s) {
		spin_unlock(&sb_lock);
		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
		if (!s)
			return ERR_PTR(-ENOMEM);
		goto retry;
	}

	err = set(s, data);
	if (err) {
		spin_unlock(&sb_lock);
		destroy_unused_super(s);
		return ERR_PTR(err);
	}
	s->s_type = type;
	strscpy(s->s_id, type->name, sizeof(s->s_id));
	list_add_tail(&s->s_list, &super_blocks);
	hlist_add_head(&s->s_instances, &type->fs_supers);
	spin_unlock(&sb_lock);
	get_filesystem(type);
	shrinker_register(s->s_shrink);
	return s;
}
EXPORT_SYMBOL(sget);

void drop_super(struct super_block *sb)
{
	super_unlock_shared(sb);
	put_super(sb);
}

EXPORT_SYMBOL(drop_super);

void drop_super_exclusive(struct super_block *sb)
{
	super_unlock_excl(sb);
	put_super(sb);
}
EXPORT_SYMBOL(drop_super_exclusive);

static void __iterate_supers(void (*f)(struct super_block *))
{
	struct super_block *sb, *p = NULL;

	spin_lock(&sb_lock);
	list_for_each_entry(sb, &super_blocks, s_list) {
		if (super_flags(sb, SB_DYING))
			continue;
		sb->s_count++;
		spin_unlock(&sb_lock);

		f(sb);

		spin_lock(&sb_lock);
		if (p)
			__put_super(p);
		p = sb;
	}
	if (p)
		__put_super(p);
	spin_unlock(&sb_lock);
}
/**
 *	iterate_supers - call function for all active superblocks
 *	@f: function to call
 *	@arg: argument to pass to it
 *
 *	Scans the superblock list and calls given function, passing it
 *	locked superblock and given argument.
 */
void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
{
	struct super_block *sb, *p = NULL;

	spin_lock(&sb_lock);
	list_for_each_entry(sb, &super_blocks, s_list) {
		bool locked;

		sb->s_count++;
		spin_unlock(&sb_lock);

		locked = super_lock_shared(sb);
		if (locked) {
			if (sb->s_root)
				f(sb, arg);
			super_unlock_shared(sb);
		}

		spin_lock(&sb_lock);
		if (p)
			__put_super(p);
		p = sb;
	}
	if (p)
		__put_super(p);
	spin_unlock(&sb_lock);
}

/**
 *	iterate_supers_type - call function for superblocks of given type
 *	@type: fs type
 *	@f: function to call
 *	@arg: argument to pass to it
 *
 *	Scans the superblock list and calls given function, passing it
 *	locked superblock and given argument.
 */
void iterate_supers_type(struct file_system_type *type,
	void (*f)(struct super_block *, void *), void *arg)
{
	struct super_block *sb, *p = NULL;

	spin_lock(&sb_lock);
	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
		bool locked;

		sb->s_count++;
		spin_unlock(&sb_lock);

		locked = super_lock_shared(sb);
		if (locked) {
			if (sb->s_root)
				f(sb, arg);
			super_unlock_shared(sb);
		}

		spin_lock(&sb_lock);
		if (p)
			__put_super(p);
		p = sb;
	}
	if (p)
		__put_super(p);
	spin_unlock(&sb_lock);
}

EXPORT_SYMBOL(iterate_supers_type);

struct super_block *user_get_super(dev_t dev, bool excl)
{
	struct super_block *sb;

	spin_lock(&sb_lock);
	list_for_each_entry(sb, &super_blocks, s_list) {
		if (sb->s_dev ==  dev) {
			bool locked;

			sb->s_count++;
			spin_unlock(&sb_lock);
			/* still alive? */
			locked = super_lock(sb, excl);
			if (locked) {
				if (sb->s_root)
					return sb;
				super_unlock(sb, excl);
			}
			/* nope, got unmounted */
			spin_lock(&sb_lock);
			__put_super(sb);
			break;
		}
	}
	spin_unlock(&sb_lock);
	return NULL;
}

/**
 * reconfigure_super - asks filesystem to change superblock parameters
 * @fc: The superblock and configuration
 *
 * Alters the configuration parameters of a live superblock.
 */
int reconfigure_super(struct fs_context *fc)
{
	struct super_block *sb = fc->root->d_sb;
	int retval;
	bool remount_ro = false;
	bool remount_rw = false;
	bool force = fc->sb_flags & SB_FORCE;

	if (fc->sb_flags_mask & ~MS_RMT_MASK)
		return -EINVAL;
	if (sb->s_writers.frozen != SB_UNFROZEN)
		return -EBUSY;

	retval = security_sb_remount(sb, fc->security);
	if (retval)
		return retval;

	if (fc->sb_flags_mask & SB_RDONLY) {
#ifdef CONFIG_BLOCK
		if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
		    bdev_read_only(sb->s_bdev))
			return -EACCES;
#endif
		remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb);
		remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
	}

	if (remount_ro) {
		if (!hlist_empty(&sb->s_pins)) {
			super_unlock_excl(sb);
			group_pin_kill(&sb->s_pins);
			__super_lock_excl(sb);
			if (!sb->s_root)
				return 0;
			if (sb->s_writers.frozen != SB_UNFROZEN)
				return -EBUSY;
			remount_ro = !sb_rdonly(sb);
		}
	}
	shrink_dcache_sb(sb);

	/* If we are reconfiguring to RDONLY and current sb is read/write,
	 * make sure there are no files open for writing.
	 */
	if (remount_ro) {
		if (force) {
			sb_start_ro_state_change(sb);
		} else {
			retval = sb_prepare_remount_readonly(sb);
			if (retval)
				return retval;
		}
	} else if (remount_rw) {
		/*
		 * Protect filesystem's reconfigure code from writes from
		 * userspace until reconfigure finishes.
		 */
		sb_start_ro_state_change(sb);
	}

	if (fc->ops->reconfigure) {
		retval = fc->ops->reconfigure(fc);
		if (retval) {
			if (!force)
				goto cancel_readonly;
			/* If forced remount, go ahead despite any errors */
			WARN(1, "forced remount of a %s fs returned %i\n",
			     sb->s_type->name, retval);
		}
	}

	WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
				 (fc->sb_flags & fc->sb_flags_mask)));
	sb_end_ro_state_change(sb);

	/*
	 * Some filesystems modify their metadata via some other path than the
	 * bdev buffer cache (eg. use a private mapping, or directories in
	 * pagecache, etc). Also file data modifications go via their own
	 * mappings. So If we try to mount readonly then copy the filesystem
	 * from bdev, we could get stale data, so invalidate it to give a best
	 * effort at coherency.
	 */
	if (remount_ro && sb->s_bdev)
		invalidate_bdev(sb->s_bdev);
	return 0;

cancel_readonly:
	sb_end_ro_state_change(sb);
	return retval;
}

static void do_emergency_remount_callback(struct super_block *sb)
{
	bool locked = super_lock_excl(sb);

	if (locked && sb->s_root && sb->s_bdev && !sb_rdonly(sb)) {
		struct fs_context *fc;

		fc = fs_context_for_reconfigure(sb->s_root,
					SB_RDONLY | SB_FORCE, SB_RDONLY);
		if (!IS_ERR(fc)) {
			if (parse_monolithic_mount_data(fc, NULL) == 0)
				(void)reconfigure_super(fc);
			put_fs_context(fc);
		}
	}
	if (locked)
		super_unlock_excl(sb);
}

static void do_emergency_remount(struct work_struct *work)
{
	__iterate_supers(do_emergency_remount_callback);
	kfree(work);
	printk("Emergency Remount complete\n");
}

void emergency_remount(void)
{
	struct work_struct *work;

	work = kmalloc(sizeof(*work), GFP_ATOMIC);
	if (work) {
		INIT_WORK(work, do_emergency_remount);
		schedule_work(work);
	}
}

static void do_thaw_all_callback(struct super_block *sb)
{
	bool locked = super_lock_excl(sb);

	if (locked && sb->s_root) {
		if (IS_ENABLED(CONFIG_BLOCK))
			while (sb->s_bdev && !bdev_thaw(sb->s_bdev))
				pr_warn("Emergency Thaw on %pg\n", sb->s_bdev);
		thaw_super_locked(sb, FREEZE_HOLDER_USERSPACE);
		return;
	}
	if (locked)
		super_unlock_excl(sb);
}

static void do_thaw_all(struct work_struct *work)
{
	__iterate_supers(do_thaw_all_callback);
	kfree(work);
	printk(KERN_WARNING "Emergency Thaw complete\n");
}

/**
 * emergency_thaw_all -- forcibly thaw every frozen filesystem
 *
 * Used for emergency unfreeze of all filesystems via SysRq
 */
void emergency_thaw_all(void)
{
	struct work_struct *work;

	work = kmalloc(sizeof(*work), GFP_ATOMIC);
	if (work) {
		INIT_WORK(work, do_thaw_all);
		schedule_work(work);
	}
}

static DEFINE_IDA(unnamed_dev_ida);

/**
 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
 * @p: Pointer to a dev_t.
 *
 * Filesystems which don't use real block devices can call this function
 * to allocate a virtual block device.
 *
 * Context: Any context.  Frequently called while holding sb_lock.
 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
 * or -ENOMEM if memory allocation failed.
 */
int get_anon_bdev(dev_t *p)
{
	int dev;

	/*
	 * Many userspace utilities consider an FSID of 0 invalid.
	 * Always return at least 1 from get_anon_bdev.
	 */
	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
			GFP_ATOMIC);
	if (dev == -ENOSPC)
		dev = -EMFILE;
	if (dev < 0)
		return dev;

	*p = MKDEV(0, dev);
	return 0;
}
EXPORT_SYMBOL(get_anon_bdev);

void free_anon_bdev(dev_t dev)
{
	ida_free(&unnamed_dev_ida, MINOR(dev));
}
EXPORT_SYMBOL(free_anon_bdev);

int set_anon_super(struct super_block *s, void *data)
{
	return get_anon_bdev(&s->s_dev);
}
EXPORT_SYMBOL(set_anon_super);

void kill_anon_super(struct super_block *sb)
{
	dev_t dev = sb->s_dev;
	generic_shutdown_super(sb);
	kill_super_notify(sb);
	free_anon_bdev(dev);
}
EXPORT_SYMBOL(kill_anon_super);

void kill_litter_super(struct super_block *sb)
{
	if (sb->s_root)
		d_genocide(sb->s_root);
	kill_anon_super(sb);
}
EXPORT_SYMBOL(kill_litter_super);

int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
{
	return set_anon_super(sb, NULL);
}
EXPORT_SYMBOL(set_anon_super_fc);

static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
{
	return sb->s_fs_info == fc->s_fs_info;
}

static int test_single_super(struct super_block *s, struct fs_context *fc)
{
	return 1;
}

static int vfs_get_super(struct fs_context *fc,
		int (*test)(struct super_block *, struct fs_context *),
		int (*fill_super)(struct super_block *sb,
				  struct fs_context *fc))
{
	struct super_block *sb;
	int err;

	sb = sget_fc(fc, test, set_anon_super_fc);
	if (IS_ERR(sb))
		return PTR_ERR(sb);

	if (!sb->s_root) {
		err = fill_super(sb, fc);
		if (err)
			goto error;

		sb->s_flags |= SB_ACTIVE;
	}

	fc->root = dget(sb->s_root);
	return 0;

error:
	deactivate_locked_super(sb);
	return err;
}

int get_tree_nodev(struct fs_context *fc,
		  int (*fill_super)(struct super_block *sb,
				    struct fs_context *fc))
{
	return vfs_get_super(fc, NULL, fill_super);
}
EXPORT_SYMBOL(get_tree_nodev);

int get_tree_single(struct fs_context *fc,
		  int (*fill_super)(struct super_block *sb,
				    struct fs_context *fc))
{
	return vfs_get_super(fc, test_single_super, fill_super);
}
EXPORT_SYMBOL(get_tree_single);

int get_tree_keyed(struct fs_context *fc,
		  int (*fill_super)(struct super_block *sb,
				    struct fs_context *fc),
		void *key)
{
	fc->s_fs_info = key;
	return vfs_get_super(fc, test_keyed_super, fill_super);
}
EXPORT_SYMBOL(get_tree_keyed);

static int set_bdev_super(struct super_block *s, void *data)
{
	s->s_dev = *(dev_t *)data;
	return 0;
}

static int super_s_dev_set(struct super_block *s, struct fs_context *fc)
{
	return set_bdev_super(s, fc->sget_key);
}

static int super_s_dev_test(struct super_block *s, struct fs_context *fc)
{
	return !(s->s_iflags & SB_I_RETIRED) &&
		s->s_dev == *(dev_t *)fc->sget_key;
}

/**
 * sget_dev - Find or create a superblock by device number
 * @fc: Filesystem context.
 * @dev: device number
 *
 * Find or create a superblock using the provided device number that
 * will be stored in fc->sget_key.
 *
 * If an extant superblock is matched, then that will be returned with
 * an elevated reference count that the caller must transfer or discard.
 *
 * If no match is made, a new superblock will be allocated and basic
 * initialisation will be performed (s_type, s_fs_info, s_id, s_dev will
 * be set). The superblock will be published and it will be returned in
 * a partially constructed state with SB_BORN and SB_ACTIVE as yet
 * unset.
 *
 * Return: an existing or newly created superblock on success, an error
 *         pointer on failure.
 */
struct super_block *sget_dev(struct fs_context *fc, dev_t dev)
{
	fc->sget_key = &dev;
	return sget_fc(fc, super_s_dev_test, super_s_dev_set);
}
EXPORT_SYMBOL(sget_dev);

#ifdef CONFIG_BLOCK
/*
 * Lock the superblock that is holder of the bdev. Returns the superblock
 * pointer if we successfully locked the superblock and it is alive. Otherwise
 * we return NULL and just unlock bdev->bd_holder_lock.
 *
 * The function must be called with bdev->bd_holder_lock and releases it.
 */
static struct super_block *bdev_super_lock(struct block_device *bdev, bool excl)
	__releases(&bdev->bd_holder_lock)
{
	struct super_block *sb = bdev->bd_holder;
	bool locked;

	lockdep_assert_held(&bdev->bd_holder_lock);
	lockdep_assert_not_held(&sb->s_umount);
	lockdep_assert_not_held(&bdev->bd_disk->open_mutex);

	/* Make sure sb doesn't go away from under us */
	spin_lock(&sb_lock);
	sb->s_count++;
	spin_unlock(&sb_lock);

	mutex_unlock(&bdev->bd_holder_lock);

	locked = super_lock(sb, excl);

	/*
	 * If the superblock wasn't already SB_DYING then we hold
	 * s_umount and can safely drop our temporary reference.
         */
	put_super(sb);

	if (!locked)
		return NULL;

	if (!sb->s_root || !(sb->s_flags & SB_ACTIVE)) {
		super_unlock(sb, excl);
		return NULL;
	}

	return sb;
}

static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise)
{
	struct super_block *sb;

	sb = bdev_super_lock(bdev, false);
	if (!sb)
		return;

	if (!surprise)
		sync_filesystem(sb);
	shrink_dcache_sb(sb);
	invalidate_inodes(sb);
	if (sb->s_op->shutdown)
		sb->s_op->shutdown(sb);

	super_unlock_shared(sb);
}

static void fs_bdev_sync(struct block_device *bdev)
{
	struct super_block *sb;

	sb = bdev_super_lock(bdev, false);
	if (!sb)
		return;

	sync_filesystem(sb);
	super_unlock_shared(sb);
}

static struct super_block *get_bdev_super(struct block_device *bdev)
{
	bool active = false;
	struct super_block *sb;

	sb = bdev_super_lock(bdev, true);
	if (sb) {
		active = atomic_inc_not_zero(&sb->s_active);
		super_unlock_excl(sb);
	}
	if (!active)
		return NULL;
	return sb;
}

/**
 * fs_bdev_freeze - freeze owning filesystem of block device
 * @bdev: block device
 *
 * Freeze the filesystem that owns this block device if it is still
 * active.
 *
 * A filesystem that owns multiple block devices may be frozen from each
 * block device and won't be unfrozen until all block devices are
 * unfrozen. Each block device can only freeze the filesystem once as we
 * nest freezes for block devices in the block layer.
 *
 * Return: If the freeze was successful zero is returned. If the freeze
 *         failed a negative error code is returned.
 */
static int fs_bdev_freeze(struct block_device *bdev)
{
	struct super_block *sb;
	int error = 0;

	lockdep_assert_held(&bdev->bd_fsfreeze_mutex);

	sb = get_bdev_super(bdev);
	if (!sb)
		return -EINVAL;

	if (sb->s_op->freeze_super)
		error = sb->s_op->freeze_super(sb,
				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
	else
		error = freeze_super(sb,
				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
	if (!error)
		error = sync_blockdev(bdev);
	deactivate_super(sb);
	return error;
}

/**
 * fs_bdev_thaw - thaw owning filesystem of block device
 * @bdev: block device
 *
 * Thaw the filesystem that owns this block device.
 *
 * A filesystem that owns multiple block devices may be frozen from each
 * block device and won't be unfrozen until all block devices are
 * unfrozen. Each block device can only freeze the filesystem once as we
 * nest freezes for block devices in the block layer.
 *
 * Return: If the thaw was successful zero is returned. If the thaw
 *         failed a negative error code is returned. If this function
 *         returns zero it doesn't mean that the filesystem is unfrozen
 *         as it may have been frozen multiple times (kernel may hold a
 *         freeze or might be frozen from other block devices).
 */
static int fs_bdev_thaw(struct block_device *bdev)
{
	struct super_block *sb;
	int error;

	lockdep_assert_held(&bdev->bd_fsfreeze_mutex);

	/*
	 * The block device may have been frozen before it was claimed by a
	 * filesystem. Concurrently another process might try to mount that
	 * frozen block device and has temporarily claimed the block device for
	 * that purpose causing a concurrent fs_bdev_thaw() to end up here. The
	 * mounter is already about to abort mounting because they still saw an
	 * elevanted bdev->bd_fsfreeze_count so get_bdev_super() will return
	 * NULL in that case.
	 */
	sb = get_bdev_super(bdev);
	if (!sb)
		return -EINVAL;

	if (sb->s_op->thaw_super)
		error = sb->s_op->thaw_super(sb,
				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
	else
		error = thaw_super(sb,
				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
	deactivate_super(sb);
	return error;
}

const struct blk_holder_ops fs_holder_ops = {
	.mark_dead		= fs_bdev_mark_dead,
	.sync			= fs_bdev_sync,
	.freeze			= fs_bdev_freeze,
	.thaw			= fs_bdev_thaw,
};
EXPORT_SYMBOL_GPL(fs_holder_ops);

int setup_bdev_super(struct super_block *sb, int sb_flags,
		struct fs_context *fc)
{
	blk_mode_t mode = sb_open_mode(sb_flags);
	struct file *bdev_file;
	struct block_device *bdev;

	bdev_file = bdev_file_open_by_dev(sb->s_dev, mode, sb, &fs_holder_ops);
	if (IS_ERR(bdev_file)) {
		if (fc)
			errorf(fc, "%s: Can't open blockdev", fc->source);
		return PTR_ERR(bdev_file);
	}
	bdev = file_bdev(bdev_file);

	/*
	 * This really should be in blkdev_get_by_dev, but right now can't due
	 * to legacy issues that require us to allow opening a block device node
	 * writable from userspace even for a read-only block device.
	 */
	if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) {
		bdev_fput(bdev_file);
		return -EACCES;
	}

	/*
	 * It is enough to check bdev was not frozen before we set
	 * s_bdev as freezing will wait until SB_BORN is set.
	 */
	if (atomic_read(&bdev->bd_fsfreeze_count) > 0) {
		if (fc)
			warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
		bdev_fput(bdev_file);
		return -EBUSY;
	}
	spin_lock(&sb_lock);
	sb->s_bdev_file = bdev_file;
	sb->s_bdev = bdev;
	sb->s_bdi = bdi_get(bdev->bd_disk->bdi);
	if (bdev_stable_writes(bdev))
		sb->s_iflags |= SB_I_STABLE_WRITES;
	spin_unlock(&sb_lock);

	snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
	shrinker_debugfs_rename(sb->s_shrink, "sb-%s:%s", sb->s_type->name,
				sb->s_id);
	sb_set_blocksize(sb, block_size(bdev));
	return 0;
}
EXPORT_SYMBOL_GPL(setup_bdev_super);

/**
 * get_tree_bdev - Get a superblock based on a single block device
 * @fc: The filesystem context holding the parameters
 * @fill_super: Helper to initialise a new superblock
 */
int get_tree_bdev(struct fs_context *fc,
		int (*fill_super)(struct super_block *,
				  struct fs_context *))
{
	struct super_block *s;
	int error = 0;
	dev_t dev;

	if (!fc->source)
		return invalf(fc, "No source specified");

	error = lookup_bdev(fc->source, &dev);
	if (error) {
		errorf(fc, "%s: Can't lookup blockdev", fc->source);
		return error;
	}

	fc->sb_flags |= SB_NOSEC;
	s = sget_dev(fc, dev);
	if (IS_ERR(s))
		return PTR_ERR(s);

	if (s->s_root) {
		/* Don't summarily change the RO/RW state. */
		if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
			warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev);
			deactivate_locked_super(s);
			return -EBUSY;
		}
	} else {
		error = setup_bdev_super(s, fc->sb_flags, fc);
		if (!error)
			error = fill_super(s, fc);
		if (error) {
			deactivate_locked_super(s);
			return error;
		}
		s->s_flags |= SB_ACTIVE;
	}

	BUG_ON(fc->root);
	fc->root = dget(s->s_root);
	return 0;
}
EXPORT_SYMBOL(get_tree_bdev);

static int test_bdev_super(struct super_block *s, void *data)
{
	return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data;
}

struct dentry *mount_bdev(struct file_system_type *fs_type,
	int flags, const char *dev_name, void *data,
	int (*fill_super)(struct super_block *, void *, int))
{
	struct super_block *s;
	int error;
	dev_t dev;

	error = lookup_bdev(dev_name, &dev);
	if (error)
		return ERR_PTR(error);

	flags |= SB_NOSEC;
	s = sget(fs_type, test_bdev_super, set_bdev_super, flags, &dev);
	if (IS_ERR(s))
		return ERR_CAST(s);

	if (s->s_root) {
		if ((flags ^ s->s_flags) & SB_RDONLY) {
			deactivate_locked_super(s);
			return ERR_PTR(-EBUSY);
		}
	} else {
		error = setup_bdev_super(s, flags, NULL);
		if (!error)
			error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
		if (error) {
			deactivate_locked_super(s);
			return ERR_PTR(error);
		}

		s->s_flags |= SB_ACTIVE;
	}

	return dget(s->s_root);
}
EXPORT_SYMBOL(mount_bdev);

void kill_block_super(struct super_block *sb)
{
	struct block_device *bdev = sb->s_bdev;

	generic_shutdown_super(sb);
	if (bdev) {
		sync_blockdev(bdev);
		bdev_fput(sb->s_bdev_file);
	}
}

EXPORT_SYMBOL(kill_block_super);
#endif

struct dentry *mount_nodev(struct file_system_type *fs_type,
	int flags, void *data,
	int (*fill_super)(struct super_block *, void *, int))
{
	int error;
	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);

	if (IS_ERR(s))
		return ERR_CAST(s);

	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
	if (error) {
		deactivate_locked_super(s);
		return ERR_PTR(error);
	}
	s->s_flags |= SB_ACTIVE;
	return dget(s->s_root);
}
EXPORT_SYMBOL(mount_nodev);

int reconfigure_single(struct super_block *s,
		       int flags, void *data)
{
	struct fs_context *fc;
	int ret;

	/* The caller really need to be passing fc down into mount_single(),
	 * then a chunk of this can be removed.  [Bollocks -- AV]
	 * Better yet, reconfiguration shouldn't happen, but rather the second
	 * mount should be rejected if the parameters are not compatible.
	 */
	fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
	if (IS_ERR(fc))
		return PTR_ERR(fc);

	ret = parse_monolithic_mount_data(fc, data);
	if (ret < 0)
		goto out;

	ret = reconfigure_super(fc);
out:
	put_fs_context(fc);
	return ret;
}

static int compare_single(struct super_block *s, void *p)
{
	return 1;
}

struct dentry *mount_single(struct file_system_type *fs_type,
	int flags, void *data,
	int (*fill_super)(struct super_block *, void *, int))
{
	struct super_block *s;
	int error;

	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
	if (IS_ERR(s))
		return ERR_CAST(s);
	if (!s->s_root) {
		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
		if (!error)
			s->s_flags |= SB_ACTIVE;
	} else {
		error = reconfigure_single(s, flags, data);
	}
	if (unlikely(error)) {
		deactivate_locked_super(s);
		return ERR_PTR(error);
	}
	return dget(s->s_root);
}
EXPORT_SYMBOL(mount_single);

/**
 * vfs_get_tree - Get the mountable root
 * @fc: The superblock configuration context.
 *
 * The filesystem is invoked to get or create a superblock which can then later
 * be used for mounting.  The filesystem places a pointer to the root to be
 * used for mounting in @fc->root.
 */
int vfs_get_tree(struct fs_context *fc)
{
	struct super_block *sb;
	int error;

	if (fc->root)
		return -EBUSY;

	/* Get the mountable root in fc->root, with a ref on the root and a ref
	 * on the superblock.
	 */
	error = fc->ops->get_tree(fc);
	if (error < 0)
		return error;

	if (!fc->root) {
		pr_err("Filesystem %s get_tree() didn't set fc->root\n",
		       fc->fs_type->name);
		/* We don't know what the locking state of the superblock is -
		 * if there is a superblock.
		 */
		BUG();
	}

	sb = fc->root->d_sb;
	WARN_ON(!sb->s_bdi);

	/*
	 * super_wake() contains a memory barrier which also care of
	 * ordering for super_cache_count(). We place it before setting
	 * SB_BORN as the data dependency between the two functions is
	 * the superblock structure contents that we just set up, not
	 * the SB_BORN flag.
	 */
	super_wake(sb, SB_BORN);

	error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
	if (unlikely(error)) {
		fc_drop_locked(fc);
		return error;
	}

	/*
	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
	 * but s_maxbytes was an unsigned long long for many releases. Throw
	 * this warning for a little while to try and catch filesystems that
	 * violate this rule.
	 */
	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
		"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);

	return 0;
}
EXPORT_SYMBOL(vfs_get_tree);

/*
 * Setup private BDI for given superblock. It gets automatically cleaned up
 * in generic_shutdown_super().
 */
int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
{
	struct backing_dev_info *bdi;
	int err;
	va_list args;

	bdi = bdi_alloc(NUMA_NO_NODE);
	if (!bdi)
		return -ENOMEM;

	va_start(args, fmt);
	err = bdi_register_va(bdi, fmt, args);
	va_end(args);
	if (err) {
		bdi_put(bdi);
		return err;
	}
	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
	sb->s_bdi = bdi;
	sb->s_iflags |= SB_I_PERSB_BDI;

	return 0;
}
EXPORT_SYMBOL(super_setup_bdi_name);

/*
 * Setup private BDI for given superblock. I gets automatically cleaned up
 * in generic_shutdown_super().
 */
int super_setup_bdi(struct super_block *sb)
{
	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);

	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
				    atomic_long_inc_return(&bdi_seq));
}
EXPORT_SYMBOL(super_setup_bdi);

/**
 * sb_wait_write - wait until all writers to given file system finish
 * @sb: the super for which we wait
 * @level: type of writers we wait for (normal vs page fault)
 *
 * This function waits until there are no writers of given type to given file
 * system.
 */
static void sb_wait_write(struct super_block *sb, int level)
{
	percpu_down_write(sb->s_writers.rw_sem + level-1);
}

/*
 * We are going to return to userspace and forget about these locks, the
 * ownership goes to the caller of thaw_super() which does unlock().
 */
static void lockdep_sb_freeze_release(struct super_block *sb)
{
	int level;

	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
}

/*
 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
 */
static void lockdep_sb_freeze_acquire(struct super_block *sb)
{
	int level;

	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
}

static void sb_freeze_unlock(struct super_block *sb, int level)
{
	for (level--; level >= 0; level--)
		percpu_up_write(sb->s_writers.rw_sem + level);
}

static int wait_for_partially_frozen(struct super_block *sb)
{
	int ret = 0;

	do {
		unsigned short old = sb->s_writers.frozen;

		up_write(&sb->s_umount);
		ret = wait_var_event_killable(&sb->s_writers.frozen,
					       sb->s_writers.frozen != old);
		down_write(&sb->s_umount);
	} while (ret == 0 &&
		 sb->s_writers.frozen != SB_UNFROZEN &&
		 sb->s_writers.frozen != SB_FREEZE_COMPLETE);

	return ret;
}

#define FREEZE_HOLDERS (FREEZE_HOLDER_KERNEL | FREEZE_HOLDER_USERSPACE)
#define FREEZE_FLAGS (FREEZE_HOLDERS | FREEZE_MAY_NEST)

static inline int freeze_inc(struct super_block *sb, enum freeze_holder who)
{
	WARN_ON_ONCE((who & ~FREEZE_FLAGS));
	WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);

	if (who & FREEZE_HOLDER_KERNEL)
		++sb->s_writers.freeze_kcount;
	if (who & FREEZE_HOLDER_USERSPACE)
		++sb->s_writers.freeze_ucount;
	return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount;
}

static inline int freeze_dec(struct super_block *sb, enum freeze_holder who)
{
	WARN_ON_ONCE((who & ~FREEZE_FLAGS));
	WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);

	if ((who & FREEZE_HOLDER_KERNEL) && sb->s_writers.freeze_kcount)
		--sb->s_writers.freeze_kcount;
	if ((who & FREEZE_HOLDER_USERSPACE) && sb->s_writers.freeze_ucount)
		--sb->s_writers.freeze_ucount;
	return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount;
}

static inline bool may_freeze(struct super_block *sb, enum freeze_holder who)
{
	WARN_ON_ONCE((who & ~FREEZE_FLAGS));
	WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);

	if (who & FREEZE_HOLDER_KERNEL)
		return (who & FREEZE_MAY_NEST) ||
		       sb->s_writers.freeze_kcount == 0;
	if (who & FREEZE_HOLDER_USERSPACE)
		return (who & FREEZE_MAY_NEST) ||
		       sb->s_writers.freeze_ucount == 0;
	return false;
}

/**
 * freeze_super - lock the filesystem and force it into a consistent state
 * @sb: the super to lock
 * @who: context that wants to freeze
 *
 * Syncs the super to make sure the filesystem is consistent and calls the fs's
 * freeze_fs.  Subsequent calls to this without first thawing the fs may return
 * -EBUSY.
 *
 * @who should be:
 * * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs;
 * * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs.
 * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed.
 *
 * The @who argument distinguishes between the kernel and userspace trying to
 * freeze the filesystem.  Although there cannot be multiple kernel freezes or
 * multiple userspace freezes in effect at any given time, the kernel and
 * userspace can both hold a filesystem frozen.  The filesystem remains frozen
 * until there are no kernel or userspace freezes in effect.
 *
 * A filesystem may hold multiple devices and thus a filesystems may be
 * frozen through the block layer via multiple block devices. In this
 * case the request is marked as being allowed to nest by passing
 * FREEZE_MAY_NEST. The filesystem remains frozen until all block
 * devices are unfrozen. If multiple freezes are attempted without
 * FREEZE_MAY_NEST -EBUSY will be returned.
 *
 * During this function, sb->s_writers.frozen goes through these values:
 *
 * SB_UNFROZEN: File system is normal, all writes progress as usual.
 *
 * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
 * writes should be blocked, though page faults are still allowed. We wait for
 * all writes to complete and then proceed to the next stage.
 *
 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
 * but internal fs threads can still modify the filesystem (although they
 * should not dirty new pages or inodes), writeback can run etc. After waiting
 * for all running page faults we sync the filesystem which will clean all
 * dirty pages and inodes (no new dirty pages or inodes can be created when
 * sync is running).
 *
 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
 * modification are blocked (e.g. XFS preallocation truncation on inode
 * reclaim). This is usually implemented by blocking new transactions for
 * filesystems that have them and need this additional guard. After all
 * internal writers are finished we call ->freeze_fs() to finish filesystem
 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
 *
 * sb->s_writers.frozen is protected by sb->s_umount.
 *
 * Return: If the freeze was successful zero is returned. If the freeze
 *         failed a negative error code is returned.
 */
int freeze_super(struct super_block *sb, enum freeze_holder who)
{
	int ret;

	if (!super_lock_excl(sb)) {
		WARN_ON_ONCE("Dying superblock while freezing!");
		return -EINVAL;
	}
	atomic_inc(&sb->s_active);

retry:
	if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) {
		if (may_freeze(sb, who))
			ret = !!WARN_ON_ONCE(freeze_inc(sb, who) == 1);
		else
			ret = -EBUSY;
		/* All freezers share a single active reference. */
		deactivate_locked_super(sb);
		return ret;
	}

	if (sb->s_writers.frozen != SB_UNFROZEN) {
		ret = wait_for_partially_frozen(sb);
		if (ret) {
			deactivate_locked_super(sb);
			return ret;
		}

		goto retry;
	}

	if (sb_rdonly(sb)) {
		/* Nothing to do really... */
		WARN_ON_ONCE(freeze_inc(sb, who) > 1);
		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
		wake_up_var(&sb->s_writers.frozen);
		super_unlock_excl(sb);
		return 0;
	}

	sb->s_writers.frozen = SB_FREEZE_WRITE;
	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
	super_unlock_excl(sb);
	sb_wait_write(sb, SB_FREEZE_WRITE);
	__super_lock_excl(sb);

	/* Now we go and block page faults... */
	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);

	/* All writers are done so after syncing there won't be dirty data */
	ret = sync_filesystem(sb);
	if (ret) {
		sb->s_writers.frozen = SB_UNFROZEN;
		sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
		wake_up_var(&sb->s_writers.frozen);
		deactivate_locked_super(sb);
		return ret;
	}

	/* Now wait for internal filesystem counter */
	sb->s_writers.frozen = SB_FREEZE_FS;
	sb_wait_write(sb, SB_FREEZE_FS);

	if (sb->s_op->freeze_fs) {
		ret = sb->s_op->freeze_fs(sb);
		if (ret) {
			printk(KERN_ERR
				"VFS:Filesystem freeze failed\n");
			sb->s_writers.frozen = SB_UNFROZEN;
			sb_freeze_unlock(sb, SB_FREEZE_FS);
			wake_up_var(&sb->s_writers.frozen);
			deactivate_locked_super(sb);
			return ret;
		}
	}
	/*
	 * For debugging purposes so that fs can warn if it sees write activity
	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
	 */
	WARN_ON_ONCE(freeze_inc(sb, who) > 1);
	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
	wake_up_var(&sb->s_writers.frozen);
	lockdep_sb_freeze_release(sb);
	super_unlock_excl(sb);
	return 0;
}
EXPORT_SYMBOL(freeze_super);

/*
 * Undoes the effect of a freeze_super_locked call.  If the filesystem is
 * frozen both by userspace and the kernel, a thaw call from either source
 * removes that state without releasing the other state or unlocking the
 * filesystem.
 */
static int thaw_super_locked(struct super_block *sb, enum freeze_holder who)
{
	int error = -EINVAL;

	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE)
		goto out_unlock;

	/*
	 * All freezers share a single active reference.
	 * So just unlock in case there are any left.
	 */
	if (freeze_dec(sb, who))
		goto out_unlock;

	if (sb_rdonly(sb)) {
		sb->s_writers.frozen = SB_UNFROZEN;
		wake_up_var(&sb->s_writers.frozen);
		goto out_deactivate;
	}

	lockdep_sb_freeze_acquire(sb);

	if (sb->s_op->unfreeze_fs) {
		error = sb->s_op->unfreeze_fs(sb);
		if (error) {
			pr_err("VFS: Filesystem thaw failed\n");
			freeze_inc(sb, who);
			lockdep_sb_freeze_release(sb);
			goto out_unlock;
		}
	}

	sb->s_writers.frozen = SB_UNFROZEN;
	wake_up_var(&sb->s_writers.frozen);
	sb_freeze_unlock(sb, SB_FREEZE_FS);
out_deactivate:
	deactivate_locked_super(sb);
	return 0;

out_unlock:
	super_unlock_excl(sb);
	return error;
}

/**
 * thaw_super -- unlock filesystem
 * @sb: the super to thaw
 * @who: context that wants to freeze
 *
 * Unlocks the filesystem and marks it writeable again after freeze_super()
 * if there are no remaining freezes on the filesystem.
 *
 * @who should be:
 * * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs;
 * * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs.
 * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed
 *
 * A filesystem may hold multiple devices and thus a filesystems may
 * have been frozen through the block layer via multiple block devices.
 * The filesystem remains frozen until all block devices are unfrozen.
 */
int thaw_super(struct super_block *sb, enum freeze_holder who)
{
	if (!super_lock_excl(sb)) {
		WARN_ON_ONCE("Dying superblock while thawing!");
		return -EINVAL;
	}
	return thaw_super_locked(sb, who);
}
EXPORT_SYMBOL(thaw_super);

/*
 * Create workqueue for deferred direct IO completions. We allocate the
 * workqueue when it's first needed. This avoids creating workqueue for
 * filesystems that don't need it and also allows us to create the workqueue
 * late enough so the we can include s_id in the name of the workqueue.
 */
int sb_init_dio_done_wq(struct super_block *sb)
{
	struct workqueue_struct *old;
	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
						      WQ_MEM_RECLAIM, 0,
						      sb->s_id);
	if (!wq)
		return -ENOMEM;
	/*
	 * This has to be atomic as more DIOs can race to create the workqueue
	 */
	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
	/* Someone created workqueue before us? Free ours... */
	if (old)
		destroy_workqueue(wq);
	return 0;
}
EXPORT_SYMBOL_GPL(sb_init_dio_done_wq);