Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 | // SPDX-License-Identifier: GPL-2.0 /* * xHCI host controller driver * * Copyright (C) 2008 Intel Corp. * * Author: Sarah Sharp * Some code borrowed from the Linux EHCI driver. */ #include <linux/usb.h> #include <linux/overflow.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/dmapool.h> #include <linux/dma-mapping.h> #include "xhci.h" #include "xhci-trace.h" #include "xhci-debugfs.h" /* * Allocates a generic ring segment from the ring pool, sets the dma address, * initializes the segment to zero, and sets the private next pointer to NULL. * * Section 4.11.1.1: * "All components of all Command and Transfer TRBs shall be initialized to '0'" */ static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, unsigned int cycle_state, unsigned int max_packet, unsigned int num, gfp_t flags) { struct xhci_segment *seg; dma_addr_t dma; int i; struct device *dev = xhci_to_hcd(xhci)->self.sysdev; seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev)); if (!seg) return NULL; seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma); if (!seg->trbs) { kfree(seg); return NULL; } if (max_packet) { seg->bounce_buf = kzalloc_node(max_packet, flags, dev_to_node(dev)); if (!seg->bounce_buf) { dma_pool_free(xhci->segment_pool, seg->trbs, dma); kfree(seg); return NULL; } } /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */ if (cycle_state == 0) { for (i = 0; i < TRBS_PER_SEGMENT; i++) seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE); } seg->num = num; seg->dma = dma; seg->next = NULL; return seg; } static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg) { if (seg->trbs) { dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma); seg->trbs = NULL; } kfree(seg->bounce_buf); kfree(seg); } static void xhci_free_segments_for_ring(struct xhci_hcd *xhci, struct xhci_segment *first) { struct xhci_segment *seg; seg = first->next; while (seg && seg != first) { struct xhci_segment *next = seg->next; xhci_segment_free(xhci, seg); seg = next; } xhci_segment_free(xhci, first); } /* * Make the prev segment point to the next segment. * * Change the last TRB in the prev segment to be a Link TRB which points to the * DMA address of the next segment. The caller needs to set any Link TRB * related flags, such as End TRB, Toggle Cycle, and no snoop. */ static void xhci_link_segments(struct xhci_segment *prev, struct xhci_segment *next, enum xhci_ring_type type, bool chain_links) { u32 val; if (!prev || !next) return; prev->next = next; if (type != TYPE_EVENT) { prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = cpu_to_le64(next->dma); /* Set the last TRB in the segment to have a TRB type ID of Link TRB */ val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control); val &= ~TRB_TYPE_BITMASK; val |= TRB_TYPE(TRB_LINK); if (chain_links) val |= TRB_CHAIN; prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val); } } /* * Link the ring to the new segments. * Set Toggle Cycle for the new ring if needed. */ static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring, struct xhci_segment *first, struct xhci_segment *last, unsigned int num_segs) { struct xhci_segment *next, *seg; bool chain_links; if (!ring || !first || !last) return; /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */ chain_links = !!(xhci_link_trb_quirk(xhci) || (ring->type == TYPE_ISOC && (xhci->quirks & XHCI_AMD_0x96_HOST))); next = ring->enq_seg->next; xhci_link_segments(ring->enq_seg, first, ring->type, chain_links); xhci_link_segments(last, next, ring->type, chain_links); ring->num_segs += num_segs; if (ring->enq_seg == ring->last_seg) { if (ring->type != TYPE_EVENT) { ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control &= ~cpu_to_le32(LINK_TOGGLE); last->trbs[TRBS_PER_SEGMENT-1].link.control |= cpu_to_le32(LINK_TOGGLE); } ring->last_seg = last; } for (seg = last; seg != ring->last_seg; seg = seg->next) seg->next->num = seg->num + 1; } /* * We need a radix tree for mapping physical addresses of TRBs to which stream * ID they belong to. We need to do this because the host controller won't tell * us which stream ring the TRB came from. We could store the stream ID in an * event data TRB, but that doesn't help us for the cancellation case, since the * endpoint may stop before it reaches that event data TRB. * * The radix tree maps the upper portion of the TRB DMA address to a ring * segment that has the same upper portion of DMA addresses. For example, say I * have segments of size 1KB, that are always 1KB aligned. A segment may * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the * key to the stream ID is 0x43244. I can use the DMA address of the TRB to * pass the radix tree a key to get the right stream ID: * * 0x10c90fff >> 10 = 0x43243 * 0x10c912c0 >> 10 = 0x43244 * 0x10c91400 >> 10 = 0x43245 * * Obviously, only those TRBs with DMA addresses that are within the segment * will make the radix tree return the stream ID for that ring. * * Caveats for the radix tree: * * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit * extended systems (where the DMA address can be bigger than 32-bits), * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that. */ static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map, struct xhci_ring *ring, struct xhci_segment *seg, gfp_t mem_flags) { unsigned long key; int ret; key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); /* Skip any segments that were already added. */ if (radix_tree_lookup(trb_address_map, key)) return 0; ret = radix_tree_maybe_preload(mem_flags); if (ret) return ret; ret = radix_tree_insert(trb_address_map, key, ring); radix_tree_preload_end(); return ret; } static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map, struct xhci_segment *seg) { unsigned long key; key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); if (radix_tree_lookup(trb_address_map, key)) radix_tree_delete(trb_address_map, key); } static int xhci_update_stream_segment_mapping( struct radix_tree_root *trb_address_map, struct xhci_ring *ring, struct xhci_segment *first_seg, struct xhci_segment *last_seg, gfp_t mem_flags) { struct xhci_segment *seg; struct xhci_segment *failed_seg; int ret; if (WARN_ON_ONCE(trb_address_map == NULL)) return 0; seg = first_seg; do { ret = xhci_insert_segment_mapping(trb_address_map, ring, seg, mem_flags); if (ret) goto remove_streams; if (seg == last_seg) return 0; seg = seg->next; } while (seg != first_seg); return 0; remove_streams: failed_seg = seg; seg = first_seg; do { xhci_remove_segment_mapping(trb_address_map, seg); if (seg == failed_seg) return ret; seg = seg->next; } while (seg != first_seg); return ret; } static void xhci_remove_stream_mapping(struct xhci_ring *ring) { struct xhci_segment *seg; if (WARN_ON_ONCE(ring->trb_address_map == NULL)) return; seg = ring->first_seg; do { xhci_remove_segment_mapping(ring->trb_address_map, seg); seg = seg->next; } while (seg != ring->first_seg); } static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags) { return xhci_update_stream_segment_mapping(ring->trb_address_map, ring, ring->first_seg, ring->last_seg, mem_flags); } /* XXX: Do we need the hcd structure in all these functions? */ void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring) { if (!ring) return; trace_xhci_ring_free(ring); if (ring->first_seg) { if (ring->type == TYPE_STREAM) xhci_remove_stream_mapping(ring); xhci_free_segments_for_ring(xhci, ring->first_seg); } kfree(ring); } void xhci_initialize_ring_info(struct xhci_ring *ring, unsigned int cycle_state) { /* The ring is empty, so the enqueue pointer == dequeue pointer */ ring->enqueue = ring->first_seg->trbs; ring->enq_seg = ring->first_seg; ring->dequeue = ring->enqueue; ring->deq_seg = ring->first_seg; /* The ring is initialized to 0. The producer must write 1 to the cycle * bit to handover ownership of the TRB, so PCS = 1. The consumer must * compare CCS to the cycle bit to check ownership, so CCS = 1. * * New rings are initialized with cycle state equal to 1; if we are * handling ring expansion, set the cycle state equal to the old ring. */ ring->cycle_state = cycle_state; /* * Each segment has a link TRB, and leave an extra TRB for SW * accounting purpose */ ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; } EXPORT_SYMBOL_GPL(xhci_initialize_ring_info); /* Allocate segments and link them for a ring */ static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, struct xhci_segment **first, struct xhci_segment **last, unsigned int num_segs, unsigned int num, unsigned int cycle_state, enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) { struct xhci_segment *prev; bool chain_links; /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */ chain_links = !!(xhci_link_trb_quirk(xhci) || (type == TYPE_ISOC && (xhci->quirks & XHCI_AMD_0x96_HOST))); prev = xhci_segment_alloc(xhci, cycle_state, max_packet, num, flags); if (!prev) return -ENOMEM; num++; *first = prev; while (num < num_segs) { struct xhci_segment *next; next = xhci_segment_alloc(xhci, cycle_state, max_packet, num, flags); if (!next) goto free_segments; xhci_link_segments(prev, next, type, chain_links); prev = next; num++; } xhci_link_segments(prev, *first, type, chain_links); *last = prev; return 0; free_segments: xhci_free_segments_for_ring(xhci, *first); return -ENOMEM; } /* * Create a new ring with zero or more segments. * * Link each segment together into a ring. * Set the end flag and the cycle toggle bit on the last segment. * See section 4.9.1 and figures 15 and 16. */ struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, unsigned int num_segs, unsigned int cycle_state, enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) { struct xhci_ring *ring; int ret; struct device *dev = xhci_to_hcd(xhci)->self.sysdev; ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev)); if (!ring) return NULL; ring->num_segs = num_segs; ring->bounce_buf_len = max_packet; INIT_LIST_HEAD(&ring->td_list); ring->type = type; if (num_segs == 0) return ring; ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg, &ring->last_seg, num_segs, 0, cycle_state, type, max_packet, flags); if (ret) goto fail; /* Only event ring does not use link TRB */ if (type != TYPE_EVENT) { /* See section 4.9.2.1 and 6.4.4.1 */ ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= cpu_to_le32(LINK_TOGGLE); } xhci_initialize_ring_info(ring, cycle_state); trace_xhci_ring_alloc(ring); return ring; fail: kfree(ring); return NULL; } void xhci_free_endpoint_ring(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev, unsigned int ep_index) { xhci_ring_free(xhci, virt_dev->eps[ep_index].ring); virt_dev->eps[ep_index].ring = NULL; } /* * Expand an existing ring. * Allocate a new ring which has same segment numbers and link the two rings. */ int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring, unsigned int num_new_segs, gfp_t flags) { struct xhci_segment *first; struct xhci_segment *last; int ret; ret = xhci_alloc_segments_for_ring(xhci, &first, &last, num_new_segs, ring->enq_seg->num + 1, ring->cycle_state, ring->type, ring->bounce_buf_len, flags); if (ret) return -ENOMEM; if (ring->type == TYPE_STREAM) { ret = xhci_update_stream_segment_mapping(ring->trb_address_map, ring, first, last, flags); if (ret) goto free_segments; } xhci_link_rings(xhci, ring, first, last, num_new_segs); trace_xhci_ring_expansion(ring); xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, "ring expansion succeed, now has %d segments", ring->num_segs); return 0; free_segments: xhci_free_segments_for_ring(xhci, first); return ret; } struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci, int type, gfp_t flags) { struct xhci_container_ctx *ctx; struct device *dev = xhci_to_hcd(xhci)->self.sysdev; if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)) return NULL; ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev)); if (!ctx) return NULL; ctx->type = type; ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024; if (type == XHCI_CTX_TYPE_INPUT) ctx->size += CTX_SIZE(xhci->hcc_params); ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma); if (!ctx->bytes) { kfree(ctx); return NULL; } return ctx; } void xhci_free_container_ctx(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx) { if (!ctx) return; dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma); kfree(ctx); } struct xhci_input_control_ctx *xhci_get_input_control_ctx( struct xhci_container_ctx *ctx) { if (ctx->type != XHCI_CTX_TYPE_INPUT) return NULL; return (struct xhci_input_control_ctx *)ctx->bytes; } struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx) { if (ctx->type == XHCI_CTX_TYPE_DEVICE) return (struct xhci_slot_ctx *)ctx->bytes; return (struct xhci_slot_ctx *) (ctx->bytes + CTX_SIZE(xhci->hcc_params)); } struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx, unsigned int ep_index) { /* increment ep index by offset of start of ep ctx array */ ep_index++; if (ctx->type == XHCI_CTX_TYPE_INPUT) ep_index++; return (struct xhci_ep_ctx *) (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params))); } EXPORT_SYMBOL_GPL(xhci_get_ep_ctx); /***************** Streams structures manipulation *************************/ static void xhci_free_stream_ctx(struct xhci_hcd *xhci, unsigned int num_stream_ctxs, struct xhci_stream_ctx *stream_ctx, dma_addr_t dma) { struct device *dev = xhci_to_hcd(xhci)->self.sysdev; size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs; if (size > MEDIUM_STREAM_ARRAY_SIZE) dma_free_coherent(dev, size, stream_ctx, dma); else if (size > SMALL_STREAM_ARRAY_SIZE) dma_pool_free(xhci->medium_streams_pool, stream_ctx, dma); else dma_pool_free(xhci->small_streams_pool, stream_ctx, dma); } /* * The stream context array for each endpoint with bulk streams enabled can * vary in size, based on: * - how many streams the endpoint supports, * - the maximum primary stream array size the host controller supports, * - and how many streams the device driver asks for. * * The stream context array must be a power of 2, and can be as small as * 64 bytes or as large as 1MB. */ static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci, unsigned int num_stream_ctxs, dma_addr_t *dma, gfp_t mem_flags) { struct device *dev = xhci_to_hcd(xhci)->self.sysdev; size_t size = size_mul(sizeof(struct xhci_stream_ctx), num_stream_ctxs); if (size > MEDIUM_STREAM_ARRAY_SIZE) return dma_alloc_coherent(dev, size, dma, mem_flags); if (size > SMALL_STREAM_ARRAY_SIZE) return dma_pool_zalloc(xhci->medium_streams_pool, mem_flags, dma); else return dma_pool_zalloc(xhci->small_streams_pool, mem_flags, dma); } struct xhci_ring *xhci_dma_to_transfer_ring( struct xhci_virt_ep *ep, u64 address) { if (ep->ep_state & EP_HAS_STREAMS) return radix_tree_lookup(&ep->stream_info->trb_address_map, address >> TRB_SEGMENT_SHIFT); return ep->ring; } /* * Change an endpoint's internal structure so it supports stream IDs. The * number of requested streams includes stream 0, which cannot be used by device * drivers. * * The number of stream contexts in the stream context array may be bigger than * the number of streams the driver wants to use. This is because the number of * stream context array entries must be a power of two. */ struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci, unsigned int num_stream_ctxs, unsigned int num_streams, unsigned int max_packet, gfp_t mem_flags) { struct xhci_stream_info *stream_info; u32 cur_stream; struct xhci_ring *cur_ring; u64 addr; int ret; struct device *dev = xhci_to_hcd(xhci)->self.sysdev; xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n", num_streams, num_stream_ctxs); if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) { xhci_dbg(xhci, "Command ring has no reserved TRBs available\n"); return NULL; } xhci->cmd_ring_reserved_trbs++; stream_info = kzalloc_node(sizeof(*stream_info), mem_flags, dev_to_node(dev)); if (!stream_info) goto cleanup_trbs; stream_info->num_streams = num_streams; stream_info->num_stream_ctxs = num_stream_ctxs; /* Initialize the array of virtual pointers to stream rings. */ stream_info->stream_rings = kcalloc_node( num_streams, sizeof(struct xhci_ring *), mem_flags, dev_to_node(dev)); if (!stream_info->stream_rings) goto cleanup_info; /* Initialize the array of DMA addresses for stream rings for the HW. */ stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci, num_stream_ctxs, &stream_info->ctx_array_dma, mem_flags); if (!stream_info->stream_ctx_array) goto cleanup_ring_array; /* Allocate everything needed to free the stream rings later */ stream_info->free_streams_command = xhci_alloc_command_with_ctx(xhci, true, mem_flags); if (!stream_info->free_streams_command) goto cleanup_ctx; INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); /* Allocate rings for all the streams that the driver will use, * and add their segment DMA addresses to the radix tree. * Stream 0 is reserved. */ for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { stream_info->stream_rings[cur_stream] = xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet, mem_flags); cur_ring = stream_info->stream_rings[cur_stream]; if (!cur_ring) goto cleanup_rings; cur_ring->stream_id = cur_stream; cur_ring->trb_address_map = &stream_info->trb_address_map; /* Set deq ptr, cycle bit, and stream context type */ addr = cur_ring->first_seg->dma | SCT_FOR_CTX(SCT_PRI_TR) | cur_ring->cycle_state; stream_info->stream_ctx_array[cur_stream].stream_ring = cpu_to_le64(addr); xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr); ret = xhci_update_stream_mapping(cur_ring, mem_flags); if (ret) { xhci_ring_free(xhci, cur_ring); stream_info->stream_rings[cur_stream] = NULL; goto cleanup_rings; } } /* Leave the other unused stream ring pointers in the stream context * array initialized to zero. This will cause the xHC to give us an * error if the device asks for a stream ID we don't have setup (if it * was any other way, the host controller would assume the ring is * "empty" and wait forever for data to be queued to that stream ID). */ return stream_info; cleanup_rings: for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { cur_ring = stream_info->stream_rings[cur_stream]; if (cur_ring) { xhci_ring_free(xhci, cur_ring); stream_info->stream_rings[cur_stream] = NULL; } } xhci_free_command(xhci, stream_info->free_streams_command); cleanup_ctx: xhci_free_stream_ctx(xhci, stream_info->num_stream_ctxs, stream_info->stream_ctx_array, stream_info->ctx_array_dma); cleanup_ring_array: kfree(stream_info->stream_rings); cleanup_info: kfree(stream_info); cleanup_trbs: xhci->cmd_ring_reserved_trbs--; return NULL; } /* * Sets the MaxPStreams field and the Linear Stream Array field. * Sets the dequeue pointer to the stream context array. */ void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci, struct xhci_ep_ctx *ep_ctx, struct xhci_stream_info *stream_info) { u32 max_primary_streams; /* MaxPStreams is the number of stream context array entries, not the * number we're actually using. Must be in 2^(MaxPstreams + 1) format. * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. */ max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, "Setting number of stream ctx array entries to %u", 1 << (max_primary_streams + 1)); ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) | EP_HAS_LSA); ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma); } /* * Sets the MaxPStreams field and the Linear Stream Array field to 0. * Reinstalls the "normal" endpoint ring (at its previous dequeue mark, * not at the beginning of the ring). */ void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx, struct xhci_virt_ep *ep) { dma_addr_t addr; ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA)); addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue); ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state); } /* Frees all stream contexts associated with the endpoint, * * Caller should fix the endpoint context streams fields. */ void xhci_free_stream_info(struct xhci_hcd *xhci, struct xhci_stream_info *stream_info) { int cur_stream; struct xhci_ring *cur_ring; if (!stream_info) return; for (cur_stream = 1; cur_stream < stream_info->num_streams; cur_stream++) { cur_ring = stream_info->stream_rings[cur_stream]; if (cur_ring) { xhci_ring_free(xhci, cur_ring); stream_info->stream_rings[cur_stream] = NULL; } } xhci_free_command(xhci, stream_info->free_streams_command); xhci->cmd_ring_reserved_trbs--; if (stream_info->stream_ctx_array) xhci_free_stream_ctx(xhci, stream_info->num_stream_ctxs, stream_info->stream_ctx_array, stream_info->ctx_array_dma); kfree(stream_info->stream_rings); kfree(stream_info); } /***************** Device context manipulation *************************/ static void xhci_free_tt_info(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev, int slot_id) { struct list_head *tt_list_head; struct xhci_tt_bw_info *tt_info, *next; bool slot_found = false; /* If the device never made it past the Set Address stage, * it may not have the root hub port pointer set correctly. */ if (!virt_dev->rhub_port) { xhci_dbg(xhci, "Bad rhub port.\n"); return; } tt_list_head = &(xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts); list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { /* Multi-TT hubs will have more than one entry */ if (tt_info->slot_id == slot_id) { slot_found = true; list_del(&tt_info->tt_list); kfree(tt_info); } else if (slot_found) { break; } } } int xhci_alloc_tt_info(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev, struct usb_device *hdev, struct usb_tt *tt, gfp_t mem_flags) { struct xhci_tt_bw_info *tt_info; unsigned int num_ports; int i, j; struct device *dev = xhci_to_hcd(xhci)->self.sysdev; if (!tt->multi) num_ports = 1; else num_ports = hdev->maxchild; for (i = 0; i < num_ports; i++, tt_info++) { struct xhci_interval_bw_table *bw_table; tt_info = kzalloc_node(sizeof(*tt_info), mem_flags, dev_to_node(dev)); if (!tt_info) goto free_tts; INIT_LIST_HEAD(&tt_info->tt_list); list_add(&tt_info->tt_list, &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts); tt_info->slot_id = virt_dev->udev->slot_id; if (tt->multi) tt_info->ttport = i+1; bw_table = &tt_info->bw_table; for (j = 0; j < XHCI_MAX_INTERVAL; j++) INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); } return 0; free_tts: xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id); return -ENOMEM; } /* All the xhci_tds in the ring's TD list should be freed at this point. * Should be called with xhci->lock held if there is any chance the TT lists * will be manipulated by the configure endpoint, allocate device, or update * hub functions while this function is removing the TT entries from the list. */ void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id) { struct xhci_virt_device *dev; int i; int old_active_eps = 0; /* Slot ID 0 is reserved */ if (slot_id == 0 || !xhci->devs[slot_id]) return; dev = xhci->devs[slot_id]; xhci->dcbaa->dev_context_ptrs[slot_id] = 0; if (!dev) return; trace_xhci_free_virt_device(dev); if (dev->tt_info) old_active_eps = dev->tt_info->active_eps; for (i = 0; i < 31; i++) { if (dev->eps[i].ring) xhci_ring_free(xhci, dev->eps[i].ring); if (dev->eps[i].stream_info) xhci_free_stream_info(xhci, dev->eps[i].stream_info); /* * Endpoints are normally deleted from the bandwidth list when * endpoints are dropped, before device is freed. * If host is dying or being removed then endpoints aren't * dropped cleanly, so delete the endpoint from list here. * Only applicable for hosts with software bandwidth checking. */ if (!list_empty(&dev->eps[i].bw_endpoint_list)) { list_del_init(&dev->eps[i].bw_endpoint_list); xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n", slot_id, i); } } /* If this is a hub, free the TT(s) from the TT list */ xhci_free_tt_info(xhci, dev, slot_id); /* If necessary, update the number of active TTs on this root port */ xhci_update_tt_active_eps(xhci, dev, old_active_eps); if (dev->in_ctx) xhci_free_container_ctx(xhci, dev->in_ctx); if (dev->out_ctx) xhci_free_container_ctx(xhci, dev->out_ctx); if (dev->udev && dev->udev->slot_id) dev->udev->slot_id = 0; if (dev->rhub_port && dev->rhub_port->slot_id == slot_id) dev->rhub_port->slot_id = 0; kfree(xhci->devs[slot_id]); xhci->devs[slot_id] = NULL; } /* * Free a virt_device structure. * If the virt_device added a tt_info (a hub) and has children pointing to * that tt_info, then free the child first. Recursive. * We can't rely on udev at this point to find child-parent relationships. */ static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id) { struct xhci_virt_device *vdev; struct list_head *tt_list_head; struct xhci_tt_bw_info *tt_info, *next; int i; vdev = xhci->devs[slot_id]; if (!vdev) return; if (!vdev->rhub_port) { xhci_dbg(xhci, "Bad rhub port.\n"); goto out; } tt_list_head = &(xhci->rh_bw[vdev->rhub_port->hw_portnum].tts); list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { /* is this a hub device that added a tt_info to the tts list */ if (tt_info->slot_id == slot_id) { /* are any devices using this tt_info? */ for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) { vdev = xhci->devs[i]; if (vdev && (vdev->tt_info == tt_info)) xhci_free_virt_devices_depth_first( xhci, i); } } } out: /* we are now at a leaf device */ xhci_debugfs_remove_slot(xhci, slot_id); xhci_free_virt_device(xhci, slot_id); } int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, struct usb_device *udev, gfp_t flags) { struct xhci_virt_device *dev; int i; /* Slot ID 0 is reserved */ if (slot_id == 0 || xhci->devs[slot_id]) { xhci_warn(xhci, "Bad Slot ID %d\n", slot_id); return 0; } dev = kzalloc(sizeof(*dev), flags); if (!dev) return 0; dev->slot_id = slot_id; /* Allocate the (output) device context that will be used in the HC. */ dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags); if (!dev->out_ctx) goto fail; xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma); /* Allocate the (input) device context for address device command */ dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags); if (!dev->in_ctx) goto fail; xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma); /* Initialize the cancellation and bandwidth list for each ep */ for (i = 0; i < 31; i++) { dev->eps[i].ep_index = i; dev->eps[i].vdev = dev; dev->eps[i].xhci = xhci; INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list); INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list); } /* Allocate endpoint 0 ring */ dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags); if (!dev->eps[0].ring) goto fail; dev->udev = udev; /* Point to output device context in dcbaa. */ xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma); xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n", slot_id, &xhci->dcbaa->dev_context_ptrs[slot_id], le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id])); trace_xhci_alloc_virt_device(dev); xhci->devs[slot_id] = dev; return 1; fail: if (dev->in_ctx) xhci_free_container_ctx(xhci, dev->in_ctx); if (dev->out_ctx) xhci_free_container_ctx(xhci, dev->out_ctx); kfree(dev); return 0; } void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci, struct usb_device *udev) { struct xhci_virt_device *virt_dev; struct xhci_ep_ctx *ep0_ctx; struct xhci_ring *ep_ring; virt_dev = xhci->devs[udev->slot_id]; ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0); ep_ring = virt_dev->eps[0].ring; /* * FIXME we don't keep track of the dequeue pointer very well after a * Set TR dequeue pointer, so we're setting the dequeue pointer of the * host to our enqueue pointer. This should only be called after a * configured device has reset, so all control transfers should have * been completed or cancelled before the reset. */ ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg, ep_ring->enqueue) | ep_ring->cycle_state); } /* * The xHCI roothub may have ports of differing speeds in any order in the port * status registers. * * The xHCI hardware wants to know the roothub port that the USB device * is attached to (or the roothub port its ancestor hub is attached to). All we * know is the index of that port under either the USB 2.0 or the USB 3.0 * roothub, but that doesn't give us the real index into the HW port status * registers. */ static struct xhci_port *xhci_find_rhub_port(struct xhci_hcd *xhci, struct usb_device *udev) { struct usb_device *top_dev; struct xhci_hub *rhub; struct usb_hcd *hcd; if (udev->speed >= USB_SPEED_SUPER) hcd = xhci_get_usb3_hcd(xhci); else hcd = xhci->main_hcd; for (top_dev = udev; top_dev->parent && top_dev->parent->parent; top_dev = top_dev->parent) /* Found device below root hub */; rhub = xhci_get_rhub(hcd); return rhub->ports[top_dev->portnum - 1]; } /* Setup an xHCI virtual device for a Set Address command */ int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev) { struct xhci_virt_device *dev; struct xhci_ep_ctx *ep0_ctx; struct xhci_slot_ctx *slot_ctx; u32 max_packets; dev = xhci->devs[udev->slot_id]; /* Slot ID 0 is reserved */ if (udev->slot_id == 0 || !dev) { xhci_warn(xhci, "Slot ID %d is not assigned to this device\n", udev->slot_id); return -EINVAL; } ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0); slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx); /* 3) Only the control endpoint is valid - one endpoint context */ slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route); switch (udev->speed) { case USB_SPEED_SUPER_PLUS: slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP); max_packets = MAX_PACKET(512); break; case USB_SPEED_SUPER: slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); max_packets = MAX_PACKET(512); break; case USB_SPEED_HIGH: slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); max_packets = MAX_PACKET(64); break; /* USB core guesses at a 64-byte max packet first for FS devices */ case USB_SPEED_FULL: slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); max_packets = MAX_PACKET(64); break; case USB_SPEED_LOW: slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS); max_packets = MAX_PACKET(8); break; default: /* Speed was set earlier, this shouldn't happen. */ return -EINVAL; } /* Find the root hub port this device is under */ dev->rhub_port = xhci_find_rhub_port(xhci, udev); if (!dev->rhub_port) return -EINVAL; /* Slot ID is set to the device directly below the root hub */ if (!udev->parent->parent) dev->rhub_port->slot_id = udev->slot_id; slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(dev->rhub_port->hw_portnum + 1)); xhci_dbg(xhci, "Slot ID %d: HW portnum %d, hcd portnum %d\n", udev->slot_id, dev->rhub_port->hw_portnum, dev->rhub_port->hcd_portnum); /* Find the right bandwidth table that this device will be a part of. * If this is a full speed device attached directly to a root port (or a * decendent of one), it counts as a primary bandwidth domain, not a * secondary bandwidth domain under a TT. An xhci_tt_info structure * will never be created for the HS root hub. */ if (!udev->tt || !udev->tt->hub->parent) { dev->bw_table = &xhci->rh_bw[dev->rhub_port->hw_portnum].bw_table; } else { struct xhci_root_port_bw_info *rh_bw; struct xhci_tt_bw_info *tt_bw; rh_bw = &xhci->rh_bw[dev->rhub_port->hw_portnum]; /* Find the right TT. */ list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) { if (tt_bw->slot_id != udev->tt->hub->slot_id) continue; if (!dev->udev->tt->multi || (udev->tt->multi && tt_bw->ttport == dev->udev->ttport)) { dev->bw_table = &tt_bw->bw_table; dev->tt_info = tt_bw; break; } } if (!dev->tt_info) xhci_warn(xhci, "WARN: Didn't find a matching TT\n"); } /* Is this a LS/FS device under an external HS hub? */ if (udev->tt && udev->tt->hub->parent) { slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id | (udev->ttport << 8)); if (udev->tt->multi) slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); } xhci_dbg(xhci, "udev->tt = %p\n", udev->tt); xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport); /* Step 4 - ring already allocated */ /* Step 5 */ ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP)); /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) | max_packets); ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma | dev->eps[0].ring->cycle_state); trace_xhci_setup_addressable_virt_device(dev); /* Steps 7 and 8 were done in xhci_alloc_virt_device() */ return 0; } /* * Convert interval expressed as 2^(bInterval - 1) == interval into * straight exponent value 2^n == interval. * */ static unsigned int xhci_parse_exponent_interval(struct usb_device *udev, struct usb_host_endpoint *ep) { unsigned int interval; interval = clamp_val(ep->desc.bInterval, 1, 16) - 1; if (interval != ep->desc.bInterval - 1) dev_warn(&udev->dev, "ep %#x - rounding interval to %d %sframes\n", ep->desc.bEndpointAddress, 1 << interval, udev->speed == USB_SPEED_FULL ? "" : "micro"); if (udev->speed == USB_SPEED_FULL) { /* * Full speed isoc endpoints specify interval in frames, * not microframes. We are using microframes everywhere, * so adjust accordingly. */ interval += 3; /* 1 frame = 2^3 uframes */ } return interval; } /* * Convert bInterval expressed in microframes (in 1-255 range) to exponent of * microframes, rounded down to nearest power of 2. */ static unsigned int xhci_microframes_to_exponent(struct usb_device *udev, struct usb_host_endpoint *ep, unsigned int desc_interval, unsigned int min_exponent, unsigned int max_exponent) { unsigned int interval; interval = fls(desc_interval) - 1; interval = clamp_val(interval, min_exponent, max_exponent); if ((1 << interval) != desc_interval) dev_dbg(&udev->dev, "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n", ep->desc.bEndpointAddress, 1 << interval, desc_interval); return interval; } static unsigned int xhci_parse_microframe_interval(struct usb_device *udev, struct usb_host_endpoint *ep) { if (ep->desc.bInterval == 0) return 0; return xhci_microframes_to_exponent(udev, ep, ep->desc.bInterval, 0, 15); } static unsigned int xhci_parse_frame_interval(struct usb_device *udev, struct usb_host_endpoint *ep) { return xhci_microframes_to_exponent(udev, ep, ep->desc.bInterval * 8, 3, 10); } /* Return the polling or NAK interval. * * The polling interval is expressed in "microframes". If xHCI's Interval field * is set to N, it will service the endpoint every 2^(Interval)*125us. * * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval * is set to 0. */ static unsigned int xhci_get_endpoint_interval(struct usb_device *udev, struct usb_host_endpoint *ep) { unsigned int interval = 0; switch (udev->speed) { case USB_SPEED_HIGH: /* Max NAK rate */ if (usb_endpoint_xfer_control(&ep->desc) || usb_endpoint_xfer_bulk(&ep->desc)) { interval = xhci_parse_microframe_interval(udev, ep); break; } fallthrough; /* SS and HS isoc/int have same decoding */ case USB_SPEED_SUPER_PLUS: case USB_SPEED_SUPER: if (usb_endpoint_xfer_int(&ep->desc) || usb_endpoint_xfer_isoc(&ep->desc)) { interval = xhci_parse_exponent_interval(udev, ep); } break; case USB_SPEED_FULL: if (usb_endpoint_xfer_isoc(&ep->desc)) { interval = xhci_parse_exponent_interval(udev, ep); break; } /* * Fall through for interrupt endpoint interval decoding * since it uses the same rules as low speed interrupt * endpoints. */ fallthrough; case USB_SPEED_LOW: if (usb_endpoint_xfer_int(&ep->desc) || usb_endpoint_xfer_isoc(&ep->desc)) { interval = xhci_parse_frame_interval(udev, ep); } break; default: BUG(); } return interval; } /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. * High speed endpoint descriptors can define "the number of additional * transaction opportunities per microframe", but that goes in the Max Burst * endpoint context field. */ static u32 xhci_get_endpoint_mult(struct usb_device *udev, struct usb_host_endpoint *ep) { if (udev->speed < USB_SPEED_SUPER || !usb_endpoint_xfer_isoc(&ep->desc)) return 0; return ep->ss_ep_comp.bmAttributes; } static u32 xhci_get_endpoint_max_burst(struct usb_device *udev, struct usb_host_endpoint *ep) { /* Super speed and Plus have max burst in ep companion desc */ if (udev->speed >= USB_SPEED_SUPER) return ep->ss_ep_comp.bMaxBurst; if (udev->speed == USB_SPEED_HIGH && (usb_endpoint_xfer_isoc(&ep->desc) || usb_endpoint_xfer_int(&ep->desc))) return usb_endpoint_maxp_mult(&ep->desc) - 1; return 0; } static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep) { int in; in = usb_endpoint_dir_in(&ep->desc); switch (usb_endpoint_type(&ep->desc)) { case USB_ENDPOINT_XFER_CONTROL: return CTRL_EP; case USB_ENDPOINT_XFER_BULK: return in ? BULK_IN_EP : BULK_OUT_EP; case USB_ENDPOINT_XFER_ISOC: return in ? ISOC_IN_EP : ISOC_OUT_EP; case USB_ENDPOINT_XFER_INT: return in ? INT_IN_EP : INT_OUT_EP; } return 0; } /* Return the maximum endpoint service interval time (ESIT) payload. * Basically, this is the maxpacket size, multiplied by the burst size * and mult size. */ static u32 xhci_get_max_esit_payload(struct usb_device *udev, struct usb_host_endpoint *ep) { int max_burst; int max_packet; /* Only applies for interrupt or isochronous endpoints */ if (usb_endpoint_xfer_control(&ep->desc) || usb_endpoint_xfer_bulk(&ep->desc)) return 0; /* SuperSpeedPlus Isoc ep sending over 48k per esit */ if ((udev->speed >= USB_SPEED_SUPER_PLUS) && USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval); /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */ if (udev->speed >= USB_SPEED_SUPER) return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); max_packet = usb_endpoint_maxp(&ep->desc); max_burst = usb_endpoint_maxp_mult(&ep->desc); /* A 0 in max burst means 1 transfer per ESIT */ return max_packet * max_burst; } /* Set up an endpoint with one ring segment. Do not allocate stream rings. * Drivers will have to call usb_alloc_streams() to do that. */ int xhci_endpoint_init(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev, struct usb_device *udev, struct usb_host_endpoint *ep, gfp_t mem_flags) { unsigned int ep_index; struct xhci_ep_ctx *ep_ctx; struct xhci_ring *ep_ring; unsigned int max_packet; enum xhci_ring_type ring_type; u32 max_esit_payload; u32 endpoint_type; unsigned int max_burst; unsigned int interval; unsigned int mult; unsigned int avg_trb_len; unsigned int err_count = 0; ep_index = xhci_get_endpoint_index(&ep->desc); ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); endpoint_type = xhci_get_endpoint_type(ep); if (!endpoint_type) return -EINVAL; ring_type = usb_endpoint_type(&ep->desc); /* * Get values to fill the endpoint context, mostly from ep descriptor. * The average TRB buffer lengt for bulk endpoints is unclear as we * have no clue on scatter gather list entry size. For Isoc and Int, * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details. */ max_esit_payload = xhci_get_max_esit_payload(udev, ep); interval = xhci_get_endpoint_interval(udev, ep); /* Periodic endpoint bInterval limit quirk */ if (usb_endpoint_xfer_int(&ep->desc) || usb_endpoint_xfer_isoc(&ep->desc)) { if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) && udev->speed >= USB_SPEED_HIGH && interval >= 7) { interval = 6; } } mult = xhci_get_endpoint_mult(udev, ep); max_packet = usb_endpoint_maxp(&ep->desc); max_burst = xhci_get_endpoint_max_burst(udev, ep); avg_trb_len = max_esit_payload; /* FIXME dig Mult and streams info out of ep companion desc */ /* Allow 3 retries for everything but isoc, set CErr = 3 */ if (!usb_endpoint_xfer_isoc(&ep->desc)) err_count = 3; /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */ if (usb_endpoint_xfer_bulk(&ep->desc)) { if (udev->speed == USB_SPEED_HIGH) max_packet = 512; if (udev->speed == USB_SPEED_FULL) { max_packet = rounddown_pow_of_two(max_packet); max_packet = clamp_val(max_packet, 8, 64); } } /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */ if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100) avg_trb_len = 8; /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */ if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2)) mult = 0; /* Set up the endpoint ring */ virt_dev->eps[ep_index].new_ring = xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags); if (!virt_dev->eps[ep_index].new_ring) return -ENOMEM; virt_dev->eps[ep_index].skip = false; ep_ring = virt_dev->eps[ep_index].new_ring; /* Fill the endpoint context */ ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) | EP_INTERVAL(interval) | EP_MULT(mult)); ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) | MAX_PACKET(max_packet) | MAX_BURST(max_burst) | ERROR_COUNT(err_count)); ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state); ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) | EP_AVG_TRB_LENGTH(avg_trb_len)); return 0; } void xhci_endpoint_zero(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev, struct usb_host_endpoint *ep) { unsigned int ep_index; struct xhci_ep_ctx *ep_ctx; ep_index = xhci_get_endpoint_index(&ep->desc); ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); ep_ctx->ep_info = 0; ep_ctx->ep_info2 = 0; ep_ctx->deq = 0; ep_ctx->tx_info = 0; /* Don't free the endpoint ring until the set interface or configuration * request succeeds. */ } void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info) { bw_info->ep_interval = 0; bw_info->mult = 0; bw_info->num_packets = 0; bw_info->max_packet_size = 0; bw_info->type = 0; bw_info->max_esit_payload = 0; } void xhci_update_bw_info(struct xhci_hcd *xhci, struct xhci_container_ctx *in_ctx, struct xhci_input_control_ctx *ctrl_ctx, struct xhci_virt_device *virt_dev) { struct xhci_bw_info *bw_info; struct xhci_ep_ctx *ep_ctx; unsigned int ep_type; int i; for (i = 1; i < 31; i++) { bw_info = &virt_dev->eps[i].bw_info; /* We can't tell what endpoint type is being dropped, but * unconditionally clearing the bandwidth info for non-periodic * endpoints should be harmless because the info will never be * set in the first place. */ if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) { /* Dropped endpoint */ xhci_clear_endpoint_bw_info(bw_info); continue; } if (EP_IS_ADDED(ctrl_ctx, i)) { ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i); ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); /* Ignore non-periodic endpoints */ if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && ep_type != ISOC_IN_EP && ep_type != INT_IN_EP) continue; /* Added or changed endpoint */ bw_info->ep_interval = CTX_TO_EP_INTERVAL( le32_to_cpu(ep_ctx->ep_info)); /* Number of packets and mult are zero-based in the * input context, but we want one-based for the * interval table. */ bw_info->mult = CTX_TO_EP_MULT( le32_to_cpu(ep_ctx->ep_info)) + 1; bw_info->num_packets = CTX_TO_MAX_BURST( le32_to_cpu(ep_ctx->ep_info2)) + 1; bw_info->max_packet_size = MAX_PACKET_DECODED( le32_to_cpu(ep_ctx->ep_info2)); bw_info->type = ep_type; bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD( le32_to_cpu(ep_ctx->tx_info)); } } } /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. * Useful when you want to change one particular aspect of the endpoint and then * issue a configure endpoint command. */ void xhci_endpoint_copy(struct xhci_hcd *xhci, struct xhci_container_ctx *in_ctx, struct xhci_container_ctx *out_ctx, unsigned int ep_index) { struct xhci_ep_ctx *out_ep_ctx; struct xhci_ep_ctx *in_ep_ctx; out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); in_ep_ctx->ep_info = out_ep_ctx->ep_info; in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; in_ep_ctx->deq = out_ep_ctx->deq; in_ep_ctx->tx_info = out_ep_ctx->tx_info; if (xhci->quirks & XHCI_MTK_HOST) { in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0]; in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1]; } } /* Copy output xhci_slot_ctx to the input xhci_slot_ctx. * Useful when you want to change one particular aspect of the endpoint and then * issue a configure endpoint command. Only the context entries field matters, * but we'll copy the whole thing anyway. */ void xhci_slot_copy(struct xhci_hcd *xhci, struct xhci_container_ctx *in_ctx, struct xhci_container_ctx *out_ctx) { struct xhci_slot_ctx *in_slot_ctx; struct xhci_slot_ctx *out_slot_ctx; in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx); in_slot_ctx->dev_info = out_slot_ctx->dev_info; in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; in_slot_ctx->tt_info = out_slot_ctx->tt_info; in_slot_ctx->dev_state = out_slot_ctx->dev_state; } /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */ static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags) { int i; struct device *dev = xhci_to_hcd(xhci)->self.sysdev; int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Allocating %d scratchpad buffers", num_sp); if (!num_sp) return 0; xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags, dev_to_node(dev)); if (!xhci->scratchpad) goto fail_sp; xhci->scratchpad->sp_array = dma_alloc_coherent(dev, size_mul(sizeof(u64), num_sp), &xhci->scratchpad->sp_dma, flags); if (!xhci->scratchpad->sp_array) goto fail_sp2; xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *), flags, dev_to_node(dev)); if (!xhci->scratchpad->sp_buffers) goto fail_sp3; xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma); for (i = 0; i < num_sp; i++) { dma_addr_t dma; void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma, flags); if (!buf) goto fail_sp4; xhci->scratchpad->sp_array[i] = dma; xhci->scratchpad->sp_buffers[i] = buf; } return 0; fail_sp4: while (i--) dma_free_coherent(dev, xhci->page_size, xhci->scratchpad->sp_buffers[i], xhci->scratchpad->sp_array[i]); kfree(xhci->scratchpad->sp_buffers); fail_sp3: dma_free_coherent(dev, num_sp * sizeof(u64), xhci->scratchpad->sp_array, xhci->scratchpad->sp_dma); fail_sp2: kfree(xhci->scratchpad); xhci->scratchpad = NULL; fail_sp: return -ENOMEM; } static void scratchpad_free(struct xhci_hcd *xhci) { int num_sp; int i; struct device *dev = xhci_to_hcd(xhci)->self.sysdev; if (!xhci->scratchpad) return; num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); for (i = 0; i < num_sp; i++) { dma_free_coherent(dev, xhci->page_size, xhci->scratchpad->sp_buffers[i], xhci->scratchpad->sp_array[i]); } kfree(xhci->scratchpad->sp_buffers); dma_free_coherent(dev, num_sp * sizeof(u64), xhci->scratchpad->sp_array, xhci->scratchpad->sp_dma); kfree(xhci->scratchpad); xhci->scratchpad = NULL; } struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci, bool allocate_completion, gfp_t mem_flags) { struct xhci_command *command; struct device *dev = xhci_to_hcd(xhci)->self.sysdev; command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev)); if (!command) return NULL; if (allocate_completion) { command->completion = kzalloc_node(sizeof(struct completion), mem_flags, dev_to_node(dev)); if (!command->completion) { kfree(command); return NULL; } init_completion(command->completion); } command->status = 0; /* set default timeout to 5000 ms */ command->timeout_ms = XHCI_CMD_DEFAULT_TIMEOUT; INIT_LIST_HEAD(&command->cmd_list); return command; } struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci, bool allocate_completion, gfp_t mem_flags) { struct xhci_command *command; command = xhci_alloc_command(xhci, allocate_completion, mem_flags); if (!command) return NULL; command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, mem_flags); if (!command->in_ctx) { kfree(command->completion); kfree(command); return NULL; } return command; } void xhci_urb_free_priv(struct urb_priv *urb_priv) { kfree(urb_priv); } void xhci_free_command(struct xhci_hcd *xhci, struct xhci_command *command) { xhci_free_container_ctx(xhci, command->in_ctx); kfree(command->completion); kfree(command); } static int xhci_alloc_erst(struct xhci_hcd *xhci, struct xhci_ring *evt_ring, struct xhci_erst *erst, gfp_t flags) { size_t size; unsigned int val; struct xhci_segment *seg; struct xhci_erst_entry *entry; size = size_mul(sizeof(struct xhci_erst_entry), evt_ring->num_segs); erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev, size, &erst->erst_dma_addr, flags); if (!erst->entries) return -ENOMEM; erst->num_entries = evt_ring->num_segs; seg = evt_ring->first_seg; for (val = 0; val < evt_ring->num_segs; val++) { entry = &erst->entries[val]; entry->seg_addr = cpu_to_le64(seg->dma); entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); entry->rsvd = 0; seg = seg->next; } return 0; } static void xhci_remove_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir) { u32 tmp; if (!ir) return; /* * Clean out interrupter registers except ERSTBA. Clearing either the * low or high 32 bits of ERSTBA immediately causes the controller to * dereference the partially cleared 64 bit address, causing IOMMU error. */ if (ir->ir_set) { tmp = readl(&ir->ir_set->erst_size); tmp &= ERST_SIZE_MASK; writel(tmp, &ir->ir_set->erst_size); xhci_write_64(xhci, ERST_EHB, &ir->ir_set->erst_dequeue); } } static void xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir) { struct device *dev = xhci_to_hcd(xhci)->self.sysdev; size_t erst_size; if (!ir) return; erst_size = sizeof(struct xhci_erst_entry) * ir->erst.num_entries; if (ir->erst.entries) dma_free_coherent(dev, erst_size, ir->erst.entries, ir->erst.erst_dma_addr); ir->erst.entries = NULL; /* free interrupter event ring */ if (ir->event_ring) xhci_ring_free(xhci, ir->event_ring); ir->event_ring = NULL; kfree(ir); } void xhci_remove_secondary_interrupter(struct usb_hcd *hcd, struct xhci_interrupter *ir) { struct xhci_hcd *xhci = hcd_to_xhci(hcd); unsigned int intr_num; spin_lock_irq(&xhci->lock); /* interrupter 0 is primary interrupter, don't touch it */ if (!ir || !ir->intr_num || ir->intr_num >= xhci->max_interrupters) { xhci_dbg(xhci, "Invalid secondary interrupter, can't remove\n"); spin_unlock_irq(&xhci->lock); return; } intr_num = ir->intr_num; xhci_remove_interrupter(xhci, ir); xhci->interrupters[intr_num] = NULL; spin_unlock_irq(&xhci->lock); xhci_free_interrupter(xhci, ir); } EXPORT_SYMBOL_GPL(xhci_remove_secondary_interrupter); void xhci_mem_cleanup(struct xhci_hcd *xhci) { struct device *dev = xhci_to_hcd(xhci)->self.sysdev; int i, j, num_ports; cancel_delayed_work_sync(&xhci->cmd_timer); for (i = 0; i < xhci->max_interrupters; i++) { if (xhci->interrupters[i]) { xhci_remove_interrupter(xhci, xhci->interrupters[i]); xhci_free_interrupter(xhci, xhci->interrupters[i]); xhci->interrupters[i] = NULL; } } xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed interrupters"); if (xhci->cmd_ring) xhci_ring_free(xhci, xhci->cmd_ring); xhci->cmd_ring = NULL; xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring"); xhci_cleanup_command_queue(xhci); num_ports = HCS_MAX_PORTS(xhci->hcs_params1); for (i = 0; i < num_ports && xhci->rh_bw; i++) { struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table; for (j = 0; j < XHCI_MAX_INTERVAL; j++) { struct list_head *ep = &bwt->interval_bw[j].endpoints; while (!list_empty(ep)) list_del_init(ep->next); } } for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--) xhci_free_virt_devices_depth_first(xhci, i); dma_pool_destroy(xhci->segment_pool); xhci->segment_pool = NULL; xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool"); dma_pool_destroy(xhci->device_pool); xhci->device_pool = NULL; xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool"); dma_pool_destroy(xhci->small_streams_pool); xhci->small_streams_pool = NULL; xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed small stream array pool"); dma_pool_destroy(xhci->medium_streams_pool); xhci->medium_streams_pool = NULL; xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed medium stream array pool"); if (xhci->dcbaa) dma_free_coherent(dev, sizeof(*xhci->dcbaa), xhci->dcbaa, xhci->dcbaa->dma); xhci->dcbaa = NULL; scratchpad_free(xhci); if (!xhci->rh_bw) goto no_bw; for (i = 0; i < num_ports; i++) { struct xhci_tt_bw_info *tt, *n; list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) { list_del(&tt->tt_list); kfree(tt); } } no_bw: xhci->cmd_ring_reserved_trbs = 0; xhci->usb2_rhub.num_ports = 0; xhci->usb3_rhub.num_ports = 0; xhci->num_active_eps = 0; kfree(xhci->usb2_rhub.ports); kfree(xhci->usb3_rhub.ports); kfree(xhci->hw_ports); kfree(xhci->rh_bw); kfree(xhci->ext_caps); for (i = 0; i < xhci->num_port_caps; i++) kfree(xhci->port_caps[i].psi); kfree(xhci->port_caps); kfree(xhci->interrupters); xhci->num_port_caps = 0; xhci->usb2_rhub.ports = NULL; xhci->usb3_rhub.ports = NULL; xhci->hw_ports = NULL; xhci->rh_bw = NULL; xhci->ext_caps = NULL; xhci->port_caps = NULL; xhci->interrupters = NULL; xhci->page_size = 0; xhci->page_shift = 0; xhci->usb2_rhub.bus_state.bus_suspended = 0; xhci->usb3_rhub.bus_state.bus_suspended = 0; } static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir) { dma_addr_t deq; deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg, ir->event_ring->dequeue); if (!deq) xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n"); /* Update HC event ring dequeue pointer */ /* Don't clear the EHB bit (which is RW1C) because * there might be more events to service. */ xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Write event ring dequeue pointer, preserving EHB bit"); xhci_write_64(xhci, deq & ERST_PTR_MASK, &ir->ir_set->erst_dequeue); } static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports, __le32 __iomem *addr, int max_caps) { u32 temp, port_offset, port_count; int i; u8 major_revision, minor_revision, tmp_minor_revision; struct xhci_hub *rhub; struct device *dev = xhci_to_hcd(xhci)->self.sysdev; struct xhci_port_cap *port_cap; temp = readl(addr); major_revision = XHCI_EXT_PORT_MAJOR(temp); minor_revision = XHCI_EXT_PORT_MINOR(temp); if (major_revision == 0x03) { rhub = &xhci->usb3_rhub; /* * Some hosts incorrectly use sub-minor version for minor * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01 * for bcdUSB 0x310). Since there is no USB release with sub * minor version 0x301 to 0x309, we can assume that they are * incorrect and fix it here. */ if (minor_revision > 0x00 && minor_revision < 0x10) minor_revision <<= 4; /* * Some zhaoxin's xHCI controller that follow usb3.1 spec * but only support Gen1. */ if (xhci->quirks & XHCI_ZHAOXIN_HOST) { tmp_minor_revision = minor_revision; minor_revision = 0; } } else if (major_revision <= 0x02) { rhub = &xhci->usb2_rhub; } else { xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n", addr, major_revision); /* Ignoring port protocol we can't understand. FIXME */ return; } /* Port offset and count in the third dword, see section 7.2 */ temp = readl(addr + 2); port_offset = XHCI_EXT_PORT_OFF(temp); port_count = XHCI_EXT_PORT_COUNT(temp); xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x", addr, port_offset, port_count, major_revision); /* Port count includes the current port offset */ if (port_offset == 0 || (port_offset + port_count - 1) > num_ports) /* WTF? "Valid values are ‘1’ to MaxPorts" */ return; port_cap = &xhci->port_caps[xhci->num_port_caps++]; if (xhci->num_port_caps > max_caps) return; port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp); if (port_cap->psi_count) { port_cap->psi = kcalloc_node(port_cap->psi_count, sizeof(*port_cap->psi), GFP_KERNEL, dev_to_node(dev)); if (!port_cap->psi) port_cap->psi_count = 0; port_cap->psi_uid_count++; for (i = 0; i < port_cap->psi_count; i++) { port_cap->psi[i] = readl(addr + 4 + i); /* count unique ID values, two consecutive entries can * have the same ID if link is assymetric */ if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) != XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1]))) port_cap->psi_uid_count++; if (xhci->quirks & XHCI_ZHAOXIN_HOST && major_revision == 0x03 && XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5) minor_revision = tmp_minor_revision; xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n", XHCI_EXT_PORT_PSIV(port_cap->psi[i]), XHCI_EXT_PORT_PSIE(port_cap->psi[i]), XHCI_EXT_PORT_PLT(port_cap->psi[i]), XHCI_EXT_PORT_PFD(port_cap->psi[i]), XHCI_EXT_PORT_LP(port_cap->psi[i]), XHCI_EXT_PORT_PSIM(port_cap->psi[i])); } } rhub->maj_rev = major_revision; if (rhub->min_rev < minor_revision) rhub->min_rev = minor_revision; port_cap->maj_rev = major_revision; port_cap->min_rev = minor_revision; /* cache usb2 port capabilities */ if (major_revision < 0x03 && xhci->num_ext_caps < max_caps) xhci->ext_caps[xhci->num_ext_caps++] = temp; if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) && (temp & XHCI_HLC)) { xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xHCI 1.0: support USB2 hardware lpm"); xhci->hw_lpm_support = 1; } port_offset--; for (i = port_offset; i < (port_offset + port_count); i++) { struct xhci_port *hw_port = &xhci->hw_ports[i]; /* Duplicate entry. Ignore the port if the revisions differ. */ if (hw_port->rhub) { xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i); xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n", hw_port->rhub->maj_rev, major_revision); /* Only adjust the roothub port counts if we haven't * found a similar duplicate. */ if (hw_port->rhub != rhub && hw_port->hcd_portnum != DUPLICATE_ENTRY) { hw_port->rhub->num_ports--; hw_port->hcd_portnum = DUPLICATE_ENTRY; } continue; } hw_port->rhub = rhub; hw_port->port_cap = port_cap; rhub->num_ports++; } /* FIXME: Should we disable ports not in the Extended Capabilities? */ } static void xhci_create_rhub_port_array(struct xhci_hcd *xhci, struct xhci_hub *rhub, gfp_t flags) { int port_index = 0; int i; struct device *dev = xhci_to_hcd(xhci)->self.sysdev; if (!rhub->num_ports) return; rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports), flags, dev_to_node(dev)); if (!rhub->ports) return; for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) { if (xhci->hw_ports[i].rhub != rhub || xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY) continue; xhci->hw_ports[i].hcd_portnum = port_index; rhub->ports[port_index] = &xhci->hw_ports[i]; port_index++; if (port_index == rhub->num_ports) break; } } /* * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that * specify what speeds each port is supposed to be. We can't count on the port * speed bits in the PORTSC register being correct until a device is connected, * but we need to set up the two fake roothubs with the correct number of USB * 3.0 and USB 2.0 ports at host controller initialization time. */ static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags) { void __iomem *base; u32 offset; unsigned int num_ports; int i, j; int cap_count = 0; u32 cap_start; struct device *dev = xhci_to_hcd(xhci)->self.sysdev; num_ports = HCS_MAX_PORTS(xhci->hcs_params1); xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports), flags, dev_to_node(dev)); if (!xhci->hw_ports) return -ENOMEM; for (i = 0; i < num_ports; i++) { xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base + NUM_PORT_REGS * i; xhci->hw_ports[i].hw_portnum = i; init_completion(&xhci->hw_ports[i].rexit_done); init_completion(&xhci->hw_ports[i].u3exit_done); } xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags, dev_to_node(dev)); if (!xhci->rh_bw) return -ENOMEM; for (i = 0; i < num_ports; i++) { struct xhci_interval_bw_table *bw_table; INIT_LIST_HEAD(&xhci->rh_bw[i].tts); bw_table = &xhci->rh_bw[i].bw_table; for (j = 0; j < XHCI_MAX_INTERVAL; j++) INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); } base = &xhci->cap_regs->hc_capbase; cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL); if (!cap_start) { xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n"); return -ENODEV; } offset = cap_start; /* count extended protocol capability entries for later caching */ while (offset) { cap_count++; offset = xhci_find_next_ext_cap(base, offset, XHCI_EXT_CAPS_PROTOCOL); } xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps), flags, dev_to_node(dev)); if (!xhci->ext_caps) return -ENOMEM; xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps), flags, dev_to_node(dev)); if (!xhci->port_caps) return -ENOMEM; offset = cap_start; while (offset) { xhci_add_in_port(xhci, num_ports, base + offset, cap_count); if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports == num_ports) break; offset = xhci_find_next_ext_cap(base, offset, XHCI_EXT_CAPS_PROTOCOL); } if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) { xhci_warn(xhci, "No ports on the roothubs?\n"); return -ENODEV; } xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Found %u USB 2.0 ports and %u USB 3.0 ports.", xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports); /* Place limits on the number of roothub ports so that the hub * descriptors aren't longer than the USB core will allocate. */ if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) { xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Limiting USB 3.0 roothub ports to %u.", USB_SS_MAXPORTS); xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS; } if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) { xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Limiting USB 2.0 roothub ports to %u.", USB_MAXCHILDREN); xhci->usb2_rhub.num_ports = USB_MAXCHILDREN; } if (!xhci->usb2_rhub.num_ports) xhci_info(xhci, "USB2 root hub has no ports\n"); if (!xhci->usb3_rhub.num_ports) xhci_info(xhci, "USB3 root hub has no ports\n"); xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags); xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags); return 0; } static struct xhci_interrupter * xhci_alloc_interrupter(struct xhci_hcd *xhci, unsigned int segs, gfp_t flags) { struct device *dev = xhci_to_hcd(xhci)->self.sysdev; struct xhci_interrupter *ir; unsigned int max_segs; int ret; if (!segs) segs = ERST_DEFAULT_SEGS; max_segs = BIT(HCS_ERST_MAX(xhci->hcs_params2)); segs = min(segs, max_segs); ir = kzalloc_node(sizeof(*ir), flags, dev_to_node(dev)); if (!ir) return NULL; ir->event_ring = xhci_ring_alloc(xhci, segs, 1, TYPE_EVENT, 0, flags); if (!ir->event_ring) { xhci_warn(xhci, "Failed to allocate interrupter event ring\n"); kfree(ir); return NULL; } ret = xhci_alloc_erst(xhci, ir->event_ring, &ir->erst, flags); if (ret) { xhci_warn(xhci, "Failed to allocate interrupter erst\n"); xhci_ring_free(xhci, ir->event_ring); kfree(ir); return NULL; } return ir; } static int xhci_add_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir, unsigned int intr_num) { u64 erst_base; u32 erst_size; if (intr_num >= xhci->max_interrupters) { xhci_warn(xhci, "Can't add interrupter %d, max interrupters %d\n", intr_num, xhci->max_interrupters); return -EINVAL; } if (xhci->interrupters[intr_num]) { xhci_warn(xhci, "Interrupter %d\n already set up", intr_num); return -EINVAL; } xhci->interrupters[intr_num] = ir; ir->intr_num = intr_num; ir->ir_set = &xhci->run_regs->ir_set[intr_num]; /* set ERST count with the number of entries in the segment table */ erst_size = readl(&ir->ir_set->erst_size); erst_size &= ERST_SIZE_MASK; erst_size |= ir->event_ring->num_segs; writel(erst_size, &ir->ir_set->erst_size); erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base); erst_base &= ERST_BASE_RSVDP; erst_base |= ir->erst.erst_dma_addr & ~ERST_BASE_RSVDP; xhci_write_64(xhci, erst_base, &ir->ir_set->erst_base); /* Set the event ring dequeue address of this interrupter */ xhci_set_hc_event_deq(xhci, ir); return 0; } struct xhci_interrupter * xhci_create_secondary_interrupter(struct usb_hcd *hcd, unsigned int segs) { struct xhci_hcd *xhci = hcd_to_xhci(hcd); struct xhci_interrupter *ir; unsigned int i; int err = -ENOSPC; if (!xhci->interrupters || xhci->max_interrupters <= 1) return NULL; ir = xhci_alloc_interrupter(xhci, segs, GFP_KERNEL); if (!ir) return NULL; spin_lock_irq(&xhci->lock); /* Find available secondary interrupter, interrupter 0 is reserved for primary */ for (i = 1; i < xhci->max_interrupters; i++) { if (xhci->interrupters[i] == NULL) { err = xhci_add_interrupter(xhci, ir, i); break; } } spin_unlock_irq(&xhci->lock); if (err) { xhci_warn(xhci, "Failed to add secondary interrupter, max interrupters %d\n", xhci->max_interrupters); xhci_free_interrupter(xhci, ir); return NULL; } xhci_dbg(xhci, "Add secondary interrupter %d, max interrupters %d\n", i, xhci->max_interrupters); return ir; } EXPORT_SYMBOL_GPL(xhci_create_secondary_interrupter); int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags) { struct xhci_interrupter *ir; struct device *dev = xhci_to_hcd(xhci)->self.sysdev; dma_addr_t dma; unsigned int val, val2; u64 val_64; u32 page_size, temp; int i; INIT_LIST_HEAD(&xhci->cmd_list); /* init command timeout work */ INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout); init_completion(&xhci->cmd_ring_stop_completion); page_size = readl(&xhci->op_regs->page_size); xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Supported page size register = 0x%x", page_size); i = ffs(page_size); if (i < 16) xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Supported page size of %iK", (1 << (i+12)) / 1024); else xhci_warn(xhci, "WARN: no supported page size\n"); /* Use 4K pages, since that's common and the minimum the HC supports */ xhci->page_shift = 12; xhci->page_size = 1 << xhci->page_shift; xhci_dbg_trace(xhci, trace_xhci_dbg_init, "HCD page size set to %iK", xhci->page_size / 1024); /* * Program the Number of Device Slots Enabled field in the CONFIG * register with the max value of slots the HC can handle. */ val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1)); xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// xHC can handle at most %d device slots.", val); val2 = readl(&xhci->op_regs->config_reg); val |= (val2 & ~HCS_SLOTS_MASK); xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Setting Max device slots reg = 0x%x.", val); writel(val, &xhci->op_regs->config_reg); /* * xHCI section 5.4.6 - Device Context array must be * "physically contiguous and 64-byte (cache line) aligned". */ xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma, flags); if (!xhci->dcbaa) goto fail; xhci->dcbaa->dma = dma; xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Device context base array address = 0x%pad (DMA), %p (virt)", &xhci->dcbaa->dma, xhci->dcbaa); xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr); /* * Initialize the ring segment pool. The ring must be a contiguous * structure comprised of TRBs. The TRBs must be 16 byte aligned, * however, the command ring segment needs 64-byte aligned segments * and our use of dma addresses in the trb_address_map radix tree needs * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need. */ if (xhci->quirks & XHCI_ZHAOXIN_TRB_FETCH) xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2); else xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size); /* See Table 46 and Note on Figure 55 */ xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, 2112, 64, xhci->page_size); if (!xhci->segment_pool || !xhci->device_pool) goto fail; /* Linear stream context arrays don't have any boundary restrictions, * and only need to be 16-byte aligned. */ xhci->small_streams_pool = dma_pool_create("xHCI 256 byte stream ctx arrays", dev, SMALL_STREAM_ARRAY_SIZE, 16, 0); xhci->medium_streams_pool = dma_pool_create("xHCI 1KB stream ctx arrays", dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0); /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE * will be allocated with dma_alloc_coherent() */ if (!xhci->small_streams_pool || !xhci->medium_streams_pool) goto fail; /* Set up the command ring to have one segments for now. */ xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags); if (!xhci->cmd_ring) goto fail; xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Allocated command ring at %p", xhci->cmd_ring); xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%pad", &xhci->cmd_ring->first_seg->dma); /* Set the address in the Command Ring Control register */ val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) | xhci->cmd_ring->cycle_state; xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Setting command ring address to 0x%016llx", val_64); xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); /* Reserve one command ring TRB for disabling LPM. * Since the USB core grabs the shared usb_bus bandwidth mutex before * disabling LPM, we only need to reserve one TRB for all devices. */ xhci->cmd_ring_reserved_trbs++; val = readl(&xhci->cap_regs->db_off); val &= DBOFF_MASK; xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Doorbell array is located at offset 0x%x from cap regs base addr", val); xhci->dba = (void __iomem *) xhci->cap_regs + val; /* Allocate and set up primary interrupter 0 with an event ring. */ xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Allocating primary event ring"); xhci->interrupters = kcalloc_node(xhci->max_interrupters, sizeof(*xhci->interrupters), flags, dev_to_node(dev)); ir = xhci_alloc_interrupter(xhci, 0, flags); if (!ir) goto fail; if (xhci_add_interrupter(xhci, ir, 0)) goto fail; ir->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX; /* * XXX: Might need to set the Interrupter Moderation Register to * something other than the default (~1ms minimum between interrupts). * See section 5.5.1.2. */ for (i = 0; i < MAX_HC_SLOTS; i++) xhci->devs[i] = NULL; if (scratchpad_alloc(xhci, flags)) goto fail; if (xhci_setup_port_arrays(xhci, flags)) goto fail; /* Enable USB 3.0 device notifications for function remote wake, which * is necessary for allowing USB 3.0 devices to do remote wakeup from * U3 (device suspend). */ temp = readl(&xhci->op_regs->dev_notification); temp &= ~DEV_NOTE_MASK; temp |= DEV_NOTE_FWAKE; writel(temp, &xhci->op_regs->dev_notification); return 0; fail: xhci_halt(xhci); xhci_reset(xhci, XHCI_RESET_SHORT_USEC); xhci_mem_cleanup(xhci); return -ENOMEM; } |