Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 | // SPDX-License-Identifier: GPL-2.0 // Copyright (C) 2019 Spreadtrum Communications Inc. #include <linux/clk.h> #include <linux/delay.h> #include <linux/hwspinlock.h> #include <linux/io.h> #include <linux/module.h> #include <linux/nvmem-provider.h> #include <linux/of.h> #include <linux/platform_device.h> #define SPRD_EFUSE_ENABLE 0x20 #define SPRD_EFUSE_ERR_FLAG 0x24 #define SPRD_EFUSE_ERR_CLR 0x28 #define SPRD_EFUSE_MAGIC_NUM 0x2c #define SPRD_EFUSE_FW_CFG 0x50 #define SPRD_EFUSE_PW_SWT 0x54 #define SPRD_EFUSE_MEM(val) (0x1000 + ((val) << 2)) #define SPRD_EFUSE_VDD_EN BIT(0) #define SPRD_EFUSE_AUTO_CHECK_EN BIT(1) #define SPRD_EFUSE_DOUBLE_EN BIT(2) #define SPRD_EFUSE_MARGIN_RD_EN BIT(3) #define SPRD_EFUSE_LOCK_WR_EN BIT(4) #define SPRD_EFUSE_ERR_CLR_MASK GENMASK(13, 0) #define SPRD_EFUSE_ENK1_ON BIT(0) #define SPRD_EFUSE_ENK2_ON BIT(1) #define SPRD_EFUSE_PROG_EN BIT(2) #define SPRD_EFUSE_MAGIC_NUMBER 0x8810 /* Block width (bytes) definitions */ #define SPRD_EFUSE_BLOCK_WIDTH 4 /* * The Spreadtrum AP efuse contains 2 parts: normal efuse and secure efuse, * and we can only access the normal efuse in kernel. So define the normal * block offset index and normal block numbers. */ #define SPRD_EFUSE_NORMAL_BLOCK_NUMS 24 #define SPRD_EFUSE_NORMAL_BLOCK_OFFSET 72 /* Timeout (ms) for the trylock of hardware spinlocks */ #define SPRD_EFUSE_HWLOCK_TIMEOUT 5000 /* * Since different Spreadtrum SoC chip can have different normal block numbers * and offset. And some SoC can support block double feature, which means * when reading or writing data to efuse memory, the controller can save double * data in case one data become incorrect after a long period. * * Thus we should save them in the device data structure. */ struct sprd_efuse_variant_data { u32 blk_nums; u32 blk_offset; bool blk_double; }; struct sprd_efuse { struct device *dev; struct clk *clk; struct hwspinlock *hwlock; struct mutex mutex; void __iomem *base; const struct sprd_efuse_variant_data *data; }; static const struct sprd_efuse_variant_data ums312_data = { .blk_nums = SPRD_EFUSE_NORMAL_BLOCK_NUMS, .blk_offset = SPRD_EFUSE_NORMAL_BLOCK_OFFSET, .blk_double = false, }; /* * On Spreadtrum platform, we have multi-subsystems will access the unique * efuse controller, so we need one hardware spinlock to synchronize between * the multiple subsystems. */ static int sprd_efuse_lock(struct sprd_efuse *efuse) { int ret; mutex_lock(&efuse->mutex); ret = hwspin_lock_timeout_raw(efuse->hwlock, SPRD_EFUSE_HWLOCK_TIMEOUT); if (ret) { dev_err(efuse->dev, "timeout get the hwspinlock\n"); mutex_unlock(&efuse->mutex); return ret; } return 0; } static void sprd_efuse_unlock(struct sprd_efuse *efuse) { hwspin_unlock_raw(efuse->hwlock); mutex_unlock(&efuse->mutex); } static void sprd_efuse_set_prog_power(struct sprd_efuse *efuse, bool en) { u32 val = readl(efuse->base + SPRD_EFUSE_PW_SWT); if (en) val &= ~SPRD_EFUSE_ENK2_ON; else val &= ~SPRD_EFUSE_ENK1_ON; writel(val, efuse->base + SPRD_EFUSE_PW_SWT); /* Open or close efuse power need wait 1000us to make power stable. */ usleep_range(1000, 1200); if (en) val |= SPRD_EFUSE_ENK1_ON; else val |= SPRD_EFUSE_ENK2_ON; writel(val, efuse->base + SPRD_EFUSE_PW_SWT); /* Open or close efuse power need wait 1000us to make power stable. */ usleep_range(1000, 1200); } static void sprd_efuse_set_read_power(struct sprd_efuse *efuse, bool en) { u32 val = readl(efuse->base + SPRD_EFUSE_ENABLE); if (en) val |= SPRD_EFUSE_VDD_EN; else val &= ~SPRD_EFUSE_VDD_EN; writel(val, efuse->base + SPRD_EFUSE_ENABLE); /* Open or close efuse power need wait 1000us to make power stable. */ usleep_range(1000, 1200); } static void sprd_efuse_set_prog_lock(struct sprd_efuse *efuse, bool en) { u32 val = readl(efuse->base + SPRD_EFUSE_ENABLE); if (en) val |= SPRD_EFUSE_LOCK_WR_EN; else val &= ~SPRD_EFUSE_LOCK_WR_EN; writel(val, efuse->base + SPRD_EFUSE_ENABLE); } static void sprd_efuse_set_auto_check(struct sprd_efuse *efuse, bool en) { u32 val = readl(efuse->base + SPRD_EFUSE_ENABLE); if (en) val |= SPRD_EFUSE_AUTO_CHECK_EN; else val &= ~SPRD_EFUSE_AUTO_CHECK_EN; writel(val, efuse->base + SPRD_EFUSE_ENABLE); } static void sprd_efuse_set_data_double(struct sprd_efuse *efuse, bool en) { u32 val = readl(efuse->base + SPRD_EFUSE_ENABLE); if (en) val |= SPRD_EFUSE_DOUBLE_EN; else val &= ~SPRD_EFUSE_DOUBLE_EN; writel(val, efuse->base + SPRD_EFUSE_ENABLE); } static void sprd_efuse_set_prog_en(struct sprd_efuse *efuse, bool en) { u32 val = readl(efuse->base + SPRD_EFUSE_PW_SWT); if (en) val |= SPRD_EFUSE_PROG_EN; else val &= ~SPRD_EFUSE_PROG_EN; writel(val, efuse->base + SPRD_EFUSE_PW_SWT); } static int sprd_efuse_raw_prog(struct sprd_efuse *efuse, u32 blk, bool doub, bool lock, u32 *data) { u32 status; int ret = 0; /* * We need set the correct magic number before writing the efuse to * allow programming, and block other programming until we clear the * magic number. */ writel(SPRD_EFUSE_MAGIC_NUMBER, efuse->base + SPRD_EFUSE_MAGIC_NUM); /* * Power on the efuse, enable programme and enable double data * if asked. */ sprd_efuse_set_prog_power(efuse, true); sprd_efuse_set_prog_en(efuse, true); sprd_efuse_set_data_double(efuse, doub); /* * Enable the auto-check function to validate if the programming is * successful. */ if (lock) sprd_efuse_set_auto_check(efuse, true); writel(*data, efuse->base + SPRD_EFUSE_MEM(blk)); /* Disable auto-check and data double after programming */ if (lock) sprd_efuse_set_auto_check(efuse, false); sprd_efuse_set_data_double(efuse, false); /* * Check the efuse error status, if the programming is successful, * we should lock this efuse block to avoid programming again. */ status = readl(efuse->base + SPRD_EFUSE_ERR_FLAG); if (status) { dev_err(efuse->dev, "write error status %u of block %d\n", status, blk); writel(SPRD_EFUSE_ERR_CLR_MASK, efuse->base + SPRD_EFUSE_ERR_CLR); ret = -EBUSY; } else if (lock) { sprd_efuse_set_prog_lock(efuse, lock); writel(0, efuse->base + SPRD_EFUSE_MEM(blk)); sprd_efuse_set_prog_lock(efuse, false); } sprd_efuse_set_prog_power(efuse, false); writel(0, efuse->base + SPRD_EFUSE_MAGIC_NUM); return ret; } static int sprd_efuse_raw_read(struct sprd_efuse *efuse, int blk, u32 *val, bool doub) { u32 status; /* * Need power on the efuse before reading data from efuse, and will * power off the efuse after reading process. */ sprd_efuse_set_read_power(efuse, true); /* Enable double data if asked */ sprd_efuse_set_data_double(efuse, doub); /* Start to read data from efuse block */ *val = readl(efuse->base + SPRD_EFUSE_MEM(blk)); /* Disable double data */ sprd_efuse_set_data_double(efuse, false); /* Power off the efuse */ sprd_efuse_set_read_power(efuse, false); /* * Check the efuse error status and clear them if there are some * errors occurred. */ status = readl(efuse->base + SPRD_EFUSE_ERR_FLAG); if (status) { dev_err(efuse->dev, "read error status %d of block %d\n", status, blk); writel(SPRD_EFUSE_ERR_CLR_MASK, efuse->base + SPRD_EFUSE_ERR_CLR); return -EBUSY; } return 0; } static int sprd_efuse_read(void *context, u32 offset, void *val, size_t bytes) { struct sprd_efuse *efuse = context; bool blk_double = efuse->data->blk_double; u32 index = offset / SPRD_EFUSE_BLOCK_WIDTH + efuse->data->blk_offset; u32 blk_offset = (offset % SPRD_EFUSE_BLOCK_WIDTH) * BITS_PER_BYTE; u32 data; int ret; ret = sprd_efuse_lock(efuse); if (ret) return ret; ret = clk_prepare_enable(efuse->clk); if (ret) goto unlock; ret = sprd_efuse_raw_read(efuse, index, &data, blk_double); if (!ret) { data >>= blk_offset; memcpy(val, &data, bytes); } clk_disable_unprepare(efuse->clk); unlock: sprd_efuse_unlock(efuse); return ret; } static int sprd_efuse_write(void *context, u32 offset, void *val, size_t bytes) { struct sprd_efuse *efuse = context; bool blk_double = efuse->data->blk_double; bool lock; int ret; ret = sprd_efuse_lock(efuse); if (ret) return ret; ret = clk_prepare_enable(efuse->clk); if (ret) goto unlock; /* * If the writing bytes are equal with the block width, which means the * whole block will be programmed. For this case, we should not allow * this block to be programmed again by locking this block. * * If the block was programmed partially, we should allow this block to * be programmed again. */ if (bytes < SPRD_EFUSE_BLOCK_WIDTH) lock = false; else lock = true; ret = sprd_efuse_raw_prog(efuse, offset, blk_double, lock, val); clk_disable_unprepare(efuse->clk); unlock: sprd_efuse_unlock(efuse); return ret; } static int sprd_efuse_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct nvmem_device *nvmem; struct nvmem_config econfig = { }; struct sprd_efuse *efuse; const struct sprd_efuse_variant_data *pdata; int ret; pdata = of_device_get_match_data(&pdev->dev); if (!pdata) { dev_err(&pdev->dev, "No matching driver data found\n"); return -EINVAL; } efuse = devm_kzalloc(&pdev->dev, sizeof(*efuse), GFP_KERNEL); if (!efuse) return -ENOMEM; efuse->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(efuse->base)) return PTR_ERR(efuse->base); ret = of_hwspin_lock_get_id(np, 0); if (ret < 0) { dev_err(&pdev->dev, "failed to get hwlock id\n"); return ret; } efuse->hwlock = devm_hwspin_lock_request_specific(&pdev->dev, ret); if (!efuse->hwlock) { dev_err(&pdev->dev, "failed to request hwlock\n"); return -ENXIO; } efuse->clk = devm_clk_get(&pdev->dev, "enable"); if (IS_ERR(efuse->clk)) { dev_err(&pdev->dev, "failed to get enable clock\n"); return PTR_ERR(efuse->clk); } mutex_init(&efuse->mutex); efuse->dev = &pdev->dev; efuse->data = pdata; econfig.stride = 1; econfig.word_size = 1; econfig.read_only = false; econfig.name = "sprd-efuse"; econfig.size = efuse->data->blk_nums * SPRD_EFUSE_BLOCK_WIDTH; econfig.add_legacy_fixed_of_cells = true; econfig.reg_read = sprd_efuse_read; econfig.reg_write = sprd_efuse_write; econfig.priv = efuse; econfig.dev = &pdev->dev; nvmem = devm_nvmem_register(&pdev->dev, &econfig); if (IS_ERR(nvmem)) { dev_err(&pdev->dev, "failed to register nvmem\n"); return PTR_ERR(nvmem); } return 0; } static const struct of_device_id sprd_efuse_of_match[] = { { .compatible = "sprd,ums312-efuse", .data = &ums312_data }, { } }; static struct platform_driver sprd_efuse_driver = { .probe = sprd_efuse_probe, .driver = { .name = "sprd-efuse", .of_match_table = sprd_efuse_of_match, }, }; module_platform_driver(sprd_efuse_driver); MODULE_AUTHOR("Freeman Liu <freeman.liu@spreadtrum.com>"); MODULE_DESCRIPTION("Spreadtrum AP efuse driver"); MODULE_LICENSE("GPL v2"); |