Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 | // SPDX-License-Identifier: GPL-2.0-only OR BSD-3-Clause /* Packet transmit logic for Mellanox Gigabit Ethernet driver * * Copyright (C) 2020-2021 NVIDIA CORPORATION & AFFILIATES */ #include <linux/skbuff.h> #include "mlxbf_gige.h" #include "mlxbf_gige_regs.h" /* Transmit Initialization * 1) Allocates TX WQE array using coherent DMA mapping * 2) Allocates TX completion counter using coherent DMA mapping */ int mlxbf_gige_tx_init(struct mlxbf_gige *priv) { size_t size; size = MLXBF_GIGE_TX_WQE_SZ * priv->tx_q_entries; priv->tx_wqe_base = dma_alloc_coherent(priv->dev, size, &priv->tx_wqe_base_dma, GFP_KERNEL); if (!priv->tx_wqe_base) return -ENOMEM; priv->tx_wqe_next = priv->tx_wqe_base; /* Write TX WQE base address into MMIO reg */ writeq(priv->tx_wqe_base_dma, priv->base + MLXBF_GIGE_TX_WQ_BASE); /* Allocate address for TX completion count */ priv->tx_cc = dma_alloc_coherent(priv->dev, MLXBF_GIGE_TX_CC_SZ, &priv->tx_cc_dma, GFP_KERNEL); if (!priv->tx_cc) { dma_free_coherent(priv->dev, size, priv->tx_wqe_base, priv->tx_wqe_base_dma); return -ENOMEM; } /* Write TX CC base address into MMIO reg */ writeq(priv->tx_cc_dma, priv->base + MLXBF_GIGE_TX_CI_UPDATE_ADDRESS); writeq(ilog2(priv->tx_q_entries), priv->base + MLXBF_GIGE_TX_WQ_SIZE_LOG2); priv->prev_tx_ci = 0; priv->tx_pi = 0; return 0; } /* Transmit Deinitialization * This routine will free allocations done by mlxbf_gige_tx_init(), * namely the TX WQE array and the TX completion counter */ void mlxbf_gige_tx_deinit(struct mlxbf_gige *priv) { u64 *tx_wqe_addr; size_t size; int i; tx_wqe_addr = priv->tx_wqe_base; for (i = 0; i < priv->tx_q_entries; i++) { if (priv->tx_skb[i]) { dma_unmap_single(priv->dev, *tx_wqe_addr, priv->tx_skb[i]->len, DMA_TO_DEVICE); dev_kfree_skb(priv->tx_skb[i]); priv->tx_skb[i] = NULL; } tx_wqe_addr += 2; } size = MLXBF_GIGE_TX_WQE_SZ * priv->tx_q_entries; dma_free_coherent(priv->dev, size, priv->tx_wqe_base, priv->tx_wqe_base_dma); dma_free_coherent(priv->dev, MLXBF_GIGE_TX_CC_SZ, priv->tx_cc, priv->tx_cc_dma); priv->tx_wqe_base = NULL; priv->tx_wqe_base_dma = 0; priv->tx_cc = NULL; priv->tx_cc_dma = 0; priv->tx_wqe_next = NULL; writeq(0, priv->base + MLXBF_GIGE_TX_WQ_BASE); writeq(0, priv->base + MLXBF_GIGE_TX_CI_UPDATE_ADDRESS); } /* Function that returns status of TX ring: * 0: TX ring is full, i.e. there are no * available un-used entries in TX ring. * non-null: TX ring is not full, i.e. there are * some available entries in TX ring. * The non-null value is a measure of * how many TX entries are available, but * it is not the exact number of available * entries (see below). * * The algorithm makes the assumption that if * (prev_tx_ci == tx_pi) then the TX ring is empty. * An empty ring actually has (tx_q_entries-1) * entries, which allows the algorithm to differentiate * the case of an empty ring vs. a full ring. */ static u16 mlxbf_gige_tx_buffs_avail(struct mlxbf_gige *priv) { unsigned long flags; u16 avail; spin_lock_irqsave(&priv->lock, flags); if (priv->prev_tx_ci == priv->tx_pi) avail = priv->tx_q_entries - 1; else avail = ((priv->tx_q_entries + priv->prev_tx_ci - priv->tx_pi) % priv->tx_q_entries) - 1; spin_unlock_irqrestore(&priv->lock, flags); return avail; } bool mlxbf_gige_handle_tx_complete(struct mlxbf_gige *priv) { struct net_device_stats *stats; u16 tx_wqe_index; u64 *tx_wqe_addr; u64 tx_status; u16 tx_ci; tx_status = readq(priv->base + MLXBF_GIGE_TX_STATUS); if (tx_status & MLXBF_GIGE_TX_STATUS_DATA_FIFO_FULL) priv->stats.tx_fifo_full++; tx_ci = readq(priv->base + MLXBF_GIGE_TX_CONSUMER_INDEX); stats = &priv->netdev->stats; /* Transmit completion logic needs to loop until the completion * index (in SW) equals TX consumer index (from HW). These * parameters are unsigned 16-bit values and the wrap case needs * to be supported, that is TX consumer index wrapped from 0xFFFF * to 0 while TX completion index is still < 0xFFFF. */ for (; priv->prev_tx_ci != tx_ci; priv->prev_tx_ci++) { tx_wqe_index = priv->prev_tx_ci % priv->tx_q_entries; /* Each TX WQE is 16 bytes. The 8 MSB store the 2KB TX * buffer address and the 8 LSB contain information * about the TX WQE. */ tx_wqe_addr = priv->tx_wqe_base + (tx_wqe_index * MLXBF_GIGE_TX_WQE_SZ_QWORDS); stats->tx_packets++; stats->tx_bytes += MLXBF_GIGE_TX_WQE_PKT_LEN(tx_wqe_addr); dma_unmap_single(priv->dev, *tx_wqe_addr, priv->tx_skb[tx_wqe_index]->len, DMA_TO_DEVICE); dev_consume_skb_any(priv->tx_skb[tx_wqe_index]); priv->tx_skb[tx_wqe_index] = NULL; /* Ensure completion of updates across all cores */ mb(); } /* Since the TX ring was likely just drained, check if TX queue * had previously been stopped and now that there are TX buffers * available the TX queue can be awakened. */ if (netif_queue_stopped(priv->netdev) && mlxbf_gige_tx_buffs_avail(priv)) netif_wake_queue(priv->netdev); return true; } /* Function to advance the tx_wqe_next pointer to next TX WQE */ void mlxbf_gige_update_tx_wqe_next(struct mlxbf_gige *priv) { /* Advance tx_wqe_next pointer */ priv->tx_wqe_next += MLXBF_GIGE_TX_WQE_SZ_QWORDS; /* Check if 'next' pointer is beyond end of TX ring */ /* If so, set 'next' back to 'base' pointer of ring */ if (priv->tx_wqe_next == (priv->tx_wqe_base + (priv->tx_q_entries * MLXBF_GIGE_TX_WQE_SZ_QWORDS))) priv->tx_wqe_next = priv->tx_wqe_base; } netdev_tx_t mlxbf_gige_start_xmit(struct sk_buff *skb, struct net_device *netdev) { struct mlxbf_gige *priv = netdev_priv(netdev); long buff_addr, start_dma_page, end_dma_page; struct sk_buff *tx_skb; dma_addr_t tx_buf_dma; unsigned long flags; u64 *tx_wqe_addr; u64 word2; /* If needed, linearize TX SKB as hardware DMA expects this */ if (skb->len > MLXBF_GIGE_DEFAULT_BUF_SZ || skb_linearize(skb)) { dev_kfree_skb(skb); netdev->stats.tx_dropped++; return NETDEV_TX_OK; } buff_addr = (long)skb->data; start_dma_page = buff_addr >> MLXBF_GIGE_DMA_PAGE_SHIFT; end_dma_page = (buff_addr + skb->len - 1) >> MLXBF_GIGE_DMA_PAGE_SHIFT; /* Verify that payload pointer and data length of SKB to be * transmitted does not violate the hardware DMA limitation. */ if (start_dma_page != end_dma_page) { /* DMA operation would fail as-is, alloc new aligned SKB */ tx_skb = mlxbf_gige_alloc_skb(priv, skb->len, &tx_buf_dma, DMA_TO_DEVICE); if (!tx_skb) { /* Free original skb, could not alloc new aligned SKB */ dev_kfree_skb(skb); netdev->stats.tx_dropped++; return NETDEV_TX_OK; } skb_put_data(tx_skb, skb->data, skb->len); /* Free the original SKB */ dev_kfree_skb(skb); } else { tx_skb = skb; tx_buf_dma = dma_map_single(priv->dev, skb->data, skb->len, DMA_TO_DEVICE); if (dma_mapping_error(priv->dev, tx_buf_dma)) { dev_kfree_skb(skb); netdev->stats.tx_dropped++; return NETDEV_TX_OK; } } /* Get address of TX WQE */ tx_wqe_addr = priv->tx_wqe_next; mlxbf_gige_update_tx_wqe_next(priv); /* Put PA of buffer address into first 64-bit word of TX WQE */ *tx_wqe_addr = tx_buf_dma; /* Set TX WQE pkt_len appropriately * NOTE: GigE silicon will automatically pad up to * minimum packet length if needed. */ word2 = tx_skb->len & MLXBF_GIGE_TX_WQE_PKT_LEN_MASK; /* Write entire 2nd word of TX WQE */ *(tx_wqe_addr + 1) = word2; spin_lock_irqsave(&priv->lock, flags); priv->tx_skb[priv->tx_pi % priv->tx_q_entries] = tx_skb; priv->tx_pi++; spin_unlock_irqrestore(&priv->lock, flags); if (!netdev_xmit_more()) { /* Create memory barrier before write to TX PI */ wmb(); writeq(priv->tx_pi, priv->base + MLXBF_GIGE_TX_PRODUCER_INDEX); } /* Check if the last TX entry was just used */ if (!mlxbf_gige_tx_buffs_avail(priv)) { /* TX ring is full, inform stack */ netif_stop_queue(netdev); /* Since there is no separate "TX complete" interrupt, need * to explicitly schedule NAPI poll. This will trigger logic * which processes TX completions, and will hopefully drain * the TX ring allowing the TX queue to be awakened. */ napi_schedule(&priv->napi); } return NETDEV_TX_OK; } |