Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 | // SPDX-License-Identifier: GPL-2.0 /* * Alarmtimer interface * * This interface provides a timer which is similar to hrtimers, * but triggers a RTC alarm if the box is suspend. * * This interface is influenced by the Android RTC Alarm timer * interface. * * Copyright (C) 2010 IBM Corporation * * Author: John Stultz <john.stultz@linaro.org> */ #include <linux/time.h> #include <linux/hrtimer.h> #include <linux/timerqueue.h> #include <linux/rtc.h> #include <linux/sched/signal.h> #include <linux/sched/debug.h> #include <linux/alarmtimer.h> #include <linux/mutex.h> #include <linux/platform_device.h> #include <linux/posix-timers.h> #include <linux/workqueue.h> #include <linux/freezer.h> #include <linux/compat.h> #include <linux/module.h> #include <linux/time_namespace.h> #include "posix-timers.h" #define CREATE_TRACE_POINTS #include <trace/events/alarmtimer.h> /** * struct alarm_base - Alarm timer bases * @lock: Lock for syncrhonized access to the base * @timerqueue: Timerqueue head managing the list of events * @get_ktime: Function to read the time correlating to the base * @get_timespec: Function to read the namespace time correlating to the base * @base_clockid: clockid for the base */ static struct alarm_base { spinlock_t lock; struct timerqueue_head timerqueue; ktime_t (*get_ktime)(void); void (*get_timespec)(struct timespec64 *tp); clockid_t base_clockid; } alarm_bases[ALARM_NUMTYPE]; #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS) /* freezer information to handle clock_nanosleep triggered wakeups */ static enum alarmtimer_type freezer_alarmtype; static ktime_t freezer_expires; static ktime_t freezer_delta; static DEFINE_SPINLOCK(freezer_delta_lock); #endif #ifdef CONFIG_RTC_CLASS /* rtc timer and device for setting alarm wakeups at suspend */ static struct rtc_timer rtctimer; static struct rtc_device *rtcdev; static DEFINE_SPINLOCK(rtcdev_lock); /** * alarmtimer_get_rtcdev - Return selected rtcdevice * * This function returns the rtc device to use for wakealarms. */ struct rtc_device *alarmtimer_get_rtcdev(void) { unsigned long flags; struct rtc_device *ret; spin_lock_irqsave(&rtcdev_lock, flags); ret = rtcdev; spin_unlock_irqrestore(&rtcdev_lock, flags); return ret; } EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev); static int alarmtimer_rtc_add_device(struct device *dev) { unsigned long flags; struct rtc_device *rtc = to_rtc_device(dev); struct platform_device *pdev; int ret = 0; if (rtcdev) return -EBUSY; if (!test_bit(RTC_FEATURE_ALARM, rtc->features)) return -1; if (!device_may_wakeup(rtc->dev.parent)) return -1; pdev = platform_device_register_data(dev, "alarmtimer", PLATFORM_DEVID_AUTO, NULL, 0); if (!IS_ERR(pdev)) device_init_wakeup(&pdev->dev, true); spin_lock_irqsave(&rtcdev_lock, flags); if (!IS_ERR(pdev) && !rtcdev) { if (!try_module_get(rtc->owner)) { ret = -1; goto unlock; } rtcdev = rtc; /* hold a reference so it doesn't go away */ get_device(dev); pdev = NULL; } else { ret = -1; } unlock: spin_unlock_irqrestore(&rtcdev_lock, flags); platform_device_unregister(pdev); return ret; } static inline void alarmtimer_rtc_timer_init(void) { rtc_timer_init(&rtctimer, NULL, NULL); } static struct class_interface alarmtimer_rtc_interface = { .add_dev = &alarmtimer_rtc_add_device, }; static int alarmtimer_rtc_interface_setup(void) { alarmtimer_rtc_interface.class = &rtc_class; return class_interface_register(&alarmtimer_rtc_interface); } static void alarmtimer_rtc_interface_remove(void) { class_interface_unregister(&alarmtimer_rtc_interface); } #else static inline int alarmtimer_rtc_interface_setup(void) { return 0; } static inline void alarmtimer_rtc_interface_remove(void) { } static inline void alarmtimer_rtc_timer_init(void) { } #endif /** * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue * @base: pointer to the base where the timer is being run * @alarm: pointer to alarm being enqueued. * * Adds alarm to a alarm_base timerqueue * * Must hold base->lock when calling. */ static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm) { if (alarm->state & ALARMTIMER_STATE_ENQUEUED) timerqueue_del(&base->timerqueue, &alarm->node); timerqueue_add(&base->timerqueue, &alarm->node); alarm->state |= ALARMTIMER_STATE_ENQUEUED; } /** * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue * @base: pointer to the base where the timer is running * @alarm: pointer to alarm being removed * * Removes alarm to a alarm_base timerqueue * * Must hold base->lock when calling. */ static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm) { if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED)) return; timerqueue_del(&base->timerqueue, &alarm->node); alarm->state &= ~ALARMTIMER_STATE_ENQUEUED; } /** * alarmtimer_fired - Handles alarm hrtimer being fired. * @timer: pointer to hrtimer being run * * When a alarm timer fires, this runs through the timerqueue to * see which alarms expired, and runs those. If there are more alarm * timers queued for the future, we set the hrtimer to fire when * the next future alarm timer expires. */ static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer) { struct alarm *alarm = container_of(timer, struct alarm, timer); struct alarm_base *base = &alarm_bases[alarm->type]; unsigned long flags; int ret = HRTIMER_NORESTART; int restart = ALARMTIMER_NORESTART; spin_lock_irqsave(&base->lock, flags); alarmtimer_dequeue(base, alarm); spin_unlock_irqrestore(&base->lock, flags); if (alarm->function) restart = alarm->function(alarm, base->get_ktime()); spin_lock_irqsave(&base->lock, flags); if (restart != ALARMTIMER_NORESTART) { hrtimer_set_expires(&alarm->timer, alarm->node.expires); alarmtimer_enqueue(base, alarm); ret = HRTIMER_RESTART; } spin_unlock_irqrestore(&base->lock, flags); trace_alarmtimer_fired(alarm, base->get_ktime()); return ret; } ktime_t alarm_expires_remaining(const struct alarm *alarm) { struct alarm_base *base = &alarm_bases[alarm->type]; return ktime_sub(alarm->node.expires, base->get_ktime()); } EXPORT_SYMBOL_GPL(alarm_expires_remaining); #ifdef CONFIG_RTC_CLASS /** * alarmtimer_suspend - Suspend time callback * @dev: unused * * When we are going into suspend, we look through the bases * to see which is the soonest timer to expire. We then * set an rtc timer to fire that far into the future, which * will wake us from suspend. */ static int alarmtimer_suspend(struct device *dev) { ktime_t min, now, expires; int i, ret, type; struct rtc_device *rtc; unsigned long flags; struct rtc_time tm; spin_lock_irqsave(&freezer_delta_lock, flags); min = freezer_delta; expires = freezer_expires; type = freezer_alarmtype; freezer_delta = 0; spin_unlock_irqrestore(&freezer_delta_lock, flags); rtc = alarmtimer_get_rtcdev(); /* If we have no rtcdev, just return */ if (!rtc) return 0; /* Find the soonest timer to expire*/ for (i = 0; i < ALARM_NUMTYPE; i++) { struct alarm_base *base = &alarm_bases[i]; struct timerqueue_node *next; ktime_t delta; spin_lock_irqsave(&base->lock, flags); next = timerqueue_getnext(&base->timerqueue); spin_unlock_irqrestore(&base->lock, flags); if (!next) continue; delta = ktime_sub(next->expires, base->get_ktime()); if (!min || (delta < min)) { expires = next->expires; min = delta; type = i; } } if (min == 0) return 0; if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) { pm_wakeup_event(dev, 2 * MSEC_PER_SEC); return -EBUSY; } trace_alarmtimer_suspend(expires, type); /* Setup an rtc timer to fire that far in the future */ rtc_timer_cancel(rtc, &rtctimer); rtc_read_time(rtc, &tm); now = rtc_tm_to_ktime(tm); /* * If the RTC alarm timer only supports a limited time offset, set the * alarm time to the maximum supported value. * The system may wake up earlier (possibly much earlier) than expected * when the alarmtimer runs. This is the best the kernel can do if * the alarmtimer exceeds the time that the rtc device can be programmed * for. */ min = rtc_bound_alarmtime(rtc, min); now = ktime_add(now, min); /* Set alarm, if in the past reject suspend briefly to handle */ ret = rtc_timer_start(rtc, &rtctimer, now, 0); if (ret < 0) pm_wakeup_event(dev, MSEC_PER_SEC); return ret; } static int alarmtimer_resume(struct device *dev) { struct rtc_device *rtc; rtc = alarmtimer_get_rtcdev(); if (rtc) rtc_timer_cancel(rtc, &rtctimer); return 0; } #else static int alarmtimer_suspend(struct device *dev) { return 0; } static int alarmtimer_resume(struct device *dev) { return 0; } #endif static void __alarm_init(struct alarm *alarm, enum alarmtimer_type type, enum alarmtimer_restart (*function)(struct alarm *, ktime_t)) { timerqueue_init(&alarm->node); alarm->timer.function = alarmtimer_fired; alarm->function = function; alarm->type = type; alarm->state = ALARMTIMER_STATE_INACTIVE; } /** * alarm_init - Initialize an alarm structure * @alarm: ptr to alarm to be initialized * @type: the type of the alarm * @function: callback that is run when the alarm fires */ void alarm_init(struct alarm *alarm, enum alarmtimer_type type, enum alarmtimer_restart (*function)(struct alarm *, ktime_t)) { hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid, HRTIMER_MODE_ABS); __alarm_init(alarm, type, function); } EXPORT_SYMBOL_GPL(alarm_init); /** * alarm_start - Sets an absolute alarm to fire * @alarm: ptr to alarm to set * @start: time to run the alarm */ void alarm_start(struct alarm *alarm, ktime_t start) { struct alarm_base *base = &alarm_bases[alarm->type]; unsigned long flags; spin_lock_irqsave(&base->lock, flags); alarm->node.expires = start; alarmtimer_enqueue(base, alarm); hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS); spin_unlock_irqrestore(&base->lock, flags); trace_alarmtimer_start(alarm, base->get_ktime()); } EXPORT_SYMBOL_GPL(alarm_start); /** * alarm_start_relative - Sets a relative alarm to fire * @alarm: ptr to alarm to set * @start: time relative to now to run the alarm */ void alarm_start_relative(struct alarm *alarm, ktime_t start) { struct alarm_base *base = &alarm_bases[alarm->type]; start = ktime_add_safe(start, base->get_ktime()); alarm_start(alarm, start); } EXPORT_SYMBOL_GPL(alarm_start_relative); void alarm_restart(struct alarm *alarm) { struct alarm_base *base = &alarm_bases[alarm->type]; unsigned long flags; spin_lock_irqsave(&base->lock, flags); hrtimer_set_expires(&alarm->timer, alarm->node.expires); hrtimer_restart(&alarm->timer); alarmtimer_enqueue(base, alarm); spin_unlock_irqrestore(&base->lock, flags); } EXPORT_SYMBOL_GPL(alarm_restart); /** * alarm_try_to_cancel - Tries to cancel an alarm timer * @alarm: ptr to alarm to be canceled * * Returns 1 if the timer was canceled, 0 if it was not running, * and -1 if the callback was running */ int alarm_try_to_cancel(struct alarm *alarm) { struct alarm_base *base = &alarm_bases[alarm->type]; unsigned long flags; int ret; spin_lock_irqsave(&base->lock, flags); ret = hrtimer_try_to_cancel(&alarm->timer); if (ret >= 0) alarmtimer_dequeue(base, alarm); spin_unlock_irqrestore(&base->lock, flags); trace_alarmtimer_cancel(alarm, base->get_ktime()); return ret; } EXPORT_SYMBOL_GPL(alarm_try_to_cancel); /** * alarm_cancel - Spins trying to cancel an alarm timer until it is done * @alarm: ptr to alarm to be canceled * * Returns 1 if the timer was canceled, 0 if it was not active. */ int alarm_cancel(struct alarm *alarm) { for (;;) { int ret = alarm_try_to_cancel(alarm); if (ret >= 0) return ret; hrtimer_cancel_wait_running(&alarm->timer); } } EXPORT_SYMBOL_GPL(alarm_cancel); u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval) { u64 overrun = 1; ktime_t delta; delta = ktime_sub(now, alarm->node.expires); if (delta < 0) return 0; if (unlikely(delta >= interval)) { s64 incr = ktime_to_ns(interval); overrun = ktime_divns(delta, incr); alarm->node.expires = ktime_add_ns(alarm->node.expires, incr*overrun); if (alarm->node.expires > now) return overrun; /* * This (and the ktime_add() below) is the * correction for exact: */ overrun++; } alarm->node.expires = ktime_add_safe(alarm->node.expires, interval); return overrun; } EXPORT_SYMBOL_GPL(alarm_forward); static u64 __alarm_forward_now(struct alarm *alarm, ktime_t interval, bool throttle) { struct alarm_base *base = &alarm_bases[alarm->type]; ktime_t now = base->get_ktime(); if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && throttle) { /* * Same issue as with posix_timer_fn(). Timers which are * periodic but the signal is ignored can starve the system * with a very small interval. The real fix which was * promised in the context of posix_timer_fn() never * materialized, but someone should really work on it. * * To prevent DOS fake @now to be 1 jiffie out which keeps * the overrun accounting correct but creates an * inconsistency vs. timer_gettime(2). */ ktime_t kj = NSEC_PER_SEC / HZ; if (interval < kj) now = ktime_add(now, kj); } return alarm_forward(alarm, now, interval); } u64 alarm_forward_now(struct alarm *alarm, ktime_t interval) { return __alarm_forward_now(alarm, interval, false); } EXPORT_SYMBOL_GPL(alarm_forward_now); #ifdef CONFIG_POSIX_TIMERS static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type) { struct alarm_base *base; unsigned long flags; ktime_t delta; switch(type) { case ALARM_REALTIME: base = &alarm_bases[ALARM_REALTIME]; type = ALARM_REALTIME_FREEZER; break; case ALARM_BOOTTIME: base = &alarm_bases[ALARM_BOOTTIME]; type = ALARM_BOOTTIME_FREEZER; break; default: WARN_ONCE(1, "Invalid alarm type: %d\n", type); return; } delta = ktime_sub(absexp, base->get_ktime()); spin_lock_irqsave(&freezer_delta_lock, flags); if (!freezer_delta || (delta < freezer_delta)) { freezer_delta = delta; freezer_expires = absexp; freezer_alarmtype = type; } spin_unlock_irqrestore(&freezer_delta_lock, flags); } /** * clock2alarm - helper that converts from clockid to alarmtypes * @clockid: clockid. */ static enum alarmtimer_type clock2alarm(clockid_t clockid) { if (clockid == CLOCK_REALTIME_ALARM) return ALARM_REALTIME; if (clockid == CLOCK_BOOTTIME_ALARM) return ALARM_BOOTTIME; return -1; } /** * alarm_handle_timer - Callback for posix timers * @alarm: alarm that fired * @now: time at the timer expiration * * Posix timer callback for expired alarm timers. * * Return: whether the timer is to be restarted */ static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm, ktime_t now) { struct k_itimer *ptr = container_of(alarm, struct k_itimer, it.alarm.alarmtimer); enum alarmtimer_restart result = ALARMTIMER_NORESTART; unsigned long flags; int si_private = 0; spin_lock_irqsave(&ptr->it_lock, flags); ptr->it_active = 0; if (ptr->it_interval) si_private = ++ptr->it_requeue_pending; if (posix_timer_event(ptr, si_private) && ptr->it_interval) { /* * Handle ignored signals and rearm the timer. This will go * away once we handle ignored signals proper. Ensure that * small intervals cannot starve the system. */ ptr->it_overrun += __alarm_forward_now(alarm, ptr->it_interval, true); ++ptr->it_requeue_pending; ptr->it_active = 1; result = ALARMTIMER_RESTART; } spin_unlock_irqrestore(&ptr->it_lock, flags); return result; } /** * alarm_timer_rearm - Posix timer callback for rearming timer * @timr: Pointer to the posixtimer data struct */ static void alarm_timer_rearm(struct k_itimer *timr) { struct alarm *alarm = &timr->it.alarm.alarmtimer; timr->it_overrun += alarm_forward_now(alarm, timr->it_interval); alarm_start(alarm, alarm->node.expires); } /** * alarm_timer_forward - Posix timer callback for forwarding timer * @timr: Pointer to the posixtimer data struct * @now: Current time to forward the timer against */ static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now) { struct alarm *alarm = &timr->it.alarm.alarmtimer; return alarm_forward(alarm, timr->it_interval, now); } /** * alarm_timer_remaining - Posix timer callback to retrieve remaining time * @timr: Pointer to the posixtimer data struct * @now: Current time to calculate against */ static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now) { struct alarm *alarm = &timr->it.alarm.alarmtimer; return ktime_sub(alarm->node.expires, now); } /** * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer * @timr: Pointer to the posixtimer data struct */ static int alarm_timer_try_to_cancel(struct k_itimer *timr) { return alarm_try_to_cancel(&timr->it.alarm.alarmtimer); } /** * alarm_timer_wait_running - Posix timer callback to wait for a timer * @timr: Pointer to the posixtimer data struct * * Called from the core code when timer cancel detected that the callback * is running. @timr is unlocked and rcu read lock is held to prevent it * from being freed. */ static void alarm_timer_wait_running(struct k_itimer *timr) { hrtimer_cancel_wait_running(&timr->it.alarm.alarmtimer.timer); } /** * alarm_timer_arm - Posix timer callback to arm a timer * @timr: Pointer to the posixtimer data struct * @expires: The new expiry time * @absolute: Expiry value is absolute time * @sigev_none: Posix timer does not deliver signals */ static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires, bool absolute, bool sigev_none) { struct alarm *alarm = &timr->it.alarm.alarmtimer; struct alarm_base *base = &alarm_bases[alarm->type]; if (!absolute) expires = ktime_add_safe(expires, base->get_ktime()); if (sigev_none) alarm->node.expires = expires; else alarm_start(&timr->it.alarm.alarmtimer, expires); } /** * alarm_clock_getres - posix getres interface * @which_clock: clockid * @tp: timespec to fill * * Returns the granularity of underlying alarm base clock */ static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp) { if (!alarmtimer_get_rtcdev()) return -EINVAL; tp->tv_sec = 0; tp->tv_nsec = hrtimer_resolution; return 0; } /** * alarm_clock_get_timespec - posix clock_get_timespec interface * @which_clock: clockid * @tp: timespec to fill. * * Provides the underlying alarm base time in a tasks time namespace. */ static int alarm_clock_get_timespec(clockid_t which_clock, struct timespec64 *tp) { struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)]; if (!alarmtimer_get_rtcdev()) return -EINVAL; base->get_timespec(tp); return 0; } /** * alarm_clock_get_ktime - posix clock_get_ktime interface * @which_clock: clockid * * Provides the underlying alarm base time in the root namespace. */ static ktime_t alarm_clock_get_ktime(clockid_t which_clock) { struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)]; if (!alarmtimer_get_rtcdev()) return -EINVAL; return base->get_ktime(); } /** * alarm_timer_create - posix timer_create interface * @new_timer: k_itimer pointer to manage * * Initializes the k_itimer structure. */ static int alarm_timer_create(struct k_itimer *new_timer) { enum alarmtimer_type type; if (!alarmtimer_get_rtcdev()) return -EOPNOTSUPP; if (!capable(CAP_WAKE_ALARM)) return -EPERM; type = clock2alarm(new_timer->it_clock); alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer); return 0; } /** * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep * @alarm: ptr to alarm that fired * @now: time at the timer expiration * * Wakes up the task that set the alarmtimer * * Return: ALARMTIMER_NORESTART */ static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm, ktime_t now) { struct task_struct *task = alarm->data; alarm->data = NULL; if (task) wake_up_process(task); return ALARMTIMER_NORESTART; } /** * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation * @alarm: ptr to alarmtimer * @absexp: absolute expiration time * @type: alarm type (BOOTTIME/REALTIME). * * Sets the alarm timer and sleeps until it is fired or interrupted. */ static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp, enum alarmtimer_type type) { struct restart_block *restart; alarm->data = (void *)current; do { set_current_state(TASK_INTERRUPTIBLE); alarm_start(alarm, absexp); if (likely(alarm->data)) schedule(); alarm_cancel(alarm); } while (alarm->data && !signal_pending(current)); __set_current_state(TASK_RUNNING); destroy_hrtimer_on_stack(&alarm->timer); if (!alarm->data) return 0; if (freezing(current)) alarmtimer_freezerset(absexp, type); restart = ¤t->restart_block; if (restart->nanosleep.type != TT_NONE) { struct timespec64 rmt; ktime_t rem; rem = ktime_sub(absexp, alarm_bases[type].get_ktime()); if (rem <= 0) return 0; rmt = ktime_to_timespec64(rem); return nanosleep_copyout(restart, &rmt); } return -ERESTART_RESTARTBLOCK; } static void alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type, enum alarmtimer_restart (*function)(struct alarm *, ktime_t)) { hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid, HRTIMER_MODE_ABS); __alarm_init(alarm, type, function); } /** * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep * @restart: ptr to restart block * * Handles restarted clock_nanosleep calls */ static long __sched alarm_timer_nsleep_restart(struct restart_block *restart) { enum alarmtimer_type type = restart->nanosleep.clockid; ktime_t exp = restart->nanosleep.expires; struct alarm alarm; alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup); return alarmtimer_do_nsleep(&alarm, exp, type); } /** * alarm_timer_nsleep - alarmtimer nanosleep * @which_clock: clockid * @flags: determines abstime or relative * @tsreq: requested sleep time (abs or rel) * * Handles clock_nanosleep calls against _ALARM clockids */ static int alarm_timer_nsleep(const clockid_t which_clock, int flags, const struct timespec64 *tsreq) { enum alarmtimer_type type = clock2alarm(which_clock); struct restart_block *restart = ¤t->restart_block; struct alarm alarm; ktime_t exp; int ret; if (!alarmtimer_get_rtcdev()) return -EOPNOTSUPP; if (flags & ~TIMER_ABSTIME) return -EINVAL; if (!capable(CAP_WAKE_ALARM)) return -EPERM; alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup); exp = timespec64_to_ktime(*tsreq); /* Convert (if necessary) to absolute time */ if (flags != TIMER_ABSTIME) { ktime_t now = alarm_bases[type].get_ktime(); exp = ktime_add_safe(now, exp); } else { exp = timens_ktime_to_host(which_clock, exp); } ret = alarmtimer_do_nsleep(&alarm, exp, type); if (ret != -ERESTART_RESTARTBLOCK) return ret; /* abs timers don't set remaining time or restart */ if (flags == TIMER_ABSTIME) return -ERESTARTNOHAND; restart->nanosleep.clockid = type; restart->nanosleep.expires = exp; set_restart_fn(restart, alarm_timer_nsleep_restart); return ret; } const struct k_clock alarm_clock = { .clock_getres = alarm_clock_getres, .clock_get_ktime = alarm_clock_get_ktime, .clock_get_timespec = alarm_clock_get_timespec, .timer_create = alarm_timer_create, .timer_set = common_timer_set, .timer_del = common_timer_del, .timer_get = common_timer_get, .timer_arm = alarm_timer_arm, .timer_rearm = alarm_timer_rearm, .timer_forward = alarm_timer_forward, .timer_remaining = alarm_timer_remaining, .timer_try_to_cancel = alarm_timer_try_to_cancel, .timer_wait_running = alarm_timer_wait_running, .nsleep = alarm_timer_nsleep, }; #endif /* CONFIG_POSIX_TIMERS */ /* Suspend hook structures */ static const struct dev_pm_ops alarmtimer_pm_ops = { .suspend = alarmtimer_suspend, .resume = alarmtimer_resume, }; static struct platform_driver alarmtimer_driver = { .driver = { .name = "alarmtimer", .pm = &alarmtimer_pm_ops, } }; static void get_boottime_timespec(struct timespec64 *tp) { ktime_get_boottime_ts64(tp); timens_add_boottime(tp); } /** * alarmtimer_init - Initialize alarm timer code * * This function initializes the alarm bases and registers * the posix clock ids. */ static int __init alarmtimer_init(void) { int error; int i; alarmtimer_rtc_timer_init(); /* Initialize alarm bases */ alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME; alarm_bases[ALARM_REALTIME].get_ktime = &ktime_get_real; alarm_bases[ALARM_REALTIME].get_timespec = ktime_get_real_ts64; alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME; alarm_bases[ALARM_BOOTTIME].get_ktime = &ktime_get_boottime; alarm_bases[ALARM_BOOTTIME].get_timespec = get_boottime_timespec; for (i = 0; i < ALARM_NUMTYPE; i++) { timerqueue_init_head(&alarm_bases[i].timerqueue); spin_lock_init(&alarm_bases[i].lock); } error = alarmtimer_rtc_interface_setup(); if (error) return error; error = platform_driver_register(&alarmtimer_driver); if (error) goto out_if; return 0; out_if: alarmtimer_rtc_interface_remove(); return error; } device_initcall(alarmtimer_init); |