Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 | // SPDX-License-Identifier: GPL-2.0 /* Copyright (C) 2021, Intel Corporation. */ #include "ice.h" #include "ice_lib.h" #include "ice_trace.h" #define E810_OUT_PROP_DELAY_NS 1 #define UNKNOWN_INCVAL_E82X 0x100000000ULL static const struct ptp_pin_desc ice_pin_desc_e810t[] = { /* name idx func chan */ { "GNSS", GNSS, PTP_PF_EXTTS, 0, { 0, } }, { "SMA1", SMA1, PTP_PF_NONE, 1, { 0, } }, { "U.FL1", UFL1, PTP_PF_NONE, 1, { 0, } }, { "SMA2", SMA2, PTP_PF_NONE, 2, { 0, } }, { "U.FL2", UFL2, PTP_PF_NONE, 2, { 0, } }, }; /** * ice_get_sma_config_e810t * @hw: pointer to the hw struct * @ptp_pins: pointer to the ptp_pin_desc struture * * Read the configuration of the SMA control logic and put it into the * ptp_pin_desc structure */ static int ice_get_sma_config_e810t(struct ice_hw *hw, struct ptp_pin_desc *ptp_pins) { u8 data, i; int status; /* Read initial pin state */ status = ice_read_sma_ctrl_e810t(hw, &data); if (status) return status; /* initialize with defaults */ for (i = 0; i < NUM_PTP_PINS_E810T; i++) { strscpy(ptp_pins[i].name, ice_pin_desc_e810t[i].name, sizeof(ptp_pins[i].name)); ptp_pins[i].index = ice_pin_desc_e810t[i].index; ptp_pins[i].func = ice_pin_desc_e810t[i].func; ptp_pins[i].chan = ice_pin_desc_e810t[i].chan; } /* Parse SMA1/UFL1 */ switch (data & ICE_SMA1_MASK_E810T) { case ICE_SMA1_MASK_E810T: default: ptp_pins[SMA1].func = PTP_PF_NONE; ptp_pins[UFL1].func = PTP_PF_NONE; break; case ICE_SMA1_DIR_EN_E810T: ptp_pins[SMA1].func = PTP_PF_PEROUT; ptp_pins[UFL1].func = PTP_PF_NONE; break; case ICE_SMA1_TX_EN_E810T: ptp_pins[SMA1].func = PTP_PF_EXTTS; ptp_pins[UFL1].func = PTP_PF_NONE; break; case 0: ptp_pins[SMA1].func = PTP_PF_EXTTS; ptp_pins[UFL1].func = PTP_PF_PEROUT; break; } /* Parse SMA2/UFL2 */ switch (data & ICE_SMA2_MASK_E810T) { case ICE_SMA2_MASK_E810T: default: ptp_pins[SMA2].func = PTP_PF_NONE; ptp_pins[UFL2].func = PTP_PF_NONE; break; case (ICE_SMA2_TX_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T): ptp_pins[SMA2].func = PTP_PF_EXTTS; ptp_pins[UFL2].func = PTP_PF_NONE; break; case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T): ptp_pins[SMA2].func = PTP_PF_PEROUT; ptp_pins[UFL2].func = PTP_PF_NONE; break; case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T): ptp_pins[SMA2].func = PTP_PF_NONE; ptp_pins[UFL2].func = PTP_PF_EXTTS; break; case ICE_SMA2_DIR_EN_E810T: ptp_pins[SMA2].func = PTP_PF_PEROUT; ptp_pins[UFL2].func = PTP_PF_EXTTS; break; } return 0; } /** * ice_ptp_set_sma_config_e810t * @hw: pointer to the hw struct * @ptp_pins: pointer to the ptp_pin_desc struture * * Set the configuration of the SMA control logic based on the configuration in * num_pins parameter */ static int ice_ptp_set_sma_config_e810t(struct ice_hw *hw, const struct ptp_pin_desc *ptp_pins) { int status; u8 data; /* SMA1 and UFL1 cannot be set to TX at the same time */ if (ptp_pins[SMA1].func == PTP_PF_PEROUT && ptp_pins[UFL1].func == PTP_PF_PEROUT) return -EINVAL; /* SMA2 and UFL2 cannot be set to RX at the same time */ if (ptp_pins[SMA2].func == PTP_PF_EXTTS && ptp_pins[UFL2].func == PTP_PF_EXTTS) return -EINVAL; /* Read initial pin state value */ status = ice_read_sma_ctrl_e810t(hw, &data); if (status) return status; /* Set the right sate based on the desired configuration */ data &= ~ICE_SMA1_MASK_E810T; if (ptp_pins[SMA1].func == PTP_PF_NONE && ptp_pins[UFL1].func == PTP_PF_NONE) { dev_info(ice_hw_to_dev(hw), "SMA1 + U.FL1 disabled"); data |= ICE_SMA1_MASK_E810T; } else if (ptp_pins[SMA1].func == PTP_PF_EXTTS && ptp_pins[UFL1].func == PTP_PF_NONE) { dev_info(ice_hw_to_dev(hw), "SMA1 RX"); data |= ICE_SMA1_TX_EN_E810T; } else if (ptp_pins[SMA1].func == PTP_PF_NONE && ptp_pins[UFL1].func == PTP_PF_PEROUT) { /* U.FL 1 TX will always enable SMA 1 RX */ dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX"); } else if (ptp_pins[SMA1].func == PTP_PF_EXTTS && ptp_pins[UFL1].func == PTP_PF_PEROUT) { dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX"); } else if (ptp_pins[SMA1].func == PTP_PF_PEROUT && ptp_pins[UFL1].func == PTP_PF_NONE) { dev_info(ice_hw_to_dev(hw), "SMA1 TX"); data |= ICE_SMA1_DIR_EN_E810T; } data &= ~ICE_SMA2_MASK_E810T; if (ptp_pins[SMA2].func == PTP_PF_NONE && ptp_pins[UFL2].func == PTP_PF_NONE) { dev_info(ice_hw_to_dev(hw), "SMA2 + U.FL2 disabled"); data |= ICE_SMA2_MASK_E810T; } else if (ptp_pins[SMA2].func == PTP_PF_EXTTS && ptp_pins[UFL2].func == PTP_PF_NONE) { dev_info(ice_hw_to_dev(hw), "SMA2 RX"); data |= (ICE_SMA2_TX_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T); } else if (ptp_pins[SMA2].func == PTP_PF_NONE && ptp_pins[UFL2].func == PTP_PF_EXTTS) { dev_info(ice_hw_to_dev(hw), "UFL2 RX"); data |= (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T); } else if (ptp_pins[SMA2].func == PTP_PF_PEROUT && ptp_pins[UFL2].func == PTP_PF_NONE) { dev_info(ice_hw_to_dev(hw), "SMA2 TX"); data |= (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T); } else if (ptp_pins[SMA2].func == PTP_PF_PEROUT && ptp_pins[UFL2].func == PTP_PF_EXTTS) { dev_info(ice_hw_to_dev(hw), "SMA2 TX + U.FL2 RX"); data |= ICE_SMA2_DIR_EN_E810T; } return ice_write_sma_ctrl_e810t(hw, data); } /** * ice_ptp_set_sma_e810t * @info: the driver's PTP info structure * @pin: pin index in kernel structure * @func: Pin function to be set (PTP_PF_NONE, PTP_PF_EXTTS or PTP_PF_PEROUT) * * Set the configuration of a single SMA pin */ static int ice_ptp_set_sma_e810t(struct ptp_clock_info *info, unsigned int pin, enum ptp_pin_function func) { struct ptp_pin_desc ptp_pins[NUM_PTP_PINS_E810T]; struct ice_pf *pf = ptp_info_to_pf(info); struct ice_hw *hw = &pf->hw; int err; if (pin < SMA1 || func > PTP_PF_PEROUT) return -EOPNOTSUPP; err = ice_get_sma_config_e810t(hw, ptp_pins); if (err) return err; /* Disable the same function on the other pin sharing the channel */ if (pin == SMA1 && ptp_pins[UFL1].func == func) ptp_pins[UFL1].func = PTP_PF_NONE; if (pin == UFL1 && ptp_pins[SMA1].func == func) ptp_pins[SMA1].func = PTP_PF_NONE; if (pin == SMA2 && ptp_pins[UFL2].func == func) ptp_pins[UFL2].func = PTP_PF_NONE; if (pin == UFL2 && ptp_pins[SMA2].func == func) ptp_pins[SMA2].func = PTP_PF_NONE; /* Set up new pin function in the temp table */ ptp_pins[pin].func = func; return ice_ptp_set_sma_config_e810t(hw, ptp_pins); } /** * ice_verify_pin_e810t * @info: the driver's PTP info structure * @pin: Pin index * @func: Assigned function * @chan: Assigned channel * * Verify if pin supports requested pin function. If the Check pins consistency. * Reconfigure the SMA logic attached to the given pin to enable its * desired functionality */ static int ice_verify_pin_e810t(struct ptp_clock_info *info, unsigned int pin, enum ptp_pin_function func, unsigned int chan) { /* Don't allow channel reassignment */ if (chan != ice_pin_desc_e810t[pin].chan) return -EOPNOTSUPP; /* Check if functions are properly assigned */ switch (func) { case PTP_PF_NONE: break; case PTP_PF_EXTTS: if (pin == UFL1) return -EOPNOTSUPP; break; case PTP_PF_PEROUT: if (pin == UFL2 || pin == GNSS) return -EOPNOTSUPP; break; case PTP_PF_PHYSYNC: return -EOPNOTSUPP; } return ice_ptp_set_sma_e810t(info, pin, func); } /** * ice_ptp_cfg_tx_interrupt - Configure Tx timestamp interrupt for the device * @pf: Board private structure * * Program the device to respond appropriately to the Tx timestamp interrupt * cause. */ static void ice_ptp_cfg_tx_interrupt(struct ice_pf *pf) { struct ice_hw *hw = &pf->hw; bool enable; u32 val; switch (pf->ptp.tx_interrupt_mode) { case ICE_PTP_TX_INTERRUPT_ALL: /* React to interrupts across all quads. */ wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x1f); enable = true; break; case ICE_PTP_TX_INTERRUPT_NONE: /* Do not react to interrupts on any quad. */ wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x0); enable = false; break; case ICE_PTP_TX_INTERRUPT_SELF: default: enable = pf->ptp.tstamp_config.tx_type == HWTSTAMP_TX_ON; break; } /* Configure the Tx timestamp interrupt */ val = rd32(hw, PFINT_OICR_ENA); if (enable) val |= PFINT_OICR_TSYN_TX_M; else val &= ~PFINT_OICR_TSYN_TX_M; wr32(hw, PFINT_OICR_ENA, val); } /** * ice_set_rx_tstamp - Enable or disable Rx timestamping * @pf: The PF pointer to search in * @on: bool value for whether timestamps are enabled or disabled */ static void ice_set_rx_tstamp(struct ice_pf *pf, bool on) { struct ice_vsi *vsi; u16 i; vsi = ice_get_main_vsi(pf); if (!vsi || !vsi->rx_rings) return; /* Set the timestamp flag for all the Rx rings */ ice_for_each_rxq(vsi, i) { if (!vsi->rx_rings[i]) continue; vsi->rx_rings[i]->ptp_rx = on; } } /** * ice_ptp_disable_timestamp_mode - Disable current timestamp mode * @pf: Board private structure * * Called during preparation for reset to temporarily disable timestamping on * the device. Called during remove to disable timestamping while cleaning up * driver resources. */ static void ice_ptp_disable_timestamp_mode(struct ice_pf *pf) { struct ice_hw *hw = &pf->hw; u32 val; val = rd32(hw, PFINT_OICR_ENA); val &= ~PFINT_OICR_TSYN_TX_M; wr32(hw, PFINT_OICR_ENA, val); ice_set_rx_tstamp(pf, false); } /** * ice_ptp_restore_timestamp_mode - Restore timestamp configuration * @pf: Board private structure * * Called at the end of rebuild to restore timestamp configuration after * a device reset. */ void ice_ptp_restore_timestamp_mode(struct ice_pf *pf) { struct ice_hw *hw = &pf->hw; bool enable_rx; ice_ptp_cfg_tx_interrupt(pf); enable_rx = pf->ptp.tstamp_config.rx_filter == HWTSTAMP_FILTER_ALL; ice_set_rx_tstamp(pf, enable_rx); /* Trigger an immediate software interrupt to ensure that timestamps * which occurred during reset are handled now. */ wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); ice_flush(hw); } /** * ice_ptp_read_src_clk_reg - Read the source clock register * @pf: Board private structure * @sts: Optional parameter for holding a pair of system timestamps from * the system clock. Will be ignored if NULL is given. */ static u64 ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts) { struct ice_hw *hw = &pf->hw; u32 hi, lo, lo2; u8 tmr_idx; tmr_idx = ice_get_ptp_src_clock_index(hw); /* Read the system timestamp pre PHC read */ ptp_read_system_prets(sts); lo = rd32(hw, GLTSYN_TIME_L(tmr_idx)); /* Read the system timestamp post PHC read */ ptp_read_system_postts(sts); hi = rd32(hw, GLTSYN_TIME_H(tmr_idx)); lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx)); if (lo2 < lo) { /* if TIME_L rolled over read TIME_L again and update * system timestamps */ ptp_read_system_prets(sts); lo = rd32(hw, GLTSYN_TIME_L(tmr_idx)); ptp_read_system_postts(sts); hi = rd32(hw, GLTSYN_TIME_H(tmr_idx)); } return ((u64)hi << 32) | lo; } /** * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b * @cached_phc_time: recently cached copy of PHC time * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value * * Hardware captures timestamps which contain only 32 bits of nominal * nanoseconds, as opposed to the 64bit timestamps that the stack expects. * Note that the captured timestamp values may be 40 bits, but the lower * 8 bits are sub-nanoseconds and generally discarded. * * Extend the 32bit nanosecond timestamp using the following algorithm and * assumptions: * * 1) have a recently cached copy of the PHC time * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1 * seconds) before or after the PHC time was captured. * 3) calculate the delta between the cached time and the timestamp * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was * captured after the PHC time. In this case, the full timestamp is just * the cached PHC time plus the delta. * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the * timestamp was captured *before* the PHC time, i.e. because the PHC * cache was updated after the timestamp was captured by hardware. In this * case, the full timestamp is the cached time minus the inverse delta. * * This algorithm works even if the PHC time was updated after a Tx timestamp * was requested, but before the Tx timestamp event was reported from * hardware. * * This calculation primarily relies on keeping the cached PHC time up to * date. If the timestamp was captured more than 2^31 nanoseconds after the * PHC time, it is possible that the lower 32bits of PHC time have * overflowed more than once, and we might generate an incorrect timestamp. * * This is prevented by (a) periodically updating the cached PHC time once * a second, and (b) discarding any Tx timestamp packet if it has waited for * a timestamp for more than one second. */ static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp) { u32 delta, phc_time_lo; u64 ns; /* Extract the lower 32 bits of the PHC time */ phc_time_lo = (u32)cached_phc_time; /* Calculate the delta between the lower 32bits of the cached PHC * time and the in_tstamp value */ delta = (in_tstamp - phc_time_lo); /* Do not assume that the in_tstamp is always more recent than the * cached PHC time. If the delta is large, it indicates that the * in_tstamp was taken in the past, and should be converted * forward. */ if (delta > (U32_MAX / 2)) { /* reverse the delta calculation here */ delta = (phc_time_lo - in_tstamp); ns = cached_phc_time - delta; } else { ns = cached_phc_time + delta; } return ns; } /** * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds * @pf: Board private structure * @in_tstamp: Ingress/egress 40b timestamp value * * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit. * * *--------------------------------------------------------------* * | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v | * *--------------------------------------------------------------* * * The low bit is an indicator of whether the timestamp is valid. The next * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow, * and the remaining 32 bits are the lower 32 bits of the PHC timer. * * It is assumed that the caller verifies the timestamp is valid prior to * calling this function. * * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC * time stored in the device private PTP structure as the basis for timestamp * extension. * * See ice_ptp_extend_32b_ts for a detailed explanation of the extension * algorithm. */ static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp) { const u64 mask = GENMASK_ULL(31, 0); unsigned long discard_time; /* Discard the hardware timestamp if the cached PHC time is too old */ discard_time = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000); if (time_is_before_jiffies(discard_time)) { pf->ptp.tx_hwtstamp_discarded++; return 0; } return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time, (in_tstamp >> 8) & mask); } /** * ice_ptp_is_tx_tracker_up - Check if Tx tracker is ready for new timestamps * @tx: the PTP Tx timestamp tracker to check * * Check that a given PTP Tx timestamp tracker is up, i.e. that it is ready * to accept new timestamp requests. * * Assumes the tx->lock spinlock is already held. */ static bool ice_ptp_is_tx_tracker_up(struct ice_ptp_tx *tx) { lockdep_assert_held(&tx->lock); return tx->init && !tx->calibrating; } /** * ice_ptp_req_tx_single_tstamp - Request Tx timestamp for a port from FW * @tx: the PTP Tx timestamp tracker * @idx: index of the timestamp to request */ void ice_ptp_req_tx_single_tstamp(struct ice_ptp_tx *tx, u8 idx) { struct ice_ptp_port *ptp_port; struct sk_buff *skb; struct ice_pf *pf; if (!tx->init) return; ptp_port = container_of(tx, struct ice_ptp_port, tx); pf = ptp_port_to_pf(ptp_port); /* Drop packets which have waited for more than 2 seconds */ if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) { /* Count the number of Tx timestamps that timed out */ pf->ptp.tx_hwtstamp_timeouts++; skb = tx->tstamps[idx].skb; tx->tstamps[idx].skb = NULL; clear_bit(idx, tx->in_use); dev_kfree_skb_any(skb); return; } ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx); /* Write TS index to read to the PF register so the FW can read it */ wr32(&pf->hw, PF_SB_ATQBAL, TS_LL_READ_TS_INTR | FIELD_PREP(TS_LL_READ_TS_IDX, idx) | TS_LL_READ_TS); tx->last_ll_ts_idx_read = idx; } /** * ice_ptp_complete_tx_single_tstamp - Complete Tx timestamp for a port * @tx: the PTP Tx timestamp tracker */ void ice_ptp_complete_tx_single_tstamp(struct ice_ptp_tx *tx) { struct skb_shared_hwtstamps shhwtstamps = {}; u8 idx = tx->last_ll_ts_idx_read; struct ice_ptp_port *ptp_port; u64 raw_tstamp, tstamp; bool drop_ts = false; struct sk_buff *skb; struct ice_pf *pf; u32 val; if (!tx->init || tx->last_ll_ts_idx_read < 0) return; ptp_port = container_of(tx, struct ice_ptp_port, tx); pf = ptp_port_to_pf(ptp_port); ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx); val = rd32(&pf->hw, PF_SB_ATQBAL); /* When the bit is cleared, the TS is ready in the register */ if (val & TS_LL_READ_TS) { dev_err(ice_pf_to_dev(pf), "Failed to get the Tx tstamp - FW not ready"); return; } /* High 8 bit value of the TS is on the bits 16:23 */ raw_tstamp = FIELD_GET(TS_LL_READ_TS_HIGH, val); raw_tstamp <<= 32; /* Read the low 32 bit value */ raw_tstamp |= (u64)rd32(&pf->hw, PF_SB_ATQBAH); /* Devices using this interface always verify the timestamp differs * relative to the last cached timestamp value. */ if (raw_tstamp == tx->tstamps[idx].cached_tstamp) return; tx->tstamps[idx].cached_tstamp = raw_tstamp; clear_bit(idx, tx->in_use); skb = tx->tstamps[idx].skb; tx->tstamps[idx].skb = NULL; if (test_and_clear_bit(idx, tx->stale)) drop_ts = true; if (!skb) return; if (drop_ts) { dev_kfree_skb_any(skb); return; } /* Extend the timestamp using cached PHC time */ tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp); if (tstamp) { shhwtstamps.hwtstamp = ns_to_ktime(tstamp); ice_trace(tx_tstamp_complete, skb, idx); } skb_tstamp_tx(skb, &shhwtstamps); dev_kfree_skb_any(skb); } /** * ice_ptp_process_tx_tstamp - Process Tx timestamps for a port * @tx: the PTP Tx timestamp tracker * * Process timestamps captured by the PHY associated with this port. To do * this, loop over each index with a waiting skb. * * If a given index has a valid timestamp, perform the following steps: * * 1) check that the timestamp request is not stale * 2) check that a timestamp is ready and available in the PHY memory bank * 3) read and copy the timestamp out of the PHY register * 4) unlock the index by clearing the associated in_use bit * 5) check if the timestamp is stale, and discard if so * 6) extend the 40 bit timestamp value to get a 64 bit timestamp value * 7) send this 64 bit timestamp to the stack * * Note that we do not hold the tracking lock while reading the Tx timestamp. * This is because reading the timestamp requires taking a mutex that might * sleep. * * The only place where we set in_use is when a new timestamp is initiated * with a slot index. This is only called in the hard xmit routine where an * SKB has a request flag set. The only places where we clear this bit is this * function, or during teardown when the Tx timestamp tracker is being * removed. A timestamp index will never be re-used until the in_use bit for * that index is cleared. * * If a Tx thread starts a new timestamp, we might not begin processing it * right away but we will notice it at the end when we re-queue the task. * * If a Tx thread starts a new timestamp just after this function exits, the * interrupt for that timestamp should re-trigger this function once * a timestamp is ready. * * In cases where the PTP hardware clock was directly adjusted, some * timestamps may not be able to safely use the timestamp extension math. In * this case, software will set the stale bit for any outstanding Tx * timestamps when the clock is adjusted. Then this function will discard * those captured timestamps instead of sending them to the stack. * * If a Tx packet has been waiting for more than 2 seconds, it is not possible * to correctly extend the timestamp using the cached PHC time. It is * extremely unlikely that a packet will ever take this long to timestamp. If * we detect a Tx timestamp request that has waited for this long we assume * the packet will never be sent by hardware and discard it without reading * the timestamp register. */ static void ice_ptp_process_tx_tstamp(struct ice_ptp_tx *tx) { struct ice_ptp_port *ptp_port; unsigned long flags; struct ice_pf *pf; struct ice_hw *hw; u64 tstamp_ready; bool link_up; int err; u8 idx; ptp_port = container_of(tx, struct ice_ptp_port, tx); pf = ptp_port_to_pf(ptp_port); hw = &pf->hw; /* Read the Tx ready status first */ if (tx->has_ready_bitmap) { err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready); if (err) return; } /* Drop packets if the link went down */ link_up = ptp_port->link_up; for_each_set_bit(idx, tx->in_use, tx->len) { struct skb_shared_hwtstamps shhwtstamps = {}; u8 phy_idx = idx + tx->offset; u64 raw_tstamp = 0, tstamp; bool drop_ts = !link_up; struct sk_buff *skb; /* Drop packets which have waited for more than 2 seconds */ if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) { drop_ts = true; /* Count the number of Tx timestamps that timed out */ pf->ptp.tx_hwtstamp_timeouts++; } /* Only read a timestamp from the PHY if its marked as ready * by the tstamp_ready register. This avoids unnecessary * reading of timestamps which are not yet valid. This is * important as we must read all timestamps which are valid * and only timestamps which are valid during each interrupt. * If we do not, the hardware logic for generating a new * interrupt can get stuck on some devices. */ if (tx->has_ready_bitmap && !(tstamp_ready & BIT_ULL(phy_idx))) { if (drop_ts) goto skip_ts_read; continue; } ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx); err = ice_read_phy_tstamp(hw, tx->block, phy_idx, &raw_tstamp); if (err && !drop_ts) continue; ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx); /* For PHYs which don't implement a proper timestamp ready * bitmap, verify that the timestamp value is different * from the last cached timestamp. If it is not, skip this for * now assuming it hasn't yet been captured by hardware. */ if (!drop_ts && !tx->has_ready_bitmap && raw_tstamp == tx->tstamps[idx].cached_tstamp) continue; /* Discard any timestamp value without the valid bit set */ if (!(raw_tstamp & ICE_PTP_TS_VALID)) drop_ts = true; skip_ts_read: spin_lock_irqsave(&tx->lock, flags); if (!tx->has_ready_bitmap && raw_tstamp) tx->tstamps[idx].cached_tstamp = raw_tstamp; clear_bit(idx, tx->in_use); skb = tx->tstamps[idx].skb; tx->tstamps[idx].skb = NULL; if (test_and_clear_bit(idx, tx->stale)) drop_ts = true; spin_unlock_irqrestore(&tx->lock, flags); /* It is unlikely but possible that the SKB will have been * flushed at this point due to link change or teardown. */ if (!skb) continue; if (drop_ts) { dev_kfree_skb_any(skb); continue; } /* Extend the timestamp using cached PHC time */ tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp); if (tstamp) { shhwtstamps.hwtstamp = ns_to_ktime(tstamp); ice_trace(tx_tstamp_complete, skb, idx); } skb_tstamp_tx(skb, &shhwtstamps); dev_kfree_skb_any(skb); } } /** * ice_ptp_tx_tstamp_owner - Process Tx timestamps for all ports on the device * @pf: Board private structure */ static enum ice_tx_tstamp_work ice_ptp_tx_tstamp_owner(struct ice_pf *pf) { struct ice_ptp_port *port; unsigned int i; mutex_lock(&pf->ptp.ports_owner.lock); list_for_each_entry(port, &pf->ptp.ports_owner.ports, list_member) { struct ice_ptp_tx *tx = &port->tx; if (!tx || !tx->init) continue; ice_ptp_process_tx_tstamp(tx); } mutex_unlock(&pf->ptp.ports_owner.lock); for (i = 0; i < ICE_MAX_QUAD; i++) { u64 tstamp_ready; int err; /* Read the Tx ready status first */ err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready); if (err) break; else if (tstamp_ready) return ICE_TX_TSTAMP_WORK_PENDING; } return ICE_TX_TSTAMP_WORK_DONE; } /** * ice_ptp_tx_tstamp - Process Tx timestamps for this function. * @tx: Tx tracking structure to initialize * * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding incomplete * Tx timestamps, or ICE_TX_TSTAMP_WORK_DONE otherwise. */ static enum ice_tx_tstamp_work ice_ptp_tx_tstamp(struct ice_ptp_tx *tx) { bool more_timestamps; unsigned long flags; if (!tx->init) return ICE_TX_TSTAMP_WORK_DONE; /* Process the Tx timestamp tracker */ ice_ptp_process_tx_tstamp(tx); /* Check if there are outstanding Tx timestamps */ spin_lock_irqsave(&tx->lock, flags); more_timestamps = tx->init && !bitmap_empty(tx->in_use, tx->len); spin_unlock_irqrestore(&tx->lock, flags); if (more_timestamps) return ICE_TX_TSTAMP_WORK_PENDING; return ICE_TX_TSTAMP_WORK_DONE; } /** * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps * @tx: Tx tracking structure to initialize * * Assumes that the length has already been initialized. Do not call directly, * use the ice_ptp_init_tx_* instead. */ static int ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx) { unsigned long *in_use, *stale; struct ice_tx_tstamp *tstamps; tstamps = kcalloc(tx->len, sizeof(*tstamps), GFP_KERNEL); in_use = bitmap_zalloc(tx->len, GFP_KERNEL); stale = bitmap_zalloc(tx->len, GFP_KERNEL); if (!tstamps || !in_use || !stale) { kfree(tstamps); bitmap_free(in_use); bitmap_free(stale); return -ENOMEM; } tx->tstamps = tstamps; tx->in_use = in_use; tx->stale = stale; tx->init = 1; tx->last_ll_ts_idx_read = -1; spin_lock_init(&tx->lock); return 0; } /** * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker * @pf: Board private structure * @tx: the tracker to flush * * Called during teardown when a Tx tracker is being removed. */ static void ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx) { struct ice_hw *hw = &pf->hw; unsigned long flags; u64 tstamp_ready; int err; u8 idx; err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready); if (err) { dev_dbg(ice_pf_to_dev(pf), "Failed to get the Tx tstamp ready bitmap for block %u, err %d\n", tx->block, err); /* If we fail to read the Tx timestamp ready bitmap just * skip clearing the PHY timestamps. */ tstamp_ready = 0; } for_each_set_bit(idx, tx->in_use, tx->len) { u8 phy_idx = idx + tx->offset; struct sk_buff *skb; /* In case this timestamp is ready, we need to clear it. */ if (!hw->reset_ongoing && (tstamp_ready & BIT_ULL(phy_idx))) ice_clear_phy_tstamp(hw, tx->block, phy_idx); spin_lock_irqsave(&tx->lock, flags); skb = tx->tstamps[idx].skb; tx->tstamps[idx].skb = NULL; clear_bit(idx, tx->in_use); clear_bit(idx, tx->stale); spin_unlock_irqrestore(&tx->lock, flags); /* Count the number of Tx timestamps flushed */ pf->ptp.tx_hwtstamp_flushed++; /* Free the SKB after we've cleared the bit */ dev_kfree_skb_any(skb); } } /** * ice_ptp_mark_tx_tracker_stale - Mark unfinished timestamps as stale * @tx: the tracker to mark * * Mark currently outstanding Tx timestamps as stale. This prevents sending * their timestamp value to the stack. This is required to prevent extending * the 40bit hardware timestamp incorrectly. * * This should be called when the PTP clock is modified such as after a set * time request. */ static void ice_ptp_mark_tx_tracker_stale(struct ice_ptp_tx *tx) { unsigned long flags; spin_lock_irqsave(&tx->lock, flags); bitmap_or(tx->stale, tx->stale, tx->in_use, tx->len); spin_unlock_irqrestore(&tx->lock, flags); } /** * ice_ptp_flush_all_tx_tracker - Flush all timestamp trackers on this clock * @pf: Board private structure * * Called by the clock owner to flush all the Tx timestamp trackers associated * with the clock. */ static void ice_ptp_flush_all_tx_tracker(struct ice_pf *pf) { struct ice_ptp_port *port; list_for_each_entry(port, &pf->ptp.ports_owner.ports, list_member) ice_ptp_flush_tx_tracker(ptp_port_to_pf(port), &port->tx); } /** * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker * @pf: Board private structure * @tx: Tx tracking structure to release * * Free memory associated with the Tx timestamp tracker. */ static void ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx) { unsigned long flags; spin_lock_irqsave(&tx->lock, flags); tx->init = 0; spin_unlock_irqrestore(&tx->lock, flags); /* wait for potentially outstanding interrupt to complete */ synchronize_irq(pf->oicr_irq.virq); ice_ptp_flush_tx_tracker(pf, tx); kfree(tx->tstamps); tx->tstamps = NULL; bitmap_free(tx->in_use); tx->in_use = NULL; bitmap_free(tx->stale); tx->stale = NULL; tx->len = 0; } /** * ice_ptp_init_tx_e82x - Initialize tracking for Tx timestamps * @pf: Board private structure * @tx: the Tx tracking structure to initialize * @port: the port this structure tracks * * Initialize the Tx timestamp tracker for this port. For generic MAC devices, * the timestamp block is shared for all ports in the same quad. To avoid * ports using the same timestamp index, logically break the block of * registers into chunks based on the port number. */ static int ice_ptp_init_tx_e82x(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port) { tx->block = port / ICE_PORTS_PER_QUAD; tx->offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT_E82X; tx->len = INDEX_PER_PORT_E82X; tx->has_ready_bitmap = 1; return ice_ptp_alloc_tx_tracker(tx); } /** * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps * @pf: Board private structure * @tx: the Tx tracking structure to initialize * * Initialize the Tx timestamp tracker for this PF. For E810 devices, each * port has its own block of timestamps, independent of the other ports. */ static int ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx) { tx->block = pf->hw.port_info->lport; tx->offset = 0; tx->len = INDEX_PER_PORT_E810; /* The E810 PHY does not provide a timestamp ready bitmap. Instead, * verify new timestamps against cached copy of the last read * timestamp. */ tx->has_ready_bitmap = 0; return ice_ptp_alloc_tx_tracker(tx); } /** * ice_ptp_update_cached_phctime - Update the cached PHC time values * @pf: Board specific private structure * * This function updates the system time values which are cached in the PF * structure and the Rx rings. * * This function must be called periodically to ensure that the cached value * is never more than 2 seconds old. * * Note that the cached copy in the PF PTP structure is always updated, even * if we can't update the copy in the Rx rings. * * Return: * * 0 - OK, successfully updated * * -EAGAIN - PF was busy, need to reschedule the update */ static int ice_ptp_update_cached_phctime(struct ice_pf *pf) { struct device *dev = ice_pf_to_dev(pf); unsigned long update_before; u64 systime; int i; update_before = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000); if (pf->ptp.cached_phc_time && time_is_before_jiffies(update_before)) { unsigned long time_taken = jiffies - pf->ptp.cached_phc_jiffies; dev_warn(dev, "%u msecs passed between update to cached PHC time\n", jiffies_to_msecs(time_taken)); pf->ptp.late_cached_phc_updates++; } /* Read the current PHC time */ systime = ice_ptp_read_src_clk_reg(pf, NULL); /* Update the cached PHC time stored in the PF structure */ WRITE_ONCE(pf->ptp.cached_phc_time, systime); WRITE_ONCE(pf->ptp.cached_phc_jiffies, jiffies); if (test_and_set_bit(ICE_CFG_BUSY, pf->state)) return -EAGAIN; ice_for_each_vsi(pf, i) { struct ice_vsi *vsi = pf->vsi[i]; int j; if (!vsi) continue; if (vsi->type != ICE_VSI_PF) continue; ice_for_each_rxq(vsi, j) { if (!vsi->rx_rings[j]) continue; WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime); } } clear_bit(ICE_CFG_BUSY, pf->state); return 0; } /** * ice_ptp_reset_cached_phctime - Reset cached PHC time after an update * @pf: Board specific private structure * * This function must be called when the cached PHC time is no longer valid, * such as after a time adjustment. It marks any currently outstanding Tx * timestamps as stale and updates the cached PHC time for both the PF and Rx * rings. * * If updating the PHC time cannot be done immediately, a warning message is * logged and the work item is scheduled immediately to minimize the window * with a wrong cached timestamp. */ static void ice_ptp_reset_cached_phctime(struct ice_pf *pf) { struct device *dev = ice_pf_to_dev(pf); int err; /* Update the cached PHC time immediately if possible, otherwise * schedule the work item to execute soon. */ err = ice_ptp_update_cached_phctime(pf); if (err) { /* If another thread is updating the Rx rings, we won't * properly reset them here. This could lead to reporting of * invalid timestamps, but there isn't much we can do. */ dev_warn(dev, "%s: ICE_CFG_BUSY, unable to immediately update cached PHC time\n", __func__); /* Queue the work item to update the Rx rings when possible */ kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work, msecs_to_jiffies(10)); } /* Mark any outstanding timestamps as stale, since they might have * been captured in hardware before the time update. This could lead * to us extending them with the wrong cached value resulting in * incorrect timestamp values. */ ice_ptp_mark_tx_tracker_stale(&pf->ptp.port.tx); } /** * ice_ptp_read_time - Read the time from the device * @pf: Board private structure * @ts: timespec structure to hold the current time value * @sts: Optional parameter for holding a pair of system timestamps from * the system clock. Will be ignored if NULL is given. * * This function reads the source clock registers and stores them in a timespec. * However, since the registers are 64 bits of nanoseconds, we must convert the * result to a timespec before we can return. */ static void ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts, struct ptp_system_timestamp *sts) { u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts); *ts = ns_to_timespec64(time_ns); } /** * ice_ptp_write_init - Set PHC time to provided value * @pf: Board private structure * @ts: timespec structure that holds the new time value * * Set the PHC time to the specified time provided in the timespec. */ static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts) { u64 ns = timespec64_to_ns(ts); struct ice_hw *hw = &pf->hw; return ice_ptp_init_time(hw, ns); } /** * ice_ptp_write_adj - Adjust PHC clock time atomically * @pf: Board private structure * @adj: Adjustment in nanoseconds * * Perform an atomic adjustment of the PHC time by the specified number of * nanoseconds. */ static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj) { struct ice_hw *hw = &pf->hw; return ice_ptp_adj_clock(hw, adj); } /** * ice_base_incval - Get base timer increment value * @pf: Board private structure * * Look up the base timer increment value for this device. The base increment * value is used to define the nominal clock tick rate. This increment value * is programmed during device initialization. It is also used as the basis * for calculating adjustments using scaled_ppm. */ static u64 ice_base_incval(struct ice_pf *pf) { struct ice_hw *hw = &pf->hw; u64 incval; if (ice_is_e810(hw)) incval = ICE_PTP_NOMINAL_INCVAL_E810; else if (ice_e82x_time_ref(hw) < NUM_ICE_TIME_REF_FREQ) incval = ice_e82x_nominal_incval(ice_e82x_time_ref(hw)); else incval = UNKNOWN_INCVAL_E82X; dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n", incval); return incval; } /** * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state * @port: PTP port for which Tx FIFO is checked */ static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port) { int quad = port->port_num / ICE_PORTS_PER_QUAD; int offs = port->port_num % ICE_PORTS_PER_QUAD; struct ice_pf *pf; struct ice_hw *hw; u32 val, phy_sts; int err; pf = ptp_port_to_pf(port); hw = &pf->hw; if (port->tx_fifo_busy_cnt == FIFO_OK) return 0; /* need to read FIFO state */ if (offs == 0 || offs == 1) err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO01_STATUS, &val); else err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO23_STATUS, &val); if (err) { dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n", port->port_num, err); return err; } if (offs & 0x1) phy_sts = FIELD_GET(Q_REG_FIFO13_M, val); else phy_sts = FIELD_GET(Q_REG_FIFO02_M, val); if (phy_sts & FIFO_EMPTY) { port->tx_fifo_busy_cnt = FIFO_OK; return 0; } port->tx_fifo_busy_cnt++; dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n", port->tx_fifo_busy_cnt, port->port_num); if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) { dev_dbg(ice_pf_to_dev(pf), "Port %d Tx FIFO still not empty; resetting quad %d\n", port->port_num, quad); ice_ptp_reset_ts_memory_quad_e82x(hw, quad); port->tx_fifo_busy_cnt = FIFO_OK; return 0; } return -EAGAIN; } /** * ice_ptp_wait_for_offsets - Check for valid Tx and Rx offsets * @work: Pointer to the kthread_work structure for this task * * Check whether hardware has completed measuring the Tx and Rx offset values * used to configure and enable vernier timestamp calibration. * * Once the offset in either direction is measured, configure the associated * registers with the calibrated offset values and enable timestamping. The Tx * and Rx directions are configured independently as soon as their associated * offsets are known. * * This function reschedules itself until both Tx and Rx calibration have * completed. */ static void ice_ptp_wait_for_offsets(struct kthread_work *work) { struct ice_ptp_port *port; struct ice_pf *pf; struct ice_hw *hw; int tx_err; int rx_err; port = container_of(work, struct ice_ptp_port, ov_work.work); pf = ptp_port_to_pf(port); hw = &pf->hw; if (ice_is_reset_in_progress(pf->state)) { /* wait for device driver to complete reset */ kthread_queue_delayed_work(pf->ptp.kworker, &port->ov_work, msecs_to_jiffies(100)); return; } tx_err = ice_ptp_check_tx_fifo(port); if (!tx_err) tx_err = ice_phy_cfg_tx_offset_e82x(hw, port->port_num); rx_err = ice_phy_cfg_rx_offset_e82x(hw, port->port_num); if (tx_err || rx_err) { /* Tx and/or Rx offset not yet configured, try again later */ kthread_queue_delayed_work(pf->ptp.kworker, &port->ov_work, msecs_to_jiffies(100)); return; } } /** * ice_ptp_port_phy_stop - Stop timestamping for a PHY port * @ptp_port: PTP port to stop */ static int ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port) { struct ice_pf *pf = ptp_port_to_pf(ptp_port); u8 port = ptp_port->port_num; struct ice_hw *hw = &pf->hw; int err; if (ice_is_e810(hw)) return 0; mutex_lock(&ptp_port->ps_lock); kthread_cancel_delayed_work_sync(&ptp_port->ov_work); err = ice_stop_phy_timer_e82x(hw, port, true); if (err) dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n", port, err); mutex_unlock(&ptp_port->ps_lock); return err; } /** * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping * @ptp_port: PTP port for which the PHY start is set * * Start the PHY timestamping block, and initiate Vernier timestamping * calibration. If timestamping cannot be calibrated (such as if link is down) * then disable the timestamping block instead. */ static int ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port) { struct ice_pf *pf = ptp_port_to_pf(ptp_port); u8 port = ptp_port->port_num; struct ice_hw *hw = &pf->hw; unsigned long flags; int err; if (ice_is_e810(hw)) return 0; if (!ptp_port->link_up) return ice_ptp_port_phy_stop(ptp_port); mutex_lock(&ptp_port->ps_lock); kthread_cancel_delayed_work_sync(&ptp_port->ov_work); /* temporarily disable Tx timestamps while calibrating PHY offset */ spin_lock_irqsave(&ptp_port->tx.lock, flags); ptp_port->tx.calibrating = true; spin_unlock_irqrestore(&ptp_port->tx.lock, flags); ptp_port->tx_fifo_busy_cnt = 0; /* Start the PHY timer in Vernier mode */ err = ice_start_phy_timer_e82x(hw, port); if (err) goto out_unlock; /* Enable Tx timestamps right away */ spin_lock_irqsave(&ptp_port->tx.lock, flags); ptp_port->tx.calibrating = false; spin_unlock_irqrestore(&ptp_port->tx.lock, flags); kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work, 0); out_unlock: if (err) dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n", port, err); mutex_unlock(&ptp_port->ps_lock); return err; } /** * ice_ptp_link_change - Reconfigure PTP after link status change * @pf: Board private structure * @port: Port for which the PHY start is set * @linkup: Link is up or down */ void ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup) { struct ice_ptp_port *ptp_port; struct ice_hw *hw = &pf->hw; if (pf->ptp.state != ICE_PTP_READY) return; if (WARN_ON_ONCE(port >= ICE_NUM_EXTERNAL_PORTS)) return; ptp_port = &pf->ptp.port; if (WARN_ON_ONCE(ptp_port->port_num != port)) return; /* Update cached link status for this port immediately */ ptp_port->link_up = linkup; switch (hw->phy_model) { case ICE_PHY_E810: /* Do not reconfigure E810 PHY */ return; case ICE_PHY_E82X: ice_ptp_port_phy_restart(ptp_port); return; default: dev_warn(ice_pf_to_dev(pf), "%s: Unknown PHY type\n", __func__); } } /** * ice_ptp_cfg_phy_interrupt - Configure PHY interrupt settings * @pf: PF private structure * @ena: bool value to enable or disable interrupt * @threshold: Minimum number of packets at which intr is triggered * * Utility function to enable or disable Tx timestamp interrupt and threshold */ static int ice_ptp_cfg_phy_interrupt(struct ice_pf *pf, bool ena, u32 threshold) { struct ice_hw *hw = &pf->hw; int err = 0; int quad; u32 val; ice_ptp_reset_ts_memory(hw); for (quad = 0; quad < ICE_MAX_QUAD; quad++) { err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val); if (err) break; if (ena) { val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M; val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M; val |= FIELD_PREP(Q_REG_TX_MEM_GBL_CFG_INTR_THR_M, threshold); } else { val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M; } err = ice_write_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, val); if (err) break; } if (err) dev_err(ice_pf_to_dev(pf), "PTP failed in intr ena, err %d\n", err); return err; } /** * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block * @pf: Board private structure */ static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf) { ice_ptp_port_phy_restart(&pf->ptp.port); } /** * ice_ptp_restart_all_phy - Restart all PHYs to recalibrate timestamping * @pf: Board private structure */ static void ice_ptp_restart_all_phy(struct ice_pf *pf) { struct list_head *entry; list_for_each(entry, &pf->ptp.ports_owner.ports) { struct ice_ptp_port *port = list_entry(entry, struct ice_ptp_port, list_member); if (port->link_up) ice_ptp_port_phy_restart(port); } } /** * ice_ptp_adjfine - Adjust clock increment rate * @info: the driver's PTP info structure * @scaled_ppm: Parts per million with 16-bit fractional field * * Adjust the frequency of the clock by the indicated scaled ppm from the * base frequency. */ static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm) { struct ice_pf *pf = ptp_info_to_pf(info); struct ice_hw *hw = &pf->hw; u64 incval; int err; incval = adjust_by_scaled_ppm(ice_base_incval(pf), scaled_ppm); err = ice_ptp_write_incval_locked(hw, incval); if (err) { dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n", err); return -EIO; } return 0; } /** * ice_ptp_extts_event - Process PTP external clock event * @pf: Board private structure */ void ice_ptp_extts_event(struct ice_pf *pf) { struct ptp_clock_event event; struct ice_hw *hw = &pf->hw; u8 chan, tmr_idx; u32 hi, lo; tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; /* Event time is captured by one of the two matched registers * GLTSYN_EVNT_L: 32 LSB of sampled time event * GLTSYN_EVNT_H: 32 MSB of sampled time event * Event is defined in GLTSYN_EVNT_0 register */ for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) { /* Check if channel is enabled */ if (pf->ptp.ext_ts_irq & (1 << chan)) { lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx)); hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx)); event.timestamp = (((u64)hi) << 32) | lo; event.type = PTP_CLOCK_EXTTS; event.index = chan; /* Fire event */ ptp_clock_event(pf->ptp.clock, &event); pf->ptp.ext_ts_irq &= ~(1 << chan); } } } /** * ice_ptp_cfg_extts - Configure EXTTS pin and channel * @pf: Board private structure * @ena: true to enable; false to disable * @chan: GPIO channel (0-3) * @gpio_pin: GPIO pin * @extts_flags: request flags from the ptp_extts_request.flags */ static int ice_ptp_cfg_extts(struct ice_pf *pf, bool ena, unsigned int chan, u32 gpio_pin, unsigned int extts_flags) { u32 func, aux_reg, gpio_reg, irq_reg; struct ice_hw *hw = &pf->hw; u8 tmr_idx; if (chan > (unsigned int)pf->ptp.info.n_ext_ts) return -EINVAL; tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; irq_reg = rd32(hw, PFINT_OICR_ENA); if (ena) { /* Enable the interrupt */ irq_reg |= PFINT_OICR_TSYN_EVNT_M; aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M; #define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE BIT(0) #define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE BIT(1) /* set event level to requested edge */ if (extts_flags & PTP_FALLING_EDGE) aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE; if (extts_flags & PTP_RISING_EDGE) aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE; /* Write GPIO CTL reg. * 0x1 is input sampled by EVENT register(channel) * + num_in_channels * tmr_idx */ func = 1 + chan + (tmr_idx * 3); gpio_reg = FIELD_PREP(GLGEN_GPIO_CTL_PIN_FUNC_M, func); pf->ptp.ext_ts_chan |= (1 << chan); } else { /* clear the values we set to reset defaults */ aux_reg = 0; gpio_reg = 0; pf->ptp.ext_ts_chan &= ~(1 << chan); if (!pf->ptp.ext_ts_chan) irq_reg &= ~PFINT_OICR_TSYN_EVNT_M; } wr32(hw, PFINT_OICR_ENA, irq_reg); wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg); wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg); return 0; } /** * ice_ptp_cfg_clkout - Configure clock to generate periodic wave * @pf: Board private structure * @chan: GPIO channel (0-3) * @config: desired periodic clk configuration. NULL will disable channel * @store: If set to true the values will be stored * * Configure the internal clock generator modules to generate the clock wave of * specified period. */ static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan, struct ice_perout_channel *config, bool store) { u64 current_time, period, start_time, phase; struct ice_hw *hw = &pf->hw; u32 func, val, gpio_pin; u8 tmr_idx; tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; /* 0. Reset mode & out_en in AUX_OUT */ wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0); /* If we're disabling the output, clear out CLKO and TGT and keep * output level low */ if (!config || !config->ena) { wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0); wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0); wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0); val = GLGEN_GPIO_CTL_PIN_DIR_M; gpio_pin = pf->ptp.perout_channels[chan].gpio_pin; wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val); /* Store the value if requested */ if (store) memset(&pf->ptp.perout_channels[chan], 0, sizeof(struct ice_perout_channel)); return 0; } period = config->period; start_time = config->start_time; div64_u64_rem(start_time, period, &phase); gpio_pin = config->gpio_pin; /* 1. Write clkout with half of required period value */ if (period & 0x1) { dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n"); goto err; } period >>= 1; /* For proper operation, the GLTSYN_CLKO must be larger than clock tick */ #define MIN_PULSE 3 if (period <= MIN_PULSE || period > U32_MAX) { dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33", MIN_PULSE * 2); goto err; } wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period)); /* Allow time for programming before start_time is hit */ current_time = ice_ptp_read_src_clk_reg(pf, NULL); /* if start time is in the past start the timer at the nearest second * maintaining phase */ if (start_time < current_time) start_time = div64_u64(current_time + NSEC_PER_SEC - 1, NSEC_PER_SEC) * NSEC_PER_SEC + phase; if (ice_is_e810(hw)) start_time -= E810_OUT_PROP_DELAY_NS; else start_time -= ice_e82x_pps_delay(ice_e82x_time_ref(hw)); /* 2. Write TARGET time */ wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time)); wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time)); /* 3. Write AUX_OUT register */ val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M; wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val); /* 4. write GPIO CTL reg */ func = 8 + chan + (tmr_idx * 4); val = GLGEN_GPIO_CTL_PIN_DIR_M | FIELD_PREP(GLGEN_GPIO_CTL_PIN_FUNC_M, func); wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val); /* Store the value if requested */ if (store) { memcpy(&pf->ptp.perout_channels[chan], config, sizeof(struct ice_perout_channel)); pf->ptp.perout_channels[chan].start_time = phase; } return 0; err: dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n"); return -EFAULT; } /** * ice_ptp_disable_all_clkout - Disable all currently configured outputs * @pf: pointer to the PF structure * * Disable all currently configured clock outputs. This is necessary before * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to * re-enable the clocks again. */ static void ice_ptp_disable_all_clkout(struct ice_pf *pf) { uint i; for (i = 0; i < pf->ptp.info.n_per_out; i++) if (pf->ptp.perout_channels[i].ena) ice_ptp_cfg_clkout(pf, i, NULL, false); } /** * ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs * @pf: pointer to the PF structure * * Enable all currently configured clock outputs. Use this after * ice_ptp_disable_all_clkout to reconfigure the output signals according to * their configuration. */ static void ice_ptp_enable_all_clkout(struct ice_pf *pf) { uint i; for (i = 0; i < pf->ptp.info.n_per_out; i++) if (pf->ptp.perout_channels[i].ena) ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i], false); } /** * ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC * @info: the driver's PTP info structure * @rq: The requested feature to change * @on: Enable/disable flag */ static int ice_ptp_gpio_enable_e810(struct ptp_clock_info *info, struct ptp_clock_request *rq, int on) { struct ice_pf *pf = ptp_info_to_pf(info); struct ice_perout_channel clk_cfg = {0}; bool sma_pres = false; unsigned int chan; u32 gpio_pin; int err; if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) sma_pres = true; switch (rq->type) { case PTP_CLK_REQ_PEROUT: chan = rq->perout.index; if (sma_pres) { if (chan == ice_pin_desc_e810t[SMA1].chan) clk_cfg.gpio_pin = GPIO_20; else if (chan == ice_pin_desc_e810t[SMA2].chan) clk_cfg.gpio_pin = GPIO_22; else return -1; } else if (ice_is_e810t(&pf->hw)) { if (chan == 0) clk_cfg.gpio_pin = GPIO_20; else clk_cfg.gpio_pin = GPIO_22; } else if (chan == PPS_CLK_GEN_CHAN) { clk_cfg.gpio_pin = PPS_PIN_INDEX; } else { clk_cfg.gpio_pin = chan; } clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) + rq->perout.period.nsec); clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) + rq->perout.start.nsec); clk_cfg.ena = !!on; err = ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true); break; case PTP_CLK_REQ_EXTTS: chan = rq->extts.index; if (sma_pres) { if (chan < ice_pin_desc_e810t[SMA2].chan) gpio_pin = GPIO_21; else gpio_pin = GPIO_23; } else if (ice_is_e810t(&pf->hw)) { if (chan == 0) gpio_pin = GPIO_21; else gpio_pin = GPIO_23; } else { gpio_pin = chan; } err = ice_ptp_cfg_extts(pf, !!on, chan, gpio_pin, rq->extts.flags); break; default: return -EOPNOTSUPP; } return err; } /** * ice_ptp_gpio_enable_e823 - Enable/disable ancillary features of PHC * @info: the driver's PTP info structure * @rq: The requested feature to change * @on: Enable/disable flag */ static int ice_ptp_gpio_enable_e823(struct ptp_clock_info *info, struct ptp_clock_request *rq, int on) { struct ice_pf *pf = ptp_info_to_pf(info); struct ice_perout_channel clk_cfg = {0}; int err; switch (rq->type) { case PTP_CLK_REQ_PPS: clk_cfg.gpio_pin = PPS_PIN_INDEX; clk_cfg.period = NSEC_PER_SEC; clk_cfg.ena = !!on; err = ice_ptp_cfg_clkout(pf, PPS_CLK_GEN_CHAN, &clk_cfg, true); break; case PTP_CLK_REQ_EXTTS: err = ice_ptp_cfg_extts(pf, !!on, rq->extts.index, TIME_SYNC_PIN_INDEX, rq->extts.flags); break; default: return -EOPNOTSUPP; } return err; } /** * ice_ptp_gettimex64 - Get the time of the clock * @info: the driver's PTP info structure * @ts: timespec64 structure to hold the current time value * @sts: Optional parameter for holding a pair of system timestamps from * the system clock. Will be ignored if NULL is given. * * Read the device clock and return the correct value on ns, after converting it * into a timespec struct. */ static int ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts, struct ptp_system_timestamp *sts) { struct ice_pf *pf = ptp_info_to_pf(info); struct ice_hw *hw = &pf->hw; if (!ice_ptp_lock(hw)) { dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n"); return -EBUSY; } ice_ptp_read_time(pf, ts, sts); ice_ptp_unlock(hw); return 0; } /** * ice_ptp_settime64 - Set the time of the clock * @info: the driver's PTP info structure * @ts: timespec64 structure that holds the new time value * * Set the device clock to the user input value. The conversion from timespec * to ns happens in the write function. */ static int ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts) { struct ice_pf *pf = ptp_info_to_pf(info); struct timespec64 ts64 = *ts; struct ice_hw *hw = &pf->hw; int err; /* For Vernier mode, we need to recalibrate after new settime * Start with disabling timestamp block */ if (pf->ptp.port.link_up) ice_ptp_port_phy_stop(&pf->ptp.port); if (!ice_ptp_lock(hw)) { err = -EBUSY; goto exit; } /* Disable periodic outputs */ ice_ptp_disable_all_clkout(pf); err = ice_ptp_write_init(pf, &ts64); ice_ptp_unlock(hw); if (!err) ice_ptp_reset_cached_phctime(pf); /* Reenable periodic outputs */ ice_ptp_enable_all_clkout(pf); /* Recalibrate and re-enable timestamp blocks for E822/E823 */ if (hw->phy_model == ICE_PHY_E82X) ice_ptp_restart_all_phy(pf); exit: if (err) { dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err); return err; } return 0; } /** * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment * @info: the driver's PTP info structure * @delta: Offset in nanoseconds to adjust the time by */ static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta) { struct timespec64 now, then; int ret; then = ns_to_timespec64(delta); ret = ice_ptp_gettimex64(info, &now, NULL); if (ret) return ret; now = timespec64_add(now, then); return ice_ptp_settime64(info, (const struct timespec64 *)&now); } /** * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta * @info: the driver's PTP info structure * @delta: Offset in nanoseconds to adjust the time by */ static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta) { struct ice_pf *pf = ptp_info_to_pf(info); struct ice_hw *hw = &pf->hw; struct device *dev; int err; dev = ice_pf_to_dev(pf); /* Hardware only supports atomic adjustments using signed 32-bit * integers. For any adjustment outside this range, perform * a non-atomic get->adjust->set flow. */ if (delta > S32_MAX || delta < S32_MIN) { dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta); return ice_ptp_adjtime_nonatomic(info, delta); } if (!ice_ptp_lock(hw)) { dev_err(dev, "PTP failed to acquire semaphore in adjtime\n"); return -EBUSY; } /* Disable periodic outputs */ ice_ptp_disable_all_clkout(pf); err = ice_ptp_write_adj(pf, delta); /* Reenable periodic outputs */ ice_ptp_enable_all_clkout(pf); ice_ptp_unlock(hw); if (err) { dev_err(dev, "PTP failed to adjust time, err %d\n", err); return err; } ice_ptp_reset_cached_phctime(pf); return 0; } #ifdef CONFIG_ICE_HWTS /** * ice_ptp_get_syncdevicetime - Get the cross time stamp info * @device: Current device time * @system: System counter value read synchronously with device time * @ctx: Context provided by timekeeping code * * Read device and system (ART) clock simultaneously and return the corrected * clock values in ns. */ static int ice_ptp_get_syncdevicetime(ktime_t *device, struct system_counterval_t *system, void *ctx) { struct ice_pf *pf = (struct ice_pf *)ctx; struct ice_hw *hw = &pf->hw; u32 hh_lock, hh_art_ctl; int i; #define MAX_HH_HW_LOCK_TRIES 5 #define MAX_HH_CTL_LOCK_TRIES 100 for (i = 0; i < MAX_HH_HW_LOCK_TRIES; i++) { /* Get the HW lock */ hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id)); if (hh_lock & PFHH_SEM_BUSY_M) { usleep_range(10000, 15000); continue; } break; } if (hh_lock & PFHH_SEM_BUSY_M) { dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n"); return -EBUSY; } /* Program cmd to master timer */ ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME); /* Start the ART and device clock sync sequence */ hh_art_ctl = rd32(hw, GLHH_ART_CTL); hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M; wr32(hw, GLHH_ART_CTL, hh_art_ctl); for (i = 0; i < MAX_HH_CTL_LOCK_TRIES; i++) { /* Wait for sync to complete */ hh_art_ctl = rd32(hw, GLHH_ART_CTL); if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) { udelay(1); continue; } else { u32 hh_ts_lo, hh_ts_hi, tmr_idx; u64 hh_ts; tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; /* Read ART time */ hh_ts_lo = rd32(hw, GLHH_ART_TIME_L); hh_ts_hi = rd32(hw, GLHH_ART_TIME_H); hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo; *system = convert_art_ns_to_tsc(hh_ts); /* Read Device source clock time */ hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx)); hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx)); hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo; *device = ns_to_ktime(hh_ts); break; } } /* Clear the master timer */ ice_ptp_src_cmd(hw, ICE_PTP_NOP); /* Release HW lock */ hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id)); hh_lock = hh_lock & ~PFHH_SEM_BUSY_M; wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock); if (i == MAX_HH_CTL_LOCK_TRIES) return -ETIMEDOUT; return 0; } /** * ice_ptp_getcrosststamp_e82x - Capture a device cross timestamp * @info: the driver's PTP info structure * @cts: The memory to fill the cross timestamp info * * Capture a cross timestamp between the ART and the device PTP hardware * clock. Fill the cross timestamp information and report it back to the * caller. * * This is only valid for E822 and E823 devices which have support for * generating the cross timestamp via PCIe PTM. * * In order to correctly correlate the ART timestamp back to the TSC time, the * CPU must have X86_FEATURE_TSC_KNOWN_FREQ. */ static int ice_ptp_getcrosststamp_e82x(struct ptp_clock_info *info, struct system_device_crosststamp *cts) { struct ice_pf *pf = ptp_info_to_pf(info); return get_device_system_crosststamp(ice_ptp_get_syncdevicetime, pf, NULL, cts); } #endif /* CONFIG_ICE_HWTS */ /** * ice_ptp_get_ts_config - ioctl interface to read the timestamping config * @pf: Board private structure * @ifr: ioctl data * * Copy the timestamping config to user buffer */ int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr) { struct hwtstamp_config *config; if (pf->ptp.state != ICE_PTP_READY) return -EIO; config = &pf->ptp.tstamp_config; return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? -EFAULT : 0; } /** * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode * @pf: Board private structure * @config: hwtstamp settings requested or saved */ static int ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config) { switch (config->tx_type) { case HWTSTAMP_TX_OFF: pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_OFF; break; case HWTSTAMP_TX_ON: pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_ON; break; default: return -ERANGE; } switch (config->rx_filter) { case HWTSTAMP_FILTER_NONE: pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; break; case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: case HWTSTAMP_FILTER_PTP_V2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: case HWTSTAMP_FILTER_NTP_ALL: case HWTSTAMP_FILTER_ALL: pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_ALL; break; default: return -ERANGE; } /* Immediately update the device timestamping mode */ ice_ptp_restore_timestamp_mode(pf); return 0; } /** * ice_ptp_set_ts_config - ioctl interface to control the timestamping * @pf: Board private structure * @ifr: ioctl data * * Get the user config and store it */ int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr) { struct hwtstamp_config config; int err; if (pf->ptp.state != ICE_PTP_READY) return -EAGAIN; if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) return -EFAULT; err = ice_ptp_set_timestamp_mode(pf, &config); if (err) return err; /* Return the actual configuration set */ config = pf->ptp.tstamp_config; return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; } /** * ice_ptp_get_rx_hwts - Get packet Rx timestamp in ns * @rx_desc: Receive descriptor * @pkt_ctx: Packet context to get the cached time * * The driver receives a notification in the receive descriptor with timestamp. */ u64 ice_ptp_get_rx_hwts(const union ice_32b_rx_flex_desc *rx_desc, const struct ice_pkt_ctx *pkt_ctx) { u64 ts_ns, cached_time; u32 ts_high; if (!(rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID)) return 0; cached_time = READ_ONCE(pkt_ctx->cached_phctime); /* Do not report a timestamp if we don't have a cached PHC time */ if (!cached_time) return 0; /* Use ice_ptp_extend_32b_ts directly, using the ring-specific cached * PHC value, rather than accessing the PF. This also allows us to * simply pass the upper 32bits of nanoseconds directly. Calling * ice_ptp_extend_40b_ts is unnecessary as it would just discard these * bits itself. */ ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high); ts_ns = ice_ptp_extend_32b_ts(cached_time, ts_high); return ts_ns; } /** * ice_ptp_disable_sma_pins_e810t - Disable E810-T SMA pins * @pf: pointer to the PF structure * @info: PTP clock info structure * * Disable the OS access to the SMA pins. Called to clear out the OS * indications of pin support when we fail to setup the E810-T SMA control * register. */ static void ice_ptp_disable_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info) { struct device *dev = ice_pf_to_dev(pf); dev_warn(dev, "Failed to configure E810-T SMA pin control\n"); info->enable = NULL; info->verify = NULL; info->n_pins = 0; info->n_ext_ts = 0; info->n_per_out = 0; } /** * ice_ptp_setup_sma_pins_e810t - Setup the SMA pins * @pf: pointer to the PF structure * @info: PTP clock info structure * * Finish setting up the SMA pins by allocating pin_config, and setting it up * according to the current status of the SMA. On failure, disable all of the * extended SMA pin support. */ static void ice_ptp_setup_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info) { struct device *dev = ice_pf_to_dev(pf); int err; /* Allocate memory for kernel pins interface */ info->pin_config = devm_kcalloc(dev, info->n_pins, sizeof(*info->pin_config), GFP_KERNEL); if (!info->pin_config) { ice_ptp_disable_sma_pins_e810t(pf, info); return; } /* Read current SMA status */ err = ice_get_sma_config_e810t(&pf->hw, info->pin_config); if (err) ice_ptp_disable_sma_pins_e810t(pf, info); } /** * ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs * @pf: pointer to the PF instance * @info: PTP clock capabilities */ static void ice_ptp_setup_pins_e810(struct ice_pf *pf, struct ptp_clock_info *info) { if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) { info->n_ext_ts = N_EXT_TS_E810; info->n_per_out = N_PER_OUT_E810T; info->n_pins = NUM_PTP_PINS_E810T; info->verify = ice_verify_pin_e810t; /* Complete setup of the SMA pins */ ice_ptp_setup_sma_pins_e810t(pf, info); } else if (ice_is_e810t(&pf->hw)) { info->n_ext_ts = N_EXT_TS_NO_SMA_E810T; info->n_per_out = N_PER_OUT_NO_SMA_E810T; } else { info->n_per_out = N_PER_OUT_E810; info->n_ext_ts = N_EXT_TS_E810; } } /** * ice_ptp_setup_pins_e823 - Setup PTP pins in sysfs * @pf: pointer to the PF instance * @info: PTP clock capabilities */ static void ice_ptp_setup_pins_e823(struct ice_pf *pf, struct ptp_clock_info *info) { info->pps = 1; info->n_per_out = 0; info->n_ext_ts = 1; } /** * ice_ptp_set_funcs_e82x - Set specialized functions for E82x support * @pf: Board private structure * @info: PTP info to fill * * Assign functions to the PTP capabiltiies structure for E82x devices. * Functions which operate across all device families should be set directly * in ice_ptp_set_caps. Only add functions here which are distinct for E82x * devices. */ static void ice_ptp_set_funcs_e82x(struct ice_pf *pf, struct ptp_clock_info *info) { #ifdef CONFIG_ICE_HWTS if (boot_cpu_has(X86_FEATURE_ART) && boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) info->getcrosststamp = ice_ptp_getcrosststamp_e82x; #endif /* CONFIG_ICE_HWTS */ } /** * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support * @pf: Board private structure * @info: PTP info to fill * * Assign functions to the PTP capabiltiies structure for E810 devices. * Functions which operate across all device families should be set directly * in ice_ptp_set_caps. Only add functions here which are distinct for e810 * devices. */ static void ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info) { info->enable = ice_ptp_gpio_enable_e810; ice_ptp_setup_pins_e810(pf, info); } /** * ice_ptp_set_funcs_e823 - Set specialized functions for E823 support * @pf: Board private structure * @info: PTP info to fill * * Assign functions to the PTP capabiltiies structure for E823 devices. * Functions which operate across all device families should be set directly * in ice_ptp_set_caps. Only add functions here which are distinct for e823 * devices. */ static void ice_ptp_set_funcs_e823(struct ice_pf *pf, struct ptp_clock_info *info) { ice_ptp_set_funcs_e82x(pf, info); info->enable = ice_ptp_gpio_enable_e823; ice_ptp_setup_pins_e823(pf, info); } /** * ice_ptp_set_caps - Set PTP capabilities * @pf: Board private structure */ static void ice_ptp_set_caps(struct ice_pf *pf) { struct ptp_clock_info *info = &pf->ptp.info; struct device *dev = ice_pf_to_dev(pf); snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk", dev_driver_string(dev), dev_name(dev)); info->owner = THIS_MODULE; info->max_adj = 100000000; info->adjtime = ice_ptp_adjtime; info->adjfine = ice_ptp_adjfine; info->gettimex64 = ice_ptp_gettimex64; info->settime64 = ice_ptp_settime64; if (ice_is_e810(&pf->hw)) ice_ptp_set_funcs_e810(pf, info); else if (ice_is_e823(&pf->hw)) ice_ptp_set_funcs_e823(pf, info); else ice_ptp_set_funcs_e82x(pf, info); } /** * ice_ptp_create_clock - Create PTP clock device for userspace * @pf: Board private structure * * This function creates a new PTP clock device. It only creates one if we * don't already have one. Will return error if it can't create one, but success * if we already have a device. Should be used by ice_ptp_init to create clock * initially, and prevent global resets from creating new clock devices. */ static long ice_ptp_create_clock(struct ice_pf *pf) { struct ptp_clock_info *info; struct device *dev; /* No need to create a clock device if we already have one */ if (pf->ptp.clock) return 0; ice_ptp_set_caps(pf); info = &pf->ptp.info; dev = ice_pf_to_dev(pf); /* Attempt to register the clock before enabling the hardware. */ pf->ptp.clock = ptp_clock_register(info, dev); if (IS_ERR(pf->ptp.clock)) { dev_err(ice_pf_to_dev(pf), "Failed to register PTP clock device"); return PTR_ERR(pf->ptp.clock); } return 0; } /** * ice_ptp_request_ts - Request an available Tx timestamp index * @tx: the PTP Tx timestamp tracker to request from * @skb: the SKB to associate with this timestamp request */ s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb) { unsigned long flags; u8 idx; spin_lock_irqsave(&tx->lock, flags); /* Check that this tracker is accepting new timestamp requests */ if (!ice_ptp_is_tx_tracker_up(tx)) { spin_unlock_irqrestore(&tx->lock, flags); return -1; } /* Find and set the first available index */ idx = find_next_zero_bit(tx->in_use, tx->len, tx->last_ll_ts_idx_read + 1); if (idx == tx->len) idx = find_first_zero_bit(tx->in_use, tx->len); if (idx < tx->len) { /* We got a valid index that no other thread could have set. Store * a reference to the skb and the start time to allow discarding old * requests. */ set_bit(idx, tx->in_use); clear_bit(idx, tx->stale); tx->tstamps[idx].start = jiffies; tx->tstamps[idx].skb = skb_get(skb); skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; ice_trace(tx_tstamp_request, skb, idx); } spin_unlock_irqrestore(&tx->lock, flags); /* return the appropriate PHY timestamp register index, -1 if no * indexes were available. */ if (idx >= tx->len) return -1; else return idx + tx->offset; } /** * ice_ptp_process_ts - Process the PTP Tx timestamps * @pf: Board private structure * * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding Tx * timestamps that need processing, and ICE_TX_TSTAMP_WORK_DONE otherwise. */ enum ice_tx_tstamp_work ice_ptp_process_ts(struct ice_pf *pf) { switch (pf->ptp.tx_interrupt_mode) { case ICE_PTP_TX_INTERRUPT_NONE: /* This device has the clock owner handle timestamps for it */ return ICE_TX_TSTAMP_WORK_DONE; case ICE_PTP_TX_INTERRUPT_SELF: /* This device handles its own timestamps */ return ice_ptp_tx_tstamp(&pf->ptp.port.tx); case ICE_PTP_TX_INTERRUPT_ALL: /* This device handles timestamps for all ports */ return ice_ptp_tx_tstamp_owner(pf); default: WARN_ONCE(1, "Unexpected Tx timestamp interrupt mode %u\n", pf->ptp.tx_interrupt_mode); return ICE_TX_TSTAMP_WORK_DONE; } } /** * ice_ptp_maybe_trigger_tx_interrupt - Trigger Tx timstamp interrupt * @pf: Board private structure * * The device PHY issues Tx timestamp interrupts to the driver for processing * timestamp data from the PHY. It will not interrupt again until all * current timestamp data is read. In rare circumstances, it is possible that * the driver fails to read all outstanding data. * * To avoid getting permanently stuck, periodically check if the PHY has * outstanding timestamp data. If so, trigger an interrupt from software to * process this data. */ static void ice_ptp_maybe_trigger_tx_interrupt(struct ice_pf *pf) { struct device *dev = ice_pf_to_dev(pf); struct ice_hw *hw = &pf->hw; bool trigger_oicr = false; unsigned int i; if (ice_is_e810(hw)) return; if (!ice_pf_src_tmr_owned(pf)) return; for (i = 0; i < ICE_MAX_QUAD; i++) { u64 tstamp_ready; int err; err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready); if (!err && tstamp_ready) { trigger_oicr = true; break; } } if (trigger_oicr) { /* Trigger a software interrupt, to ensure this data * gets processed. */ dev_dbg(dev, "PTP periodic task detected waiting timestamps. Triggering Tx timestamp interrupt now.\n"); wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); ice_flush(hw); } } static void ice_ptp_periodic_work(struct kthread_work *work) { struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work); struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp); int err; if (pf->ptp.state != ICE_PTP_READY) return; err = ice_ptp_update_cached_phctime(pf); ice_ptp_maybe_trigger_tx_interrupt(pf); /* Run twice a second or reschedule if phc update failed */ kthread_queue_delayed_work(ptp->kworker, &ptp->work, msecs_to_jiffies(err ? 10 : 500)); } /** * ice_ptp_prepare_for_reset - Prepare PTP for reset * @pf: Board private structure * @reset_type: the reset type being performed */ void ice_ptp_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) { struct ice_ptp *ptp = &pf->ptp; u8 src_tmr; if (ptp->state != ICE_PTP_READY) return; ptp->state = ICE_PTP_RESETTING; /* Disable timestamping for both Tx and Rx */ ice_ptp_disable_timestamp_mode(pf); kthread_cancel_delayed_work_sync(&ptp->work); if (reset_type == ICE_RESET_PFR) return; ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx); /* Disable periodic outputs */ ice_ptp_disable_all_clkout(pf); src_tmr = ice_get_ptp_src_clock_index(&pf->hw); /* Disable source clock */ wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M); /* Acquire PHC and system timer to restore after reset */ ptp->reset_time = ktime_get_real_ns(); } /** * ice_ptp_rebuild_owner - Initialize PTP clock owner after reset * @pf: Board private structure * * Companion function for ice_ptp_rebuild() which handles tasks that only the * PTP clock owner instance should perform. */ static int ice_ptp_rebuild_owner(struct ice_pf *pf) { struct ice_ptp *ptp = &pf->ptp; struct ice_hw *hw = &pf->hw; struct timespec64 ts; u64 time_diff; int err; err = ice_ptp_init_phc(hw); if (err) return err; /* Acquire the global hardware lock */ if (!ice_ptp_lock(hw)) { err = -EBUSY; return err; } /* Write the increment time value to PHY and LAN */ err = ice_ptp_write_incval(hw, ice_base_incval(pf)); if (err) { ice_ptp_unlock(hw); return err; } /* Write the initial Time value to PHY and LAN using the cached PHC * time before the reset and time difference between stopping and * starting the clock. */ if (ptp->cached_phc_time) { time_diff = ktime_get_real_ns() - ptp->reset_time; ts = ns_to_timespec64(ptp->cached_phc_time + time_diff); } else { ts = ktime_to_timespec64(ktime_get_real()); } err = ice_ptp_write_init(pf, &ts); if (err) { ice_ptp_unlock(hw); return err; } /* Release the global hardware lock */ ice_ptp_unlock(hw); /* Flush software tracking of any outstanding timestamps since we're * about to flush the PHY timestamp block. */ ice_ptp_flush_all_tx_tracker(pf); if (!ice_is_e810(hw)) { /* Enable quad interrupts */ err = ice_ptp_cfg_phy_interrupt(pf, true, 1); if (err) return err; ice_ptp_restart_all_phy(pf); } return 0; } /** * ice_ptp_rebuild - Initialize PTP hardware clock support after reset * @pf: Board private structure * @reset_type: the reset type being performed */ void ice_ptp_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) { struct ice_ptp *ptp = &pf->ptp; int err; if (ptp->state == ICE_PTP_READY) { ice_ptp_prepare_for_reset(pf, reset_type); } else if (ptp->state != ICE_PTP_RESETTING) { err = -EINVAL; dev_err(ice_pf_to_dev(pf), "PTP was not initialized\n"); goto err; } if (ice_pf_src_tmr_owned(pf) && reset_type != ICE_RESET_PFR) { err = ice_ptp_rebuild_owner(pf); if (err) goto err; } ptp->state = ICE_PTP_READY; /* Start periodic work going */ kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0); dev_info(ice_pf_to_dev(pf), "PTP reset successful\n"); return; err: ptp->state = ICE_PTP_ERROR; dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err); } /** * ice_ptp_aux_dev_to_aux_pf - Get auxiliary PF handle for the auxiliary device * @aux_dev: auxiliary device to get the auxiliary PF for */ static struct ice_pf * ice_ptp_aux_dev_to_aux_pf(struct auxiliary_device *aux_dev) { struct ice_ptp_port *aux_port; struct ice_ptp *aux_ptp; aux_port = container_of(aux_dev, struct ice_ptp_port, aux_dev); aux_ptp = container_of(aux_port, struct ice_ptp, port); return container_of(aux_ptp, struct ice_pf, ptp); } /** * ice_ptp_aux_dev_to_owner_pf - Get PF handle for the auxiliary device * @aux_dev: auxiliary device to get the PF for */ static struct ice_pf * ice_ptp_aux_dev_to_owner_pf(struct auxiliary_device *aux_dev) { struct ice_ptp_port_owner *ports_owner; struct auxiliary_driver *aux_drv; struct ice_ptp *owner_ptp; if (!aux_dev->dev.driver) return NULL; aux_drv = to_auxiliary_drv(aux_dev->dev.driver); ports_owner = container_of(aux_drv, struct ice_ptp_port_owner, aux_driver); owner_ptp = container_of(ports_owner, struct ice_ptp, ports_owner); return container_of(owner_ptp, struct ice_pf, ptp); } /** * ice_ptp_auxbus_probe - Probe auxiliary devices * @aux_dev: PF's auxiliary device * @id: Auxiliary device ID */ static int ice_ptp_auxbus_probe(struct auxiliary_device *aux_dev, const struct auxiliary_device_id *id) { struct ice_pf *owner_pf = ice_ptp_aux_dev_to_owner_pf(aux_dev); struct ice_pf *aux_pf = ice_ptp_aux_dev_to_aux_pf(aux_dev); if (WARN_ON(!owner_pf)) return -ENODEV; INIT_LIST_HEAD(&aux_pf->ptp.port.list_member); mutex_lock(&owner_pf->ptp.ports_owner.lock); list_add(&aux_pf->ptp.port.list_member, &owner_pf->ptp.ports_owner.ports); mutex_unlock(&owner_pf->ptp.ports_owner.lock); return 0; } /** * ice_ptp_auxbus_remove - Remove auxiliary devices from the bus * @aux_dev: PF's auxiliary device */ static void ice_ptp_auxbus_remove(struct auxiliary_device *aux_dev) { struct ice_pf *owner_pf = ice_ptp_aux_dev_to_owner_pf(aux_dev); struct ice_pf *aux_pf = ice_ptp_aux_dev_to_aux_pf(aux_dev); mutex_lock(&owner_pf->ptp.ports_owner.lock); list_del(&aux_pf->ptp.port.list_member); mutex_unlock(&owner_pf->ptp.ports_owner.lock); } /** * ice_ptp_auxbus_shutdown * @aux_dev: PF's auxiliary device */ static void ice_ptp_auxbus_shutdown(struct auxiliary_device *aux_dev) { /* Doing nothing here, but handle to auxbus driver must be satisfied */ } /** * ice_ptp_auxbus_suspend * @aux_dev: PF's auxiliary device * @state: power management state indicator */ static int ice_ptp_auxbus_suspend(struct auxiliary_device *aux_dev, pm_message_t state) { /* Doing nothing here, but handle to auxbus driver must be satisfied */ return 0; } /** * ice_ptp_auxbus_resume * @aux_dev: PF's auxiliary device */ static int ice_ptp_auxbus_resume(struct auxiliary_device *aux_dev) { /* Doing nothing here, but handle to auxbus driver must be satisfied */ return 0; } /** * ice_ptp_auxbus_create_id_table - Create auxiliary device ID table * @pf: Board private structure * @name: auxiliary bus driver name */ static struct auxiliary_device_id * ice_ptp_auxbus_create_id_table(struct ice_pf *pf, const char *name) { struct auxiliary_device_id *ids; /* Second id left empty to terminate the array */ ids = devm_kcalloc(ice_pf_to_dev(pf), 2, sizeof(struct auxiliary_device_id), GFP_KERNEL); if (!ids) return NULL; snprintf(ids[0].name, sizeof(ids[0].name), "ice.%s", name); return ids; } /** * ice_ptp_register_auxbus_driver - Register PTP auxiliary bus driver * @pf: Board private structure */ static int ice_ptp_register_auxbus_driver(struct ice_pf *pf) { struct auxiliary_driver *aux_driver; struct ice_ptp *ptp; struct device *dev; char *name; int err; ptp = &pf->ptp; dev = ice_pf_to_dev(pf); aux_driver = &ptp->ports_owner.aux_driver; INIT_LIST_HEAD(&ptp->ports_owner.ports); mutex_init(&ptp->ports_owner.lock); name = devm_kasprintf(dev, GFP_KERNEL, "ptp_aux_dev_%u_%u_clk%u", pf->pdev->bus->number, PCI_SLOT(pf->pdev->devfn), ice_get_ptp_src_clock_index(&pf->hw)); if (!name) return -ENOMEM; aux_driver->name = name; aux_driver->shutdown = ice_ptp_auxbus_shutdown; aux_driver->suspend = ice_ptp_auxbus_suspend; aux_driver->remove = ice_ptp_auxbus_remove; aux_driver->resume = ice_ptp_auxbus_resume; aux_driver->probe = ice_ptp_auxbus_probe; aux_driver->id_table = ice_ptp_auxbus_create_id_table(pf, name); if (!aux_driver->id_table) return -ENOMEM; err = auxiliary_driver_register(aux_driver); if (err) { devm_kfree(dev, aux_driver->id_table); dev_err(dev, "Failed registering aux_driver, name <%s>\n", name); } return err; } /** * ice_ptp_unregister_auxbus_driver - Unregister PTP auxiliary bus driver * @pf: Board private structure */ static void ice_ptp_unregister_auxbus_driver(struct ice_pf *pf) { struct auxiliary_driver *aux_driver = &pf->ptp.ports_owner.aux_driver; auxiliary_driver_unregister(aux_driver); devm_kfree(ice_pf_to_dev(pf), aux_driver->id_table); mutex_destroy(&pf->ptp.ports_owner.lock); } /** * ice_ptp_clock_index - Get the PTP clock index for this device * @pf: Board private structure * * Returns: the PTP clock index associated with this PF, or -1 if no PTP clock * is associated. */ int ice_ptp_clock_index(struct ice_pf *pf) { struct auxiliary_device *aux_dev; struct ice_pf *owner_pf; struct ptp_clock *clock; aux_dev = &pf->ptp.port.aux_dev; owner_pf = ice_ptp_aux_dev_to_owner_pf(aux_dev); if (!owner_pf) return -1; clock = owner_pf->ptp.clock; return clock ? ptp_clock_index(clock) : -1; } /** * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device * @pf: Board private structure * * Setup and initialize a PTP clock device that represents the device hardware * clock. Save the clock index for other functions connected to the same * hardware resource. */ static int ice_ptp_init_owner(struct ice_pf *pf) { struct ice_hw *hw = &pf->hw; struct timespec64 ts; int err; err = ice_ptp_init_phc(hw); if (err) { dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n", err); return err; } /* Acquire the global hardware lock */ if (!ice_ptp_lock(hw)) { err = -EBUSY; goto err_exit; } /* Write the increment time value to PHY and LAN */ err = ice_ptp_write_incval(hw, ice_base_incval(pf)); if (err) { ice_ptp_unlock(hw); goto err_exit; } ts = ktime_to_timespec64(ktime_get_real()); /* Write the initial Time value to PHY and LAN */ err = ice_ptp_write_init(pf, &ts); if (err) { ice_ptp_unlock(hw); goto err_exit; } /* Release the global hardware lock */ ice_ptp_unlock(hw); if (!ice_is_e810(hw)) { /* Enable quad interrupts */ err = ice_ptp_cfg_phy_interrupt(pf, true, 1); if (err) goto err_exit; } /* Ensure we have a clock device */ err = ice_ptp_create_clock(pf); if (err) goto err_clk; err = ice_ptp_register_auxbus_driver(pf); if (err) { dev_err(ice_pf_to_dev(pf), "Failed to register PTP auxbus driver"); goto err_aux; } return 0; err_aux: ptp_clock_unregister(pf->ptp.clock); err_clk: pf->ptp.clock = NULL; err_exit: return err; } /** * ice_ptp_init_work - Initialize PTP work threads * @pf: Board private structure * @ptp: PF PTP structure */ static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp) { struct kthread_worker *kworker; /* Initialize work functions */ kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work); /* Allocate a kworker for handling work required for the ports * connected to the PTP hardware clock. */ kworker = kthread_create_worker(0, "ice-ptp-%s", dev_name(ice_pf_to_dev(pf))); if (IS_ERR(kworker)) return PTR_ERR(kworker); ptp->kworker = kworker; /* Start periodic work going */ kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0); return 0; } /** * ice_ptp_init_port - Initialize PTP port structure * @pf: Board private structure * @ptp_port: PTP port structure */ static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port) { struct ice_hw *hw = &pf->hw; mutex_init(&ptp_port->ps_lock); switch (hw->phy_model) { case ICE_PHY_E810: return ice_ptp_init_tx_e810(pf, &ptp_port->tx); case ICE_PHY_E82X: kthread_init_delayed_work(&ptp_port->ov_work, ice_ptp_wait_for_offsets); return ice_ptp_init_tx_e82x(pf, &ptp_port->tx, ptp_port->port_num); default: return -ENODEV; } } /** * ice_ptp_release_auxbus_device * @dev: device that utilizes the auxbus */ static void ice_ptp_release_auxbus_device(struct device *dev) { /* Doing nothing here, but handle to auxbux device must be satisfied */ } /** * ice_ptp_create_auxbus_device - Create PTP auxiliary bus device * @pf: Board private structure */ static int ice_ptp_create_auxbus_device(struct ice_pf *pf) { struct auxiliary_device *aux_dev; struct ice_ptp *ptp; struct device *dev; char *name; int err; u32 id; ptp = &pf->ptp; id = ptp->port.port_num; dev = ice_pf_to_dev(pf); aux_dev = &ptp->port.aux_dev; name = devm_kasprintf(dev, GFP_KERNEL, "ptp_aux_dev_%u_%u_clk%u", pf->pdev->bus->number, PCI_SLOT(pf->pdev->devfn), ice_get_ptp_src_clock_index(&pf->hw)); if (!name) return -ENOMEM; aux_dev->name = name; aux_dev->id = id; aux_dev->dev.release = ice_ptp_release_auxbus_device; aux_dev->dev.parent = dev; err = auxiliary_device_init(aux_dev); if (err) goto aux_err; err = auxiliary_device_add(aux_dev); if (err) { auxiliary_device_uninit(aux_dev); goto aux_err; } return 0; aux_err: dev_err(dev, "Failed to create PTP auxiliary bus device <%s>\n", name); devm_kfree(dev, name); return err; } /** * ice_ptp_remove_auxbus_device - Remove PTP auxiliary bus device * @pf: Board private structure */ static void ice_ptp_remove_auxbus_device(struct ice_pf *pf) { struct auxiliary_device *aux_dev = &pf->ptp.port.aux_dev; auxiliary_device_delete(aux_dev); auxiliary_device_uninit(aux_dev); memset(aux_dev, 0, sizeof(*aux_dev)); } /** * ice_ptp_init_tx_interrupt_mode - Initialize device Tx interrupt mode * @pf: Board private structure * * Initialize the Tx timestamp interrupt mode for this device. For most device * types, each PF processes the interrupt and manages its own timestamps. For * E822-based devices, only the clock owner processes the timestamps. Other * PFs disable the interrupt and do not process their own timestamps. */ static void ice_ptp_init_tx_interrupt_mode(struct ice_pf *pf) { switch (pf->hw.phy_model) { case ICE_PHY_E82X: /* E822 based PHY has the clock owner process the interrupt * for all ports. */ if (ice_pf_src_tmr_owned(pf)) pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_ALL; else pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_NONE; break; default: /* other PHY types handle their own Tx interrupt */ pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_SELF; } } /** * ice_ptp_init - Initialize PTP hardware clock support * @pf: Board private structure * * Set up the device for interacting with the PTP hardware clock for all * functions, both the function that owns the clock hardware, and the * functions connected to the clock hardware. * * The clock owner will allocate and register a ptp_clock with the * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work * items used for asynchronous work such as Tx timestamps and periodic work. */ void ice_ptp_init(struct ice_pf *pf) { struct ice_ptp *ptp = &pf->ptp; struct ice_hw *hw = &pf->hw; int err; ptp->state = ICE_PTP_INITIALIZING; ice_ptp_init_phy_model(hw); ice_ptp_init_tx_interrupt_mode(pf); /* If this function owns the clock hardware, it must allocate and * configure the PTP clock device to represent it. */ if (ice_pf_src_tmr_owned(pf)) { err = ice_ptp_init_owner(pf); if (err) goto err; } ptp->port.port_num = hw->pf_id; err = ice_ptp_init_port(pf, &ptp->port); if (err) goto err; /* Start the PHY timestamping block */ ice_ptp_reset_phy_timestamping(pf); /* Configure initial Tx interrupt settings */ ice_ptp_cfg_tx_interrupt(pf); err = ice_ptp_create_auxbus_device(pf); if (err) goto err; ptp->state = ICE_PTP_READY; err = ice_ptp_init_work(pf, ptp); if (err) goto err; dev_info(ice_pf_to_dev(pf), "PTP init successful\n"); return; err: /* If we registered a PTP clock, release it */ if (pf->ptp.clock) { ptp_clock_unregister(ptp->clock); pf->ptp.clock = NULL; } ptp->state = ICE_PTP_ERROR; dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err); } /** * ice_ptp_release - Disable the driver/HW support and unregister the clock * @pf: Board private structure * * This function handles the cleanup work required from the initialization by * clearing out the important information and unregistering the clock */ void ice_ptp_release(struct ice_pf *pf) { if (pf->ptp.state != ICE_PTP_READY) return; pf->ptp.state = ICE_PTP_UNINIT; /* Disable timestamping for both Tx and Rx */ ice_ptp_disable_timestamp_mode(pf); ice_ptp_remove_auxbus_device(pf); ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx); kthread_cancel_delayed_work_sync(&pf->ptp.work); ice_ptp_port_phy_stop(&pf->ptp.port); mutex_destroy(&pf->ptp.port.ps_lock); if (pf->ptp.kworker) { kthread_destroy_worker(pf->ptp.kworker); pf->ptp.kworker = NULL; } if (ice_pf_src_tmr_owned(pf)) ice_ptp_unregister_auxbus_driver(pf); if (!pf->ptp.clock) return; /* Disable periodic outputs */ ice_ptp_disable_all_clkout(pf); ptp_clock_unregister(pf->ptp.clock); pf->ptp.clock = NULL; dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n"); } |