Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
 *                   Lee Revell <rlrevell@joe-job.com>
 *                   James Courtier-Dutton <James@superbug.co.uk>
 *                   Oswald Buddenhagen <oswald.buddenhagen@gmx.de>
 *                   Creative Labs, Inc.
 *
 *  Routines for control of EMU10K1 chips
 */

#include <linux/time.h>
#include <sound/core.h>
#include <sound/emu10k1.h>
#include <linux/delay.h>
#include <linux/export.h>
#include "p17v.h"

static inline bool check_ptr_reg(struct snd_emu10k1 *emu, unsigned int reg)
{
	if (snd_BUG_ON(!emu))
		return false;
	if (snd_BUG_ON(reg & (emu->audigy ? (0xffff0000 & ~A_PTR_ADDRESS_MASK)
					  : (0xffff0000 & ~PTR_ADDRESS_MASK))))
		return false;
	if (snd_BUG_ON(reg & 0x0000ffff & ~PTR_CHANNELNUM_MASK))
		return false;
	return true;
}

unsigned int snd_emu10k1_ptr_read(struct snd_emu10k1 * emu, unsigned int reg, unsigned int chn)
{
	unsigned long flags;
	unsigned int regptr, val;
	unsigned int mask;

	regptr = (reg << 16) | chn;
	if (!check_ptr_reg(emu, regptr))
		return 0;

	spin_lock_irqsave(&emu->emu_lock, flags);
	outl(regptr, emu->port + PTR);
	val = inl(emu->port + DATA);
	spin_unlock_irqrestore(&emu->emu_lock, flags);

	if (reg & 0xff000000) {
		unsigned char size, offset;
		
		size = (reg >> 24) & 0x3f;
		offset = (reg >> 16) & 0x1f;
		mask = (1 << size) - 1;
		
		return (val >> offset) & mask;
	} else {
		return val;
	}
}

EXPORT_SYMBOL(snd_emu10k1_ptr_read);

void snd_emu10k1_ptr_write(struct snd_emu10k1 *emu, unsigned int reg, unsigned int chn, unsigned int data)
{
	unsigned int regptr;
	unsigned long flags;
	unsigned int mask;

	regptr = (reg << 16) | chn;
	if (!check_ptr_reg(emu, regptr))
		return;

	if (reg & 0xff000000) {
		unsigned char size, offset;

		size = (reg >> 24) & 0x3f;
		offset = (reg >> 16) & 0x1f;
		mask = (1 << size) - 1;
		if (snd_BUG_ON(data & ~mask))
			return;
		mask <<= offset;
		data <<= offset;

		spin_lock_irqsave(&emu->emu_lock, flags);
		outl(regptr, emu->port + PTR);
		data |= inl(emu->port + DATA) & ~mask;
	} else {
		spin_lock_irqsave(&emu->emu_lock, flags);
		outl(regptr, emu->port + PTR);
	}
	outl(data, emu->port + DATA);
	spin_unlock_irqrestore(&emu->emu_lock, flags);
}

EXPORT_SYMBOL(snd_emu10k1_ptr_write);

void snd_emu10k1_ptr_write_multiple(struct snd_emu10k1 *emu, unsigned int chn, ...)
{
	va_list va;
	u32 addr_mask;
	unsigned long flags;

	if (snd_BUG_ON(!emu))
		return;
	if (snd_BUG_ON(chn & ~PTR_CHANNELNUM_MASK))
		return;
	addr_mask = ~((emu->audigy ? A_PTR_ADDRESS_MASK : PTR_ADDRESS_MASK) >> 16);

	va_start(va, chn);
	spin_lock_irqsave(&emu->emu_lock, flags);
	for (;;) {
		u32 data;
		u32 reg = va_arg(va, u32);
		if (reg == REGLIST_END)
			break;
		data = va_arg(va, u32);
		if (snd_BUG_ON(reg & addr_mask))  // Only raw registers supported here
			continue;
		outl((reg << 16) | chn, emu->port + PTR);
		outl(data, emu->port + DATA);
	}
	spin_unlock_irqrestore(&emu->emu_lock, flags);
	va_end(va);
}

EXPORT_SYMBOL(snd_emu10k1_ptr_write_multiple);

unsigned int snd_emu10k1_ptr20_read(struct snd_emu10k1 * emu, 
					  unsigned int reg, 
					  unsigned int chn)
{
	unsigned long flags;
	unsigned int regptr, val;
  
	regptr = (reg << 16) | chn;

	spin_lock_irqsave(&emu->emu_lock, flags);
	outl(regptr, emu->port + PTR2);
	val = inl(emu->port + DATA2);
	spin_unlock_irqrestore(&emu->emu_lock, flags);
	return val;
}

void snd_emu10k1_ptr20_write(struct snd_emu10k1 *emu, 
				   unsigned int reg, 
				   unsigned int chn, 
				   unsigned int data)
{
	unsigned int regptr;
	unsigned long flags;

	regptr = (reg << 16) | chn;

	spin_lock_irqsave(&emu->emu_lock, flags);
	outl(regptr, emu->port + PTR2);
	outl(data, emu->port + DATA2);
	spin_unlock_irqrestore(&emu->emu_lock, flags);
}

int snd_emu10k1_spi_write(struct snd_emu10k1 * emu,
				   unsigned int data)
{
	unsigned int reset, set;
	unsigned int reg, tmp;
	int n, result;
	int err = 0;

	/* This function is not re-entrant, so protect against it. */
	spin_lock(&emu->spi_lock);
	if (emu->card_capabilities->ca0108_chip)
		reg = P17V_SPI;
	else {
		/* For other chip types the SPI register
		 * is currently unknown. */
		err = 1;
		goto spi_write_exit;
	}
	if (data > 0xffff) {
		/* Only 16bit values allowed */
		err = 1;
		goto spi_write_exit;
	}

	tmp = snd_emu10k1_ptr20_read(emu, reg, 0);
	reset = (tmp & ~0x3ffff) | 0x20000; /* Set xxx20000 */
	set = reset | 0x10000; /* Set xxx1xxxx */
	snd_emu10k1_ptr20_write(emu, reg, 0, reset | data);
	tmp = snd_emu10k1_ptr20_read(emu, reg, 0); /* write post */
	snd_emu10k1_ptr20_write(emu, reg, 0, set | data);
	result = 1;
	/* Wait for status bit to return to 0 */
	for (n = 0; n < 100; n++) {
		udelay(10);
		tmp = snd_emu10k1_ptr20_read(emu, reg, 0);
		if (!(tmp & 0x10000)) {
			result = 0;
			break;
		}
	}
	if (result) {
		/* Timed out */
		err = 1;
		goto spi_write_exit;
	}
	snd_emu10k1_ptr20_write(emu, reg, 0, reset | data);
	tmp = snd_emu10k1_ptr20_read(emu, reg, 0); /* Write post */
	err = 0;
spi_write_exit:
	spin_unlock(&emu->spi_lock);
	return err;
}

/* The ADC does not support i2c read, so only write is implemented */
int snd_emu10k1_i2c_write(struct snd_emu10k1 *emu,
				u32 reg,
				u32 value)
{
	u32 tmp;
	int timeout = 0;
	int status;
	int retry;
	int err = 0;

	if ((reg > 0x7f) || (value > 0x1ff)) {
		dev_err(emu->card->dev, "i2c_write: invalid values.\n");
		return -EINVAL;
	}

	/* This function is not re-entrant, so protect against it. */
	spin_lock(&emu->i2c_lock);

	tmp = reg << 25 | value << 16;

	/* This controls the I2C connected to the WM8775 ADC Codec */
	snd_emu10k1_ptr20_write(emu, P17V_I2C_1, 0, tmp);
	tmp = snd_emu10k1_ptr20_read(emu, P17V_I2C_1, 0); /* write post */

	for (retry = 0; retry < 10; retry++) {
		/* Send the data to i2c */
		tmp = 0;
		tmp = tmp | (I2C_A_ADC_LAST|I2C_A_ADC_START|I2C_A_ADC_ADD);
		snd_emu10k1_ptr20_write(emu, P17V_I2C_ADDR, 0, tmp);

		/* Wait till the transaction ends */
		while (1) {
			mdelay(1);
			status = snd_emu10k1_ptr20_read(emu, P17V_I2C_ADDR, 0);
			timeout++;
			if ((status & I2C_A_ADC_START) == 0)
				break;

			if (timeout > 1000) {
				dev_warn(emu->card->dev,
					   "emu10k1:I2C:timeout status=0x%x\n",
					   status);
				break;
			}
		}
		//Read back and see if the transaction is successful
		if ((status & I2C_A_ADC_ABORT) == 0)
			break;
	}

	if (retry == 10) {
		dev_err(emu->card->dev, "Writing to ADC failed!\n");
		dev_err(emu->card->dev, "status=0x%x, reg=%d, value=%d\n",
			status, reg, value);
		/* dump_stack(); */
		err = -EINVAL;
	}
    
	spin_unlock(&emu->i2c_lock);
	return err;
}

static void snd_emu1010_fpga_write_locked(struct snd_emu10k1 *emu, u32 reg, u32 value)
{
	if (snd_BUG_ON(reg > 0x3f))
		return;
	reg += 0x40; /* 0x40 upwards are registers. */
	if (snd_BUG_ON(value > 0x3f)) /* 0 to 0x3f are values */
		return;
	outw(reg, emu->port + A_GPIO);
	udelay(10);
	outw(reg | 0x80, emu->port + A_GPIO);  /* High bit clocks the value into the fpga. */
	udelay(10);
	outw(value, emu->port + A_GPIO);
	udelay(10);
	outw(value | 0x80 , emu->port + A_GPIO);  /* High bit clocks the value into the fpga. */
	udelay(10);
}

void snd_emu1010_fpga_write(struct snd_emu10k1 *emu, u32 reg, u32 value)
{
	if (snd_BUG_ON(!mutex_is_locked(&emu->emu1010.lock)))
		return;
	snd_emu1010_fpga_write_locked(emu, reg, value);
}

void snd_emu1010_fpga_write_lock(struct snd_emu10k1 *emu, u32 reg, u32 value)
{
	snd_emu1010_fpga_lock(emu);
	snd_emu1010_fpga_write_locked(emu, reg, value);
	snd_emu1010_fpga_unlock(emu);
}

void snd_emu1010_fpga_read(struct snd_emu10k1 *emu, u32 reg, u32 *value)
{
	// The higest input pin is used as the designated interrupt trigger,
	// so it needs to be masked out.
	// But note that any other input pin change will also cause an IRQ,
	// so using this function often causes an IRQ as a side effect.
	u32 mask = emu->card_capabilities->ca0108_chip ? 0x1f : 0x7f;

	if (snd_BUG_ON(!mutex_is_locked(&emu->emu1010.lock)))
		return;
	if (snd_BUG_ON(reg > 0x3f))
		return;
	reg += 0x40; /* 0x40 upwards are registers. */
	outw(reg, emu->port + A_GPIO);
	udelay(10);
	outw(reg | 0x80, emu->port + A_GPIO);  /* High bit clocks the value into the fpga. */
	udelay(10);
	*value = ((inw(emu->port + A_GPIO) >> 8) & mask);
}

/* Each Destination has one and only one Source,
 * but one Source can feed any number of Destinations simultaneously.
 */
void snd_emu1010_fpga_link_dst_src_write(struct snd_emu10k1 *emu, u32 dst, u32 src)
{
	if (snd_BUG_ON(dst & ~0x71f))
		return;
	if (snd_BUG_ON(src & ~0x71f))
		return;
	snd_emu1010_fpga_write(emu, EMU_HANA_DESTHI, dst >> 8);
	snd_emu1010_fpga_write(emu, EMU_HANA_DESTLO, dst & 0x1f);
	snd_emu1010_fpga_write(emu, EMU_HANA_SRCHI, src >> 8);
	snd_emu1010_fpga_write(emu, EMU_HANA_SRCLO, src & 0x1f);
}

u32 snd_emu1010_fpga_link_dst_src_read(struct snd_emu10k1 *emu, u32 dst)
{
	u32 hi, lo;

	if (snd_BUG_ON(dst & ~0x71f))
		return 0;
	snd_emu1010_fpga_write(emu, EMU_HANA_DESTHI, dst >> 8);
	snd_emu1010_fpga_write(emu, EMU_HANA_DESTLO, dst & 0x1f);
	snd_emu1010_fpga_read(emu, EMU_HANA_SRCHI, &hi);
	snd_emu1010_fpga_read(emu, EMU_HANA_SRCLO, &lo);
	return (hi << 8) | lo;
}

int snd_emu1010_get_raw_rate(struct snd_emu10k1 *emu, u8 src)
{
	u32 reg_lo, reg_hi, value, value2;

	switch (src) {
	case EMU_HANA_WCLOCK_HANA_SPDIF_IN:
		snd_emu1010_fpga_read(emu, EMU_HANA_SPDIF_MODE, &value);
		if (value & EMU_HANA_SPDIF_MODE_RX_INVALID)
			return 0;
		reg_lo = EMU_HANA_WC_SPDIF_LO;
		reg_hi = EMU_HANA_WC_SPDIF_HI;
		break;
	case EMU_HANA_WCLOCK_HANA_ADAT_IN:
		reg_lo = EMU_HANA_WC_ADAT_LO;
		reg_hi = EMU_HANA_WC_ADAT_HI;
		break;
	case EMU_HANA_WCLOCK_SYNC_BNC:
		reg_lo = EMU_HANA_WC_BNC_LO;
		reg_hi = EMU_HANA_WC_BNC_HI;
		break;
	case EMU_HANA_WCLOCK_2ND_HANA:
		reg_lo = EMU_HANA2_WC_SPDIF_LO;
		reg_hi = EMU_HANA2_WC_SPDIF_HI;
		break;
	default:
		return 0;
	}
	snd_emu1010_fpga_read(emu, reg_hi, &value);
	snd_emu1010_fpga_read(emu, reg_lo, &value2);
	// FIXME: The /4 is valid for 0404b, but contradicts all other info.
	return 0x1770000 / 4 / (((value << 5) | value2) + 1);
}

void snd_emu1010_update_clock(struct snd_emu10k1 *emu)
{
	int clock;
	u32 leds;

	switch (emu->emu1010.wclock) {
	case EMU_HANA_WCLOCK_INT_44_1K | EMU_HANA_WCLOCK_1X:
		clock = 44100;
		leds = EMU_HANA_DOCK_LEDS_2_44K;
		break;
	case EMU_HANA_WCLOCK_INT_48K | EMU_HANA_WCLOCK_1X:
		clock = 48000;
		leds = EMU_HANA_DOCK_LEDS_2_48K;
		break;
	default:
		clock = snd_emu1010_get_raw_rate(
				emu, emu->emu1010.wclock & EMU_HANA_WCLOCK_SRC_MASK);
		// The raw rate reading is rather coarse (it cannot accurately
		// represent 44.1 kHz) and fluctuates slightly. Luckily, the
		// clock comes from digital inputs, which use standardized rates.
		// So we round to the closest standard rate and ignore discrepancies.
		if (clock < 46000) {
			clock = 44100;
			leds = EMU_HANA_DOCK_LEDS_2_EXT | EMU_HANA_DOCK_LEDS_2_44K;
		} else {
			clock = 48000;
			leds = EMU_HANA_DOCK_LEDS_2_EXT | EMU_HANA_DOCK_LEDS_2_48K;
		}
		break;
	}
	emu->emu1010.word_clock = clock;

	// FIXME: this should probably represent the AND of all currently
	// used sources' lock status. But we don't know how to get that ...
	leds |= EMU_HANA_DOCK_LEDS_2_LOCK;

	snd_emu1010_fpga_write(emu, EMU_HANA_DOCK_LEDS_2, leds);
}

void snd_emu10k1_intr_enable(struct snd_emu10k1 *emu, unsigned int intrenb)
{
	unsigned long flags;
	unsigned int enable;

	spin_lock_irqsave(&emu->emu_lock, flags);
	enable = inl(emu->port + INTE) | intrenb;
	outl(enable, emu->port + INTE);
	spin_unlock_irqrestore(&emu->emu_lock, flags);
}

void snd_emu10k1_intr_disable(struct snd_emu10k1 *emu, unsigned int intrenb)
{
	unsigned long flags;
	unsigned int enable;

	spin_lock_irqsave(&emu->emu_lock, flags);
	enable = inl(emu->port + INTE) & ~intrenb;
	outl(enable, emu->port + INTE);
	spin_unlock_irqrestore(&emu->emu_lock, flags);
}

void snd_emu10k1_voice_intr_enable(struct snd_emu10k1 *emu, unsigned int voicenum)
{
	unsigned long flags;
	unsigned int val;

	spin_lock_irqsave(&emu->emu_lock, flags);
	if (voicenum >= 32) {
		outl(CLIEH << 16, emu->port + PTR);
		val = inl(emu->port + DATA);
		val |= 1 << (voicenum - 32);
	} else {
		outl(CLIEL << 16, emu->port + PTR);
		val = inl(emu->port + DATA);
		val |= 1 << voicenum;
	}
	outl(val, emu->port + DATA);
	spin_unlock_irqrestore(&emu->emu_lock, flags);
}

void snd_emu10k1_voice_intr_disable(struct snd_emu10k1 *emu, unsigned int voicenum)
{
	unsigned long flags;
	unsigned int val;

	spin_lock_irqsave(&emu->emu_lock, flags);
	if (voicenum >= 32) {
		outl(CLIEH << 16, emu->port + PTR);
		val = inl(emu->port + DATA);
		val &= ~(1 << (voicenum - 32));
	} else {
		outl(CLIEL << 16, emu->port + PTR);
		val = inl(emu->port + DATA);
		val &= ~(1 << voicenum);
	}
	outl(val, emu->port + DATA);
	spin_unlock_irqrestore(&emu->emu_lock, flags);
}

void snd_emu10k1_voice_intr_ack(struct snd_emu10k1 *emu, unsigned int voicenum)
{
	unsigned long flags;

	spin_lock_irqsave(&emu->emu_lock, flags);
	if (voicenum >= 32) {
		outl(CLIPH << 16, emu->port + PTR);
		voicenum = 1 << (voicenum - 32);
	} else {
		outl(CLIPL << 16, emu->port + PTR);
		voicenum = 1 << voicenum;
	}
	outl(voicenum, emu->port + DATA);
	spin_unlock_irqrestore(&emu->emu_lock, flags);
}

void snd_emu10k1_voice_half_loop_intr_enable(struct snd_emu10k1 *emu, unsigned int voicenum)
{
	unsigned long flags;
	unsigned int val;

	spin_lock_irqsave(&emu->emu_lock, flags);
	if (voicenum >= 32) {
		outl(HLIEH << 16, emu->port + PTR);
		val = inl(emu->port + DATA);
		val |= 1 << (voicenum - 32);
	} else {
		outl(HLIEL << 16, emu->port + PTR);
		val = inl(emu->port + DATA);
		val |= 1 << voicenum;
	}
	outl(val, emu->port + DATA);
	spin_unlock_irqrestore(&emu->emu_lock, flags);
}

void snd_emu10k1_voice_half_loop_intr_disable(struct snd_emu10k1 *emu, unsigned int voicenum)
{
	unsigned long flags;
	unsigned int val;

	spin_lock_irqsave(&emu->emu_lock, flags);
	if (voicenum >= 32) {
		outl(HLIEH << 16, emu->port + PTR);
		val = inl(emu->port + DATA);
		val &= ~(1 << (voicenum - 32));
	} else {
		outl(HLIEL << 16, emu->port + PTR);
		val = inl(emu->port + DATA);
		val &= ~(1 << voicenum);
	}
	outl(val, emu->port + DATA);
	spin_unlock_irqrestore(&emu->emu_lock, flags);
}

void snd_emu10k1_voice_half_loop_intr_ack(struct snd_emu10k1 *emu, unsigned int voicenum)
{
	unsigned long flags;

	spin_lock_irqsave(&emu->emu_lock, flags);
	if (voicenum >= 32) {
		outl(HLIPH << 16, emu->port + PTR);
		voicenum = 1 << (voicenum - 32);
	} else {
		outl(HLIPL << 16, emu->port + PTR);
		voicenum = 1 << voicenum;
	}
	outl(voicenum, emu->port + DATA);
	spin_unlock_irqrestore(&emu->emu_lock, flags);
}

#if 0
void snd_emu10k1_voice_set_loop_stop(struct snd_emu10k1 *emu, unsigned int voicenum)
{
	unsigned long flags;
	unsigned int sol;

	spin_lock_irqsave(&emu->emu_lock, flags);
	if (voicenum >= 32) {
		outl(SOLEH << 16, emu->port + PTR);
		sol = inl(emu->port + DATA);
		sol |= 1 << (voicenum - 32);
	} else {
		outl(SOLEL << 16, emu->port + PTR);
		sol = inl(emu->port + DATA);
		sol |= 1 << voicenum;
	}
	outl(sol, emu->port + DATA);
	spin_unlock_irqrestore(&emu->emu_lock, flags);
}

void snd_emu10k1_voice_clear_loop_stop(struct snd_emu10k1 *emu, unsigned int voicenum)
{
	unsigned long flags;
	unsigned int sol;

	spin_lock_irqsave(&emu->emu_lock, flags);
	if (voicenum >= 32) {
		outl(SOLEH << 16, emu->port + PTR);
		sol = inl(emu->port + DATA);
		sol &= ~(1 << (voicenum - 32));
	} else {
		outl(SOLEL << 16, emu->port + PTR);
		sol = inl(emu->port + DATA);
		sol &= ~(1 << voicenum);
	}
	outl(sol, emu->port + DATA);
	spin_unlock_irqrestore(&emu->emu_lock, flags);
}
#endif

void snd_emu10k1_voice_set_loop_stop_multiple(struct snd_emu10k1 *emu, u64 voices)
{
	unsigned long flags;

	spin_lock_irqsave(&emu->emu_lock, flags);
	outl(SOLEL << 16, emu->port + PTR);
	outl(inl(emu->port + DATA) | (u32)voices, emu->port + DATA);
	outl(SOLEH << 16, emu->port + PTR);
	outl(inl(emu->port + DATA) | (u32)(voices >> 32), emu->port + DATA);
	spin_unlock_irqrestore(&emu->emu_lock, flags);
}

void snd_emu10k1_voice_clear_loop_stop_multiple(struct snd_emu10k1 *emu, u64 voices)
{
	unsigned long flags;

	spin_lock_irqsave(&emu->emu_lock, flags);
	outl(SOLEL << 16, emu->port + PTR);
	outl(inl(emu->port + DATA) & (u32)~voices, emu->port + DATA);
	outl(SOLEH << 16, emu->port + PTR);
	outl(inl(emu->port + DATA) & (u32)(~voices >> 32), emu->port + DATA);
	spin_unlock_irqrestore(&emu->emu_lock, flags);
}

int snd_emu10k1_voice_clear_loop_stop_multiple_atomic(struct snd_emu10k1 *emu, u64 voices)
{
	unsigned long flags;
	u32 soll, solh;
	int ret = -EIO;

	spin_lock_irqsave(&emu->emu_lock, flags);

	outl(SOLEL << 16, emu->port + PTR);
	soll = inl(emu->port + DATA);
	outl(SOLEH << 16, emu->port + PTR);
	solh = inl(emu->port + DATA);

	soll &= (u32)~voices;
	solh &= (u32)(~voices >> 32);

	for (int tries = 0; tries < 1000; tries++) {
		const u32 quart = 1U << (REG_SIZE(WC_CURRENTCHANNEL) - 2);
		// First we wait for the third quarter of the sample cycle ...
		u32 wc = inl(emu->port + WC);
		u32 cc = REG_VAL_GET(WC_CURRENTCHANNEL, wc);
		if (cc >= quart * 2 && cc < quart * 3) {
			// ... and release the low voices, while the high ones are serviced.
			outl(SOLEL << 16, emu->port + PTR);
			outl(soll, emu->port + DATA);
			// Then we wait for the first quarter of the next sample cycle ...
			for (; tries < 1000; tries++) {
				cc = REG_VAL_GET(WC_CURRENTCHANNEL, inl(emu->port + WC));
				if (cc < quart)
					goto good;
				// We will block for 10+ us with interrupts disabled. This is
				// not nice at all, but necessary for reasonable reliability.
				udelay(1);
			}
			break;
		good:
			// ... and release the high voices, while the low ones are serviced.
			outl(SOLEH << 16, emu->port + PTR);
			outl(solh, emu->port + DATA);
			// Finally we verify that nothing interfered in fact.
			if (REG_VAL_GET(WC_SAMPLECOUNTER, inl(emu->port + WC)) ==
			    ((REG_VAL_GET(WC_SAMPLECOUNTER, wc) + 1) & REG_MASK0(WC_SAMPLECOUNTER))) {
				ret = 0;
			} else {
				ret = -EAGAIN;
			}
			break;
		}
		// Don't block for too long
		spin_unlock_irqrestore(&emu->emu_lock, flags);
		udelay(1);
		spin_lock_irqsave(&emu->emu_lock, flags);
	}

	spin_unlock_irqrestore(&emu->emu_lock, flags);
	return ret;
}

void snd_emu10k1_wait(struct snd_emu10k1 *emu, unsigned int wait)
{
	volatile unsigned count;
	unsigned int newtime = 0, curtime;

	curtime = inl(emu->port + WC) >> 6;
	while (wait-- > 0) {
		count = 0;
		while (count++ < 16384) {
			newtime = inl(emu->port + WC) >> 6;
			if (newtime != curtime)
				break;
		}
		if (count > 16384)
			break;
		curtime = newtime;
	}
}

unsigned short snd_emu10k1_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
{
	struct snd_emu10k1 *emu = ac97->private_data;
	unsigned long flags;
	unsigned short val;

	spin_lock_irqsave(&emu->emu_lock, flags);
	outb(reg, emu->port + AC97ADDRESS);
	val = inw(emu->port + AC97DATA);
	spin_unlock_irqrestore(&emu->emu_lock, flags);
	return val;
}

void snd_emu10k1_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short data)
{
	struct snd_emu10k1 *emu = ac97->private_data;
	unsigned long flags;

	spin_lock_irqsave(&emu->emu_lock, flags);
	outb(reg, emu->port + AC97ADDRESS);
	outw(data, emu->port + AC97DATA);
	spin_unlock_irqrestore(&emu->emu_lock, flags);
}