Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 | /* SPDX-License-Identifier: GPL-2.0 */ /* * Machine dependent access functions for RTC registers. */ #ifndef _ASM_X86_MC146818RTC_H #define _ASM_X86_MC146818RTC_H #include <asm/io.h> #include <asm/processor.h> #ifndef RTC_PORT #define RTC_PORT(x) (0x70 + (x)) #define RTC_ALWAYS_BCD 1 /* RTC operates in binary mode */ #endif #if defined(CONFIG_X86_32) /* * This lock provides nmi access to the CMOS/RTC registers. It has some * special properties. It is owned by a CPU and stores the index register * currently being accessed (if owned). The idea here is that it works * like a normal lock (normally). However, in an NMI, the NMI code will * first check to see if its CPU owns the lock, meaning that the NMI * interrupted during the read/write of the device. If it does, it goes ahead * and performs the access and then restores the index register. If it does * not, it locks normally. * * Note that since we are working with NMIs, we need this lock even in * a non-SMP machine just to mark that the lock is owned. * * This only works with compare-and-swap. There is no other way to * atomically claim the lock and set the owner. */ #include <linux/smp.h> extern volatile unsigned long cmos_lock; /* * All of these below must be called with interrupts off, preempt * disabled, etc. */ static inline void lock_cmos(unsigned char reg) { unsigned long new; new = ((smp_processor_id() + 1) << 8) | reg; for (;;) { if (cmos_lock) { cpu_relax(); continue; } if (__cmpxchg(&cmos_lock, 0, new, sizeof(cmos_lock)) == 0) return; } } static inline void unlock_cmos(void) { cmos_lock = 0; } static inline int do_i_have_lock_cmos(void) { return (cmos_lock >> 8) == (smp_processor_id() + 1); } static inline unsigned char current_lock_cmos_reg(void) { return cmos_lock & 0xff; } #define lock_cmos_prefix(reg) \ do { \ unsigned long cmos_flags; \ local_irq_save(cmos_flags); \ lock_cmos(reg) #define lock_cmos_suffix(reg) \ unlock_cmos(); \ local_irq_restore(cmos_flags); \ } while (0) #else #define lock_cmos_prefix(reg) do {} while (0) #define lock_cmos_suffix(reg) do {} while (0) #define lock_cmos(reg) do { } while (0) #define unlock_cmos() do { } while (0) #define do_i_have_lock_cmos() 0 #define current_lock_cmos_reg() 0 #endif /* * The yet supported machines all access the RTC index register via * an ISA port access but the way to access the date register differs ... */ #define CMOS_READ(addr) rtc_cmos_read(addr) #define CMOS_WRITE(val, addr) rtc_cmos_write(val, addr) unsigned char rtc_cmos_read(unsigned char addr); void rtc_cmos_write(unsigned char val, unsigned char addr); extern int mach_set_cmos_time(const struct timespec64 *now); extern void mach_get_cmos_time(struct timespec64 *now); #define RTC_IRQ 8 #endif /* _ASM_X86_MC146818RTC_H */ |