Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 | // SPDX-License-Identifier: GPL-2.0 /* * This file contains KASAN runtime code that manages shadow memory for * generic and software tag-based KASAN modes. * * Copyright (c) 2014 Samsung Electronics Co., Ltd. * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> * * Some code borrowed from https://github.com/xairy/kasan-prototype by * Andrey Konovalov <andreyknvl@gmail.com> */ #include <linux/init.h> #include <linux/kasan.h> #include <linux/kernel.h> #include <linux/kfence.h> #include <linux/kmemleak.h> #include <linux/memory.h> #include <linux/mm.h> #include <linux/string.h> #include <linux/types.h> #include <linux/vmalloc.h> #include <asm/cacheflush.h> #include <asm/tlbflush.h> #include "kasan.h" bool __kasan_check_read(const volatile void *p, unsigned int size) { return kasan_check_range((void *)p, size, false, _RET_IP_); } EXPORT_SYMBOL(__kasan_check_read); bool __kasan_check_write(const volatile void *p, unsigned int size) { return kasan_check_range((void *)p, size, true, _RET_IP_); } EXPORT_SYMBOL(__kasan_check_write); #if !defined(CONFIG_CC_HAS_KASAN_MEMINTRINSIC_PREFIX) && !defined(CONFIG_GENERIC_ENTRY) /* * CONFIG_GENERIC_ENTRY relies on compiler emitted mem*() calls to not be * instrumented. KASAN enabled toolchains should emit __asan_mem*() functions * for the sites they want to instrument. * * If we have a compiler that can instrument meminstrinsics, never override * these, so that non-instrumented files can safely consider them as builtins. */ #undef memset void *memset(void *addr, int c, size_t len) { if (!kasan_check_range(addr, len, true, _RET_IP_)) return NULL; return __memset(addr, c, len); } #ifdef __HAVE_ARCH_MEMMOVE #undef memmove void *memmove(void *dest, const void *src, size_t len) { if (!kasan_check_range(src, len, false, _RET_IP_) || !kasan_check_range(dest, len, true, _RET_IP_)) return NULL; return __memmove(dest, src, len); } #endif #undef memcpy void *memcpy(void *dest, const void *src, size_t len) { if (!kasan_check_range(src, len, false, _RET_IP_) || !kasan_check_range(dest, len, true, _RET_IP_)) return NULL; return __memcpy(dest, src, len); } #endif void *__asan_memset(void *addr, int c, ssize_t len) { if (!kasan_check_range(addr, len, true, _RET_IP_)) return NULL; return __memset(addr, c, len); } EXPORT_SYMBOL(__asan_memset); #ifdef __HAVE_ARCH_MEMMOVE void *__asan_memmove(void *dest, const void *src, ssize_t len) { if (!kasan_check_range(src, len, false, _RET_IP_) || !kasan_check_range(dest, len, true, _RET_IP_)) return NULL; return __memmove(dest, src, len); } EXPORT_SYMBOL(__asan_memmove); #endif void *__asan_memcpy(void *dest, const void *src, ssize_t len) { if (!kasan_check_range(src, len, false, _RET_IP_) || !kasan_check_range(dest, len, true, _RET_IP_)) return NULL; return __memcpy(dest, src, len); } EXPORT_SYMBOL(__asan_memcpy); #ifdef CONFIG_KASAN_SW_TAGS void *__hwasan_memset(void *addr, int c, ssize_t len) __alias(__asan_memset); EXPORT_SYMBOL(__hwasan_memset); #ifdef __HAVE_ARCH_MEMMOVE void *__hwasan_memmove(void *dest, const void *src, ssize_t len) __alias(__asan_memmove); EXPORT_SYMBOL(__hwasan_memmove); #endif void *__hwasan_memcpy(void *dest, const void *src, ssize_t len) __alias(__asan_memcpy); EXPORT_SYMBOL(__hwasan_memcpy); #endif void kasan_poison(const void *addr, size_t size, u8 value, bool init) { void *shadow_start, *shadow_end; if (!kasan_arch_is_ready()) return; /* * Perform shadow offset calculation based on untagged address, as * some of the callers (e.g. kasan_poison_new_object) pass tagged * addresses to this function. */ addr = kasan_reset_tag(addr); if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK)) return; if (WARN_ON(size & KASAN_GRANULE_MASK)) return; shadow_start = kasan_mem_to_shadow(addr); shadow_end = kasan_mem_to_shadow(addr + size); __memset(shadow_start, value, shadow_end - shadow_start); } EXPORT_SYMBOL_GPL(kasan_poison); #ifdef CONFIG_KASAN_GENERIC void kasan_poison_last_granule(const void *addr, size_t size) { if (!kasan_arch_is_ready()) return; if (size & KASAN_GRANULE_MASK) { u8 *shadow = (u8 *)kasan_mem_to_shadow(addr + size); *shadow = size & KASAN_GRANULE_MASK; } } #endif void kasan_unpoison(const void *addr, size_t size, bool init) { u8 tag = get_tag(addr); /* * Perform shadow offset calculation based on untagged address, as * some of the callers (e.g. kasan_unpoison_new_object) pass tagged * addresses to this function. */ addr = kasan_reset_tag(addr); if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK)) return; /* Unpoison all granules that cover the object. */ kasan_poison(addr, round_up(size, KASAN_GRANULE_SIZE), tag, false); /* Partially poison the last granule for the generic mode. */ if (IS_ENABLED(CONFIG_KASAN_GENERIC)) kasan_poison_last_granule(addr, size); } #ifdef CONFIG_MEMORY_HOTPLUG static bool shadow_mapped(unsigned long addr) { pgd_t *pgd = pgd_offset_k(addr); p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *pte; if (pgd_none(*pgd)) return false; p4d = p4d_offset(pgd, addr); if (p4d_none(*p4d)) return false; pud = pud_offset(p4d, addr); if (pud_none(*pud)) return false; if (pud_leaf(*pud)) return true; pmd = pmd_offset(pud, addr); if (pmd_none(*pmd)) return false; if (pmd_leaf(*pmd)) return true; pte = pte_offset_kernel(pmd, addr); return !pte_none(ptep_get(pte)); } static int __meminit kasan_mem_notifier(struct notifier_block *nb, unsigned long action, void *data) { struct memory_notify *mem_data = data; unsigned long nr_shadow_pages, start_kaddr, shadow_start; unsigned long shadow_end, shadow_size; nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT; start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn); shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr); shadow_size = nr_shadow_pages << PAGE_SHIFT; shadow_end = shadow_start + shadow_size; if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) || WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE)) return NOTIFY_BAD; switch (action) { case MEM_GOING_ONLINE: { void *ret; /* * If shadow is mapped already than it must have been mapped * during the boot. This could happen if we onlining previously * offlined memory. */ if (shadow_mapped(shadow_start)) return NOTIFY_OK; ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start, shadow_end, GFP_KERNEL, PAGE_KERNEL, VM_NO_GUARD, pfn_to_nid(mem_data->start_pfn), __builtin_return_address(0)); if (!ret) return NOTIFY_BAD; kmemleak_ignore(ret); return NOTIFY_OK; } case MEM_CANCEL_ONLINE: case MEM_OFFLINE: { struct vm_struct *vm; /* * shadow_start was either mapped during boot by kasan_init() * or during memory online by __vmalloc_node_range(). * In the latter case we can use vfree() to free shadow. * Non-NULL result of the find_vm_area() will tell us if * that was the second case. * * Currently it's not possible to free shadow mapped * during boot by kasan_init(). It's because the code * to do that hasn't been written yet. So we'll just * leak the memory. */ vm = find_vm_area((void *)shadow_start); if (vm) vfree((void *)shadow_start); } } return NOTIFY_OK; } static int __init kasan_memhotplug_init(void) { hotplug_memory_notifier(kasan_mem_notifier, DEFAULT_CALLBACK_PRI); return 0; } core_initcall(kasan_memhotplug_init); #endif #ifdef CONFIG_KASAN_VMALLOC void __init __weak kasan_populate_early_vm_area_shadow(void *start, unsigned long size) { } static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr, void *unused) { unsigned long page; pte_t pte; if (likely(!pte_none(ptep_get(ptep)))) return 0; page = __get_free_page(GFP_KERNEL); if (!page) return -ENOMEM; __memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE); pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL); spin_lock(&init_mm.page_table_lock); if (likely(pte_none(ptep_get(ptep)))) { set_pte_at(&init_mm, addr, ptep, pte); page = 0; } spin_unlock(&init_mm.page_table_lock); if (page) free_page(page); return 0; } int kasan_populate_vmalloc(unsigned long addr, unsigned long size) { unsigned long shadow_start, shadow_end; int ret; if (!kasan_arch_is_ready()) return 0; if (!is_vmalloc_or_module_addr((void *)addr)) return 0; shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr); shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size); /* * User Mode Linux maps enough shadow memory for all of virtual memory * at boot, so doesn't need to allocate more on vmalloc, just clear it. * * The remaining CONFIG_UML checks in this file exist for the same * reason. */ if (IS_ENABLED(CONFIG_UML)) { __memset((void *)shadow_start, KASAN_VMALLOC_INVALID, shadow_end - shadow_start); return 0; } shadow_start = PAGE_ALIGN_DOWN(shadow_start); shadow_end = PAGE_ALIGN(shadow_end); ret = apply_to_page_range(&init_mm, shadow_start, shadow_end - shadow_start, kasan_populate_vmalloc_pte, NULL); if (ret) return ret; flush_cache_vmap(shadow_start, shadow_end); /* * We need to be careful about inter-cpu effects here. Consider: * * CPU#0 CPU#1 * WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ; * p[99] = 1; * * With compiler instrumentation, that ends up looking like this: * * CPU#0 CPU#1 * // vmalloc() allocates memory * // let a = area->addr * // we reach kasan_populate_vmalloc * // and call kasan_unpoison: * STORE shadow(a), unpoison_val * ... * STORE shadow(a+99), unpoison_val x = LOAD p * // rest of vmalloc process <data dependency> * STORE p, a LOAD shadow(x+99) * * If there is no barrier between the end of unpoisoning the shadow * and the store of the result to p, the stores could be committed * in a different order by CPU#0, and CPU#1 could erroneously observe * poison in the shadow. * * We need some sort of barrier between the stores. * * In the vmalloc() case, this is provided by a smp_wmb() in * clear_vm_uninitialized_flag(). In the per-cpu allocator and in * get_vm_area() and friends, the caller gets shadow allocated but * doesn't have any pages mapped into the virtual address space that * has been reserved. Mapping those pages in will involve taking and * releasing a page-table lock, which will provide the barrier. */ return 0; } static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr, void *unused) { unsigned long page; page = (unsigned long)__va(pte_pfn(ptep_get(ptep)) << PAGE_SHIFT); spin_lock(&init_mm.page_table_lock); if (likely(!pte_none(ptep_get(ptep)))) { pte_clear(&init_mm, addr, ptep); free_page(page); } spin_unlock(&init_mm.page_table_lock); return 0; } /* * Release the backing for the vmalloc region [start, end), which * lies within the free region [free_region_start, free_region_end). * * This can be run lazily, long after the region was freed. It runs * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap * infrastructure. * * How does this work? * ------------------- * * We have a region that is page aligned, labeled as A. * That might not map onto the shadow in a way that is page-aligned: * * start end * v v * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc * -------- -------- -------- -------- -------- * | | | | | * | | | /-------/ | * \-------\|/------/ |/---------------/ * ||| || * |??AAAAAA|AAAAAAAA|AA??????| < shadow * (1) (2) (3) * * First we align the start upwards and the end downwards, so that the * shadow of the region aligns with shadow page boundaries. In the * example, this gives us the shadow page (2). This is the shadow entirely * covered by this allocation. * * Then we have the tricky bits. We want to know if we can free the * partially covered shadow pages - (1) and (3) in the example. For this, * we are given the start and end of the free region that contains this * allocation. Extending our previous example, we could have: * * free_region_start free_region_end * | start end | * v v v v * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc * -------- -------- -------- -------- -------- * | | | | | * | | | /-------/ | * \-------\|/------/ |/---------------/ * ||| || * |FFAAAAAA|AAAAAAAA|AAF?????| < shadow * (1) (2) (3) * * Once again, we align the start of the free region up, and the end of * the free region down so that the shadow is page aligned. So we can free * page (1) - we know no allocation currently uses anything in that page, * because all of it is in the vmalloc free region. But we cannot free * page (3), because we can't be sure that the rest of it is unused. * * We only consider pages that contain part of the original region for * freeing: we don't try to free other pages from the free region or we'd * end up trying to free huge chunks of virtual address space. * * Concurrency * ----------- * * How do we know that we're not freeing a page that is simultaneously * being used for a fresh allocation in kasan_populate_vmalloc(_pte)? * * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running * at the same time. While we run under free_vmap_area_lock, the population * code does not. * * free_vmap_area_lock instead operates to ensure that the larger range * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and * the per-cpu region-finding algorithm both run under free_vmap_area_lock, * no space identified as free will become used while we are running. This * means that so long as we are careful with alignment and only free shadow * pages entirely covered by the free region, we will not run in to any * trouble - any simultaneous allocations will be for disjoint regions. */ void kasan_release_vmalloc(unsigned long start, unsigned long end, unsigned long free_region_start, unsigned long free_region_end) { void *shadow_start, *shadow_end; unsigned long region_start, region_end; unsigned long size; if (!kasan_arch_is_ready()) return; region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE); region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE); free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE); if (start != region_start && free_region_start < region_start) region_start -= KASAN_MEMORY_PER_SHADOW_PAGE; free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE); if (end != region_end && free_region_end > region_end) region_end += KASAN_MEMORY_PER_SHADOW_PAGE; shadow_start = kasan_mem_to_shadow((void *)region_start); shadow_end = kasan_mem_to_shadow((void *)region_end); if (shadow_end > shadow_start) { size = shadow_end - shadow_start; if (IS_ENABLED(CONFIG_UML)) { __memset(shadow_start, KASAN_SHADOW_INIT, shadow_end - shadow_start); return; } apply_to_existing_page_range(&init_mm, (unsigned long)shadow_start, size, kasan_depopulate_vmalloc_pte, NULL); flush_tlb_kernel_range((unsigned long)shadow_start, (unsigned long)shadow_end); } } void *__kasan_unpoison_vmalloc(const void *start, unsigned long size, kasan_vmalloc_flags_t flags) { /* * Software KASAN modes unpoison both VM_ALLOC and non-VM_ALLOC * mappings, so the KASAN_VMALLOC_VM_ALLOC flag is ignored. * Software KASAN modes can't optimize zeroing memory by combining it * with setting memory tags, so the KASAN_VMALLOC_INIT flag is ignored. */ if (!kasan_arch_is_ready()) return (void *)start; if (!is_vmalloc_or_module_addr(start)) return (void *)start; /* * Don't tag executable memory with the tag-based mode. * The kernel doesn't tolerate having the PC register tagged. */ if (IS_ENABLED(CONFIG_KASAN_SW_TAGS) && !(flags & KASAN_VMALLOC_PROT_NORMAL)) return (void *)start; start = set_tag(start, kasan_random_tag()); kasan_unpoison(start, size, false); return (void *)start; } /* * Poison the shadow for a vmalloc region. Called as part of the * freeing process at the time the region is freed. */ void __kasan_poison_vmalloc(const void *start, unsigned long size) { if (!kasan_arch_is_ready()) return; if (!is_vmalloc_or_module_addr(start)) return; size = round_up(size, KASAN_GRANULE_SIZE); kasan_poison(start, size, KASAN_VMALLOC_INVALID, false); } #else /* CONFIG_KASAN_VMALLOC */ int kasan_alloc_module_shadow(void *addr, size_t size, gfp_t gfp_mask) { void *ret; size_t scaled_size; size_t shadow_size; unsigned long shadow_start; shadow_start = (unsigned long)kasan_mem_to_shadow(addr); scaled_size = (size + KASAN_GRANULE_SIZE - 1) >> KASAN_SHADOW_SCALE_SHIFT; shadow_size = round_up(scaled_size, PAGE_SIZE); if (WARN_ON(!PAGE_ALIGNED(shadow_start))) return -EINVAL; if (IS_ENABLED(CONFIG_UML)) { __memset((void *)shadow_start, KASAN_SHADOW_INIT, shadow_size); return 0; } ret = __vmalloc_node_range(shadow_size, 1, shadow_start, shadow_start + shadow_size, GFP_KERNEL, PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE, __builtin_return_address(0)); if (ret) { struct vm_struct *vm = find_vm_area(addr); __memset(ret, KASAN_SHADOW_INIT, shadow_size); vm->flags |= VM_KASAN; kmemleak_ignore(ret); if (vm->flags & VM_DEFER_KMEMLEAK) kmemleak_vmalloc(vm, size, gfp_mask); return 0; } return -ENOMEM; } void kasan_free_module_shadow(const struct vm_struct *vm) { if (IS_ENABLED(CONFIG_UML)) return; if (vm->flags & VM_KASAN) vfree(kasan_mem_to_shadow(vm->addr)); } #endif |