Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
// SPDX-License-Identifier: GPL-2.0-only
/* Common code for 32 and 64-bit NUMA */
#include <linux/acpi.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/of.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/memblock.h>
#include <linux/mmzone.h>
#include <linux/ctype.h>
#include <linux/nodemask.h>
#include <linux/sched.h>
#include <linux/topology.h>
#include <linux/sort.h>

#include <asm/e820/api.h>
#include <asm/proto.h>
#include <asm/dma.h>
#include <asm/amd_nb.h>

#include "numa_internal.h"

int numa_off;
nodemask_t numa_nodes_parsed __initdata;

struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
EXPORT_SYMBOL(node_data);

static struct numa_meminfo numa_meminfo __initdata_or_meminfo;
static struct numa_meminfo numa_reserved_meminfo __initdata_or_meminfo;

static int numa_distance_cnt;
static u8 *numa_distance;

static __init int numa_setup(char *opt)
{
	if (!opt)
		return -EINVAL;
	if (!strncmp(opt, "off", 3))
		numa_off = 1;
	if (!strncmp(opt, "fake=", 5))
		return numa_emu_cmdline(opt + 5);
	if (!strncmp(opt, "noacpi", 6))
		disable_srat();
	if (!strncmp(opt, "nohmat", 6))
		disable_hmat();
	return 0;
}
early_param("numa", numa_setup);

/*
 * apicid, cpu, node mappings
 */
s16 __apicid_to_node[MAX_LOCAL_APIC] = {
	[0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
};

int numa_cpu_node(int cpu)
{
	u32 apicid = early_per_cpu(x86_cpu_to_apicid, cpu);

	if (apicid != BAD_APICID)
		return __apicid_to_node[apicid];
	return NUMA_NO_NODE;
}

cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
EXPORT_SYMBOL(node_to_cpumask_map);

/*
 * Map cpu index to node index
 */
DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);

void numa_set_node(int cpu, int node)
{
	int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);

	/* early setting, no percpu area yet */
	if (cpu_to_node_map) {
		cpu_to_node_map[cpu] = node;
		return;
	}

#ifdef CONFIG_DEBUG_PER_CPU_MAPS
	if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
		printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
		dump_stack();
		return;
	}
#endif
	per_cpu(x86_cpu_to_node_map, cpu) = node;

	set_cpu_numa_node(cpu, node);
}

void numa_clear_node(int cpu)
{
	numa_set_node(cpu, NUMA_NO_NODE);
}

/*
 * Allocate node_to_cpumask_map based on number of available nodes
 * Requires node_possible_map to be valid.
 *
 * Note: cpumask_of_node() is not valid until after this is done.
 * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.)
 */
void __init setup_node_to_cpumask_map(void)
{
	unsigned int node;

	/* setup nr_node_ids if not done yet */
	if (nr_node_ids == MAX_NUMNODES)
		setup_nr_node_ids();

	/* allocate the map */
	for (node = 0; node < nr_node_ids; node++)
		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);

	/* cpumask_of_node() will now work */
	pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids);
}

static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
				     struct numa_meminfo *mi)
{
	/* ignore zero length blks */
	if (start == end)
		return 0;

	/* whine about and ignore invalid blks */
	if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
		pr_warn("Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n",
			nid, start, end - 1);
		return 0;
	}

	if (mi->nr_blks >= NR_NODE_MEMBLKS) {
		pr_err("too many memblk ranges\n");
		return -EINVAL;
	}

	mi->blk[mi->nr_blks].start = start;
	mi->blk[mi->nr_blks].end = end;
	mi->blk[mi->nr_blks].nid = nid;
	mi->nr_blks++;
	return 0;
}

/**
 * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo
 * @idx: Index of memblk to remove
 * @mi: numa_meminfo to remove memblk from
 *
 * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and
 * decrementing @mi->nr_blks.
 */
void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi)
{
	mi->nr_blks--;
	memmove(&mi->blk[idx], &mi->blk[idx + 1],
		(mi->nr_blks - idx) * sizeof(mi->blk[0]));
}

/**
 * numa_move_tail_memblk - Move a numa_memblk from one numa_meminfo to another
 * @dst: numa_meminfo to append block to
 * @idx: Index of memblk to remove
 * @src: numa_meminfo to remove memblk from
 */
static void __init numa_move_tail_memblk(struct numa_meminfo *dst, int idx,
					 struct numa_meminfo *src)
{
	dst->blk[dst->nr_blks++] = src->blk[idx];
	numa_remove_memblk_from(idx, src);
}

/**
 * numa_add_memblk - Add one numa_memblk to numa_meminfo
 * @nid: NUMA node ID of the new memblk
 * @start: Start address of the new memblk
 * @end: End address of the new memblk
 *
 * Add a new memblk to the default numa_meminfo.
 *
 * RETURNS:
 * 0 on success, -errno on failure.
 */
int __init numa_add_memblk(int nid, u64 start, u64 end)
{
	return numa_add_memblk_to(nid, start, end, &numa_meminfo);
}

/* Allocate NODE_DATA for a node on the local memory */
static void __init alloc_node_data(int nid)
{
	const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
	u64 nd_pa;
	void *nd;
	int tnid;

	/*
	 * Allocate node data.  Try node-local memory and then any node.
	 * Never allocate in DMA zone.
	 */
	nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
	if (!nd_pa) {
		pr_err("Cannot find %zu bytes in any node (initial node: %d)\n",
		       nd_size, nid);
		return;
	}
	nd = __va(nd_pa);

	/* report and initialize */
	printk(KERN_INFO "NODE_DATA(%d) allocated [mem %#010Lx-%#010Lx]\n", nid,
	       nd_pa, nd_pa + nd_size - 1);
	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
	if (tnid != nid)
		printk(KERN_INFO "    NODE_DATA(%d) on node %d\n", nid, tnid);

	node_data[nid] = nd;
	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));

	node_set_online(nid);
}

/**
 * numa_cleanup_meminfo - Cleanup a numa_meminfo
 * @mi: numa_meminfo to clean up
 *
 * Sanitize @mi by merging and removing unnecessary memblks.  Also check for
 * conflicts and clear unused memblks.
 *
 * RETURNS:
 * 0 on success, -errno on failure.
 */
int __init numa_cleanup_meminfo(struct numa_meminfo *mi)
{
	const u64 low = 0;
	const u64 high = PFN_PHYS(max_pfn);
	int i, j, k;

	/* first, trim all entries */
	for (i = 0; i < mi->nr_blks; i++) {
		struct numa_memblk *bi = &mi->blk[i];

		/* move / save reserved memory ranges */
		if (!memblock_overlaps_region(&memblock.memory,
					bi->start, bi->end - bi->start)) {
			numa_move_tail_memblk(&numa_reserved_meminfo, i--, mi);
			continue;
		}

		/* make sure all non-reserved blocks are inside the limits */
		bi->start = max(bi->start, low);

		/* preserve info for non-RAM areas above 'max_pfn': */
		if (bi->end > high) {
			numa_add_memblk_to(bi->nid, high, bi->end,
					   &numa_reserved_meminfo);
			bi->end = high;
		}

		/* and there's no empty block */
		if (bi->start >= bi->end)
			numa_remove_memblk_from(i--, mi);
	}

	/* merge neighboring / overlapping entries */
	for (i = 0; i < mi->nr_blks; i++) {
		struct numa_memblk *bi = &mi->blk[i];

		for (j = i + 1; j < mi->nr_blks; j++) {
			struct numa_memblk *bj = &mi->blk[j];
			u64 start, end;

			/*
			 * See whether there are overlapping blocks.  Whine
			 * about but allow overlaps of the same nid.  They
			 * will be merged below.
			 */
			if (bi->end > bj->start && bi->start < bj->end) {
				if (bi->nid != bj->nid) {
					pr_err("node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n",
					       bi->nid, bi->start, bi->end - 1,
					       bj->nid, bj->start, bj->end - 1);
					return -EINVAL;
				}
				pr_warn("Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n",
					bi->nid, bi->start, bi->end - 1,
					bj->start, bj->end - 1);
			}

			/*
			 * Join together blocks on the same node, holes
			 * between which don't overlap with memory on other
			 * nodes.
			 */
			if (bi->nid != bj->nid)
				continue;
			start = min(bi->start, bj->start);
			end = max(bi->end, bj->end);
			for (k = 0; k < mi->nr_blks; k++) {
				struct numa_memblk *bk = &mi->blk[k];

				if (bi->nid == bk->nid)
					continue;
				if (start < bk->end && end > bk->start)
					break;
			}
			if (k < mi->nr_blks)
				continue;
			printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n",
			       bi->nid, bi->start, bi->end - 1, bj->start,
			       bj->end - 1, start, end - 1);
			bi->start = start;
			bi->end = end;
			numa_remove_memblk_from(j--, mi);
		}
	}

	/* clear unused ones */
	for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) {
		mi->blk[i].start = mi->blk[i].end = 0;
		mi->blk[i].nid = NUMA_NO_NODE;
	}

	return 0;
}

/*
 * Set nodes, which have memory in @mi, in *@nodemask.
 */
static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask,
					      const struct numa_meminfo *mi)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(mi->blk); i++)
		if (mi->blk[i].start != mi->blk[i].end &&
		    mi->blk[i].nid != NUMA_NO_NODE)
			node_set(mi->blk[i].nid, *nodemask);
}

/**
 * numa_reset_distance - Reset NUMA distance table
 *
 * The current table is freed.  The next numa_set_distance() call will
 * create a new one.
 */
void __init numa_reset_distance(void)
{
	size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]);

	/* numa_distance could be 1LU marking allocation failure, test cnt */
	if (numa_distance_cnt)
		memblock_free(numa_distance, size);
	numa_distance_cnt = 0;
	numa_distance = NULL;	/* enable table creation */
}

static int __init numa_alloc_distance(void)
{
	nodemask_t nodes_parsed;
	size_t size;
	int i, j, cnt = 0;
	u64 phys;

	/* size the new table and allocate it */
	nodes_parsed = numa_nodes_parsed;
	numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo);

	for_each_node_mask(i, nodes_parsed)
		cnt = i;
	cnt++;
	size = cnt * cnt * sizeof(numa_distance[0]);

	phys = memblock_phys_alloc_range(size, PAGE_SIZE, 0,
					 PFN_PHYS(max_pfn_mapped));
	if (!phys) {
		pr_warn("Warning: can't allocate distance table!\n");
		/* don't retry until explicitly reset */
		numa_distance = (void *)1LU;
		return -ENOMEM;
	}

	numa_distance = __va(phys);
	numa_distance_cnt = cnt;

	/* fill with the default distances */
	for (i = 0; i < cnt; i++)
		for (j = 0; j < cnt; j++)
			numa_distance[i * cnt + j] = i == j ?
				LOCAL_DISTANCE : REMOTE_DISTANCE;
	printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt);

	return 0;
}

/**
 * numa_set_distance - Set NUMA distance from one NUMA to another
 * @from: the 'from' node to set distance
 * @to: the 'to'  node to set distance
 * @distance: NUMA distance
 *
 * Set the distance from node @from to @to to @distance.  If distance table
 * doesn't exist, one which is large enough to accommodate all the currently
 * known nodes will be created.
 *
 * If such table cannot be allocated, a warning is printed and further
 * calls are ignored until the distance table is reset with
 * numa_reset_distance().
 *
 * If @from or @to is higher than the highest known node or lower than zero
 * at the time of table creation or @distance doesn't make sense, the call
 * is ignored.
 * This is to allow simplification of specific NUMA config implementations.
 */
void __init numa_set_distance(int from, int to, int distance)
{
	if (!numa_distance && numa_alloc_distance() < 0)
		return;

	if (from >= numa_distance_cnt || to >= numa_distance_cnt ||
			from < 0 || to < 0) {
		pr_warn_once("Warning: node ids are out of bound, from=%d to=%d distance=%d\n",
			     from, to, distance);
		return;
	}

	if ((u8)distance != distance ||
	    (from == to && distance != LOCAL_DISTANCE)) {
		pr_warn_once("Warning: invalid distance parameter, from=%d to=%d distance=%d\n",
			     from, to, distance);
		return;
	}

	numa_distance[from * numa_distance_cnt + to] = distance;
}

int __node_distance(int from, int to)
{
	if (from >= numa_distance_cnt || to >= numa_distance_cnt)
		return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE;
	return numa_distance[from * numa_distance_cnt + to];
}
EXPORT_SYMBOL(__node_distance);

/*
 * Mark all currently memblock-reserved physical memory (which covers the
 * kernel's own memory ranges) as hot-unswappable.
 */
static void __init numa_clear_kernel_node_hotplug(void)
{
	nodemask_t reserved_nodemask = NODE_MASK_NONE;
	struct memblock_region *mb_region;
	int i;

	/*
	 * We have to do some preprocessing of memblock regions, to
	 * make them suitable for reservation.
	 *
	 * At this time, all memory regions reserved by memblock are
	 * used by the kernel, but those regions are not split up
	 * along node boundaries yet, and don't necessarily have their
	 * node ID set yet either.
	 *
	 * So iterate over all memory known to the x86 architecture,
	 * and use those ranges to set the nid in memblock.reserved.
	 * This will split up the memblock regions along node
	 * boundaries and will set the node IDs as well.
	 */
	for (i = 0; i < numa_meminfo.nr_blks; i++) {
		struct numa_memblk *mb = numa_meminfo.blk + i;
		int ret;

		ret = memblock_set_node(mb->start, mb->end - mb->start, &memblock.reserved, mb->nid);
		WARN_ON_ONCE(ret);
	}

	/*
	 * Now go over all reserved memblock regions, to construct a
	 * node mask of all kernel reserved memory areas.
	 *
	 * [ Note, when booting with mem=nn[kMG] or in a kdump kernel,
	 *   numa_meminfo might not include all memblock.reserved
	 *   memory ranges, because quirks such as trim_snb_memory()
	 *   reserve specific pages for Sandy Bridge graphics. ]
	 */
	for_each_reserved_mem_region(mb_region) {
		int nid = memblock_get_region_node(mb_region);

		if (nid != MAX_NUMNODES)
			node_set(nid, reserved_nodemask);
	}

	/*
	 * Finally, clear the MEMBLOCK_HOTPLUG flag for all memory
	 * belonging to the reserved node mask.
	 *
	 * Note that this will include memory regions that reside
	 * on nodes that contain kernel memory - entire nodes
	 * become hot-unpluggable:
	 */
	for (i = 0; i < numa_meminfo.nr_blks; i++) {
		struct numa_memblk *mb = numa_meminfo.blk + i;

		if (!node_isset(mb->nid, reserved_nodemask))
			continue;

		memblock_clear_hotplug(mb->start, mb->end - mb->start);
	}
}

static int __init numa_register_memblks(struct numa_meminfo *mi)
{
	int i, nid;

	/* Account for nodes with cpus and no memory */
	node_possible_map = numa_nodes_parsed;
	numa_nodemask_from_meminfo(&node_possible_map, mi);
	if (WARN_ON(nodes_empty(node_possible_map)))
		return -EINVAL;

	for (i = 0; i < mi->nr_blks; i++) {
		struct numa_memblk *mb = &mi->blk[i];
		memblock_set_node(mb->start, mb->end - mb->start,
				  &memblock.memory, mb->nid);
	}

	/*
	 * At very early time, the kernel have to use some memory such as
	 * loading the kernel image. We cannot prevent this anyway. So any
	 * node the kernel resides in should be un-hotpluggable.
	 *
	 * And when we come here, alloc node data won't fail.
	 */
	numa_clear_kernel_node_hotplug();

	/*
	 * If sections array is gonna be used for pfn -> nid mapping, check
	 * whether its granularity is fine enough.
	 */
	if (IS_ENABLED(NODE_NOT_IN_PAGE_FLAGS)) {
		unsigned long pfn_align = node_map_pfn_alignment();

		if (pfn_align && pfn_align < PAGES_PER_SECTION) {
			pr_warn("Node alignment %LuMB < min %LuMB, rejecting NUMA config\n",
				PFN_PHYS(pfn_align) >> 20,
				PFN_PHYS(PAGES_PER_SECTION) >> 20);
			return -EINVAL;
		}
	}

	if (!memblock_validate_numa_coverage(SZ_1M))
		return -EINVAL;

	/* Finally register nodes. */
	for_each_node_mask(nid, node_possible_map) {
		u64 start = PFN_PHYS(max_pfn);
		u64 end = 0;

		for (i = 0; i < mi->nr_blks; i++) {
			if (nid != mi->blk[i].nid)
				continue;
			start = min(mi->blk[i].start, start);
			end = max(mi->blk[i].end, end);
		}

		if (start >= end)
			continue;

		alloc_node_data(nid);
	}

	/* Dump memblock with node info and return. */
	memblock_dump_all();
	return 0;
}

/*
 * There are unfortunately some poorly designed mainboards around that
 * only connect memory to a single CPU. This breaks the 1:1 cpu->node
 * mapping. To avoid this fill in the mapping for all possible CPUs,
 * as the number of CPUs is not known yet. We round robin the existing
 * nodes.
 */
static void __init numa_init_array(void)
{
	int rr, i;

	rr = first_node(node_online_map);
	for (i = 0; i < nr_cpu_ids; i++) {
		if (early_cpu_to_node(i) != NUMA_NO_NODE)
			continue;
		numa_set_node(i, rr);
		rr = next_node_in(rr, node_online_map);
	}
}

static int __init numa_init(int (*init_func)(void))
{
	int i;
	int ret;

	for (i = 0; i < MAX_LOCAL_APIC; i++)
		set_apicid_to_node(i, NUMA_NO_NODE);

	nodes_clear(numa_nodes_parsed);
	nodes_clear(node_possible_map);
	nodes_clear(node_online_map);
	memset(&numa_meminfo, 0, sizeof(numa_meminfo));
	WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory,
				  MAX_NUMNODES));
	WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved,
				  MAX_NUMNODES));
	/* In case that parsing SRAT failed. */
	WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX));
	numa_reset_distance();

	ret = init_func();
	if (ret < 0)
		return ret;

	/*
	 * We reset memblock back to the top-down direction
	 * here because if we configured ACPI_NUMA, we have
	 * parsed SRAT in init_func(). It is ok to have the
	 * reset here even if we did't configure ACPI_NUMA
	 * or acpi numa init fails and fallbacks to dummy
	 * numa init.
	 */
	memblock_set_bottom_up(false);

	ret = numa_cleanup_meminfo(&numa_meminfo);
	if (ret < 0)
		return ret;

	numa_emulation(&numa_meminfo, numa_distance_cnt);

	ret = numa_register_memblks(&numa_meminfo);
	if (ret < 0)
		return ret;

	for (i = 0; i < nr_cpu_ids; i++) {
		int nid = early_cpu_to_node(i);

		if (nid == NUMA_NO_NODE)
			continue;
		if (!node_online(nid))
			numa_clear_node(i);
	}
	numa_init_array();

	return 0;
}

/**
 * dummy_numa_init - Fallback dummy NUMA init
 *
 * Used if there's no underlying NUMA architecture, NUMA initialization
 * fails, or NUMA is disabled on the command line.
 *
 * Must online at least one node and add memory blocks that cover all
 * allowed memory.  This function must not fail.
 */
static int __init dummy_numa_init(void)
{
	printk(KERN_INFO "%s\n",
	       numa_off ? "NUMA turned off" : "No NUMA configuration found");
	printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n",
	       0LLU, PFN_PHYS(max_pfn) - 1);

	node_set(0, numa_nodes_parsed);
	numa_add_memblk(0, 0, PFN_PHYS(max_pfn));

	return 0;
}

/**
 * x86_numa_init - Initialize NUMA
 *
 * Try each configured NUMA initialization method until one succeeds.  The
 * last fallback is dummy single node config encompassing whole memory and
 * never fails.
 */
void __init x86_numa_init(void)
{
	if (!numa_off) {
#ifdef CONFIG_ACPI_NUMA
		if (!numa_init(x86_acpi_numa_init))
			return;
#endif
#ifdef CONFIG_AMD_NUMA
		if (!numa_init(amd_numa_init))
			return;
#endif
		if (acpi_disabled && !numa_init(of_numa_init))
			return;
	}

	numa_init(dummy_numa_init);
}


/*
 * A node may exist which has one or more Generic Initiators but no CPUs and no
 * memory.
 *
 * This function must be called after init_cpu_to_node(), to ensure that any
 * memoryless CPU nodes have already been brought online, and before the
 * node_data[nid] is needed for zone list setup in build_all_zonelists().
 *
 * When this function is called, any nodes containing either memory and/or CPUs
 * will already be online and there is no need to do anything extra, even if
 * they also contain one or more Generic Initiators.
 */
void __init init_gi_nodes(void)
{
	int nid;

	/*
	 * Exclude this node from
	 * bringup_nonboot_cpus
	 *  cpu_up
	 *   __try_online_node
	 *    register_one_node
	 * because node_subsys is not initialized yet.
	 * TODO remove dependency on node_online
	 */
	for_each_node_state(nid, N_GENERIC_INITIATOR)
		if (!node_online(nid))
			node_set_online(nid);
}

/*
 * Setup early cpu_to_node.
 *
 * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
 * and apicid_to_node[] tables have valid entries for a CPU.
 * This means we skip cpu_to_node[] initialisation for NUMA
 * emulation and faking node case (when running a kernel compiled
 * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
 * is already initialized in a round robin manner at numa_init_array,
 * prior to this call, and this initialization is good enough
 * for the fake NUMA cases.
 *
 * Called before the per_cpu areas are setup.
 */
void __init init_cpu_to_node(void)
{
	int cpu;
	u32 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);

	BUG_ON(cpu_to_apicid == NULL);

	for_each_possible_cpu(cpu) {
		int node = numa_cpu_node(cpu);

		if (node == NUMA_NO_NODE)
			continue;

		/*
		 * Exclude this node from
		 * bringup_nonboot_cpus
		 *  cpu_up
		 *   __try_online_node
		 *    register_one_node
		 * because node_subsys is not initialized yet.
		 * TODO remove dependency on node_online
		 */
		if (!node_online(node))
			node_set_online(node);

		numa_set_node(cpu, node);
	}
}

#ifndef CONFIG_DEBUG_PER_CPU_MAPS

# ifndef CONFIG_NUMA_EMU
void numa_add_cpu(int cpu)
{
	cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
}

void numa_remove_cpu(int cpu)
{
	cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
}
# endif	/* !CONFIG_NUMA_EMU */

#else	/* !CONFIG_DEBUG_PER_CPU_MAPS */

int __cpu_to_node(int cpu)
{
	if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
		printk(KERN_WARNING
			"cpu_to_node(%d): usage too early!\n", cpu);
		dump_stack();
		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
	}
	return per_cpu(x86_cpu_to_node_map, cpu);
}
EXPORT_SYMBOL(__cpu_to_node);

/*
 * Same function as cpu_to_node() but used if called before the
 * per_cpu areas are setup.
 */
int early_cpu_to_node(int cpu)
{
	if (early_per_cpu_ptr(x86_cpu_to_node_map))
		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];

	if (!cpu_possible(cpu)) {
		printk(KERN_WARNING
			"early_cpu_to_node(%d): no per_cpu area!\n", cpu);
		dump_stack();
		return NUMA_NO_NODE;
	}
	return per_cpu(x86_cpu_to_node_map, cpu);
}

void debug_cpumask_set_cpu(int cpu, int node, bool enable)
{
	struct cpumask *mask;

	if (node == NUMA_NO_NODE) {
		/* early_cpu_to_node() already emits a warning and trace */
		return;
	}
	mask = node_to_cpumask_map[node];
	if (!cpumask_available(mask)) {
		pr_err("node_to_cpumask_map[%i] NULL\n", node);
		dump_stack();
		return;
	}

	if (enable)
		cpumask_set_cpu(cpu, mask);
	else
		cpumask_clear_cpu(cpu, mask);

	printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n",
		enable ? "numa_add_cpu" : "numa_remove_cpu",
		cpu, node, cpumask_pr_args(mask));
	return;
}

# ifndef CONFIG_NUMA_EMU
static void numa_set_cpumask(int cpu, bool enable)
{
	debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable);
}

void numa_add_cpu(int cpu)
{
	numa_set_cpumask(cpu, true);
}

void numa_remove_cpu(int cpu)
{
	numa_set_cpumask(cpu, false);
}
# endif	/* !CONFIG_NUMA_EMU */

/*
 * Returns a pointer to the bitmask of CPUs on Node 'node'.
 */
const struct cpumask *cpumask_of_node(int node)
{
	if ((unsigned)node >= nr_node_ids) {
		printk(KERN_WARNING
			"cpumask_of_node(%d): (unsigned)node >= nr_node_ids(%u)\n",
			node, nr_node_ids);
		dump_stack();
		return cpu_none_mask;
	}
	if (!cpumask_available(node_to_cpumask_map[node])) {
		printk(KERN_WARNING
			"cpumask_of_node(%d): no node_to_cpumask_map!\n",
			node);
		dump_stack();
		return cpu_online_mask;
	}
	return node_to_cpumask_map[node];
}
EXPORT_SYMBOL(cpumask_of_node);

#endif	/* !CONFIG_DEBUG_PER_CPU_MAPS */

#ifdef CONFIG_NUMA_KEEP_MEMINFO
static int meminfo_to_nid(struct numa_meminfo *mi, u64 start)
{
	int i;

	for (i = 0; i < mi->nr_blks; i++)
		if (mi->blk[i].start <= start && mi->blk[i].end > start)
			return mi->blk[i].nid;
	return NUMA_NO_NODE;
}

int phys_to_target_node(phys_addr_t start)
{
	int nid = meminfo_to_nid(&numa_meminfo, start);

	/*
	 * Prefer online nodes, but if reserved memory might be
	 * hot-added continue the search with reserved ranges.
	 */
	if (nid != NUMA_NO_NODE)
		return nid;

	return meminfo_to_nid(&numa_reserved_meminfo, start);
}
EXPORT_SYMBOL_GPL(phys_to_target_node);

int memory_add_physaddr_to_nid(u64 start)
{
	int nid = meminfo_to_nid(&numa_meminfo, start);

	if (nid == NUMA_NO_NODE)
		nid = numa_meminfo.blk[0].nid;
	return nid;
}
EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);

#endif

static int __init cmp_memblk(const void *a, const void *b)
{
	const struct numa_memblk *ma = *(const struct numa_memblk **)a;
	const struct numa_memblk *mb = *(const struct numa_memblk **)b;

	return (ma->start > mb->start) - (ma->start < mb->start);
}

static struct numa_memblk *numa_memblk_list[NR_NODE_MEMBLKS] __initdata;

/**
 * numa_fill_memblks - Fill gaps in numa_meminfo memblks
 * @start: address to begin fill
 * @end: address to end fill
 *
 * Find and extend numa_meminfo memblks to cover the physical
 * address range @start-@end
 *
 * RETURNS:
 * 0		  : Success
 * NUMA_NO_MEMBLK : No memblks exist in address range @start-@end
 */

int __init numa_fill_memblks(u64 start, u64 end)
{
	struct numa_memblk **blk = &numa_memblk_list[0];
	struct numa_meminfo *mi = &numa_meminfo;
	int count = 0;
	u64 prev_end;

	/*
	 * Create a list of pointers to numa_meminfo memblks that
	 * overlap start, end. The list is used to make in-place
	 * changes that fill out the numa_meminfo memblks.
	 */
	for (int i = 0; i < mi->nr_blks; i++) {
		struct numa_memblk *bi = &mi->blk[i];

		if (memblock_addrs_overlap(start, end - start, bi->start,
					   bi->end - bi->start)) {
			blk[count] = &mi->blk[i];
			count++;
		}
	}
	if (!count)
		return NUMA_NO_MEMBLK;

	/* Sort the list of pointers in memblk->start order */
	sort(&blk[0], count, sizeof(blk[0]), cmp_memblk, NULL);

	/* Make sure the first/last memblks include start/end */
	blk[0]->start = min(blk[0]->start, start);
	blk[count - 1]->end = max(blk[count - 1]->end, end);

	/*
	 * Fill any gaps by tracking the previous memblks
	 * end address and backfilling to it if needed.
	 */
	prev_end = blk[0]->end;
	for (int i = 1; i < count; i++) {
		struct numa_memblk *curr = blk[i];

		if (prev_end >= curr->start) {
			if (prev_end < curr->end)
				prev_end = curr->end;
		} else {
			curr->start = prev_end;
			prev_end = curr->end;
		}
	}
	return 0;
}