Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 | // SPDX-License-Identifier: GPL-2.0-only /* * crash.c - kernel crash support code. * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> */ #include <linux/buildid.h> #include <linux/init.h> #include <linux/utsname.h> #include <linux/vmalloc.h> #include <linux/sizes.h> #include <linux/kexec.h> #include <linux/memory.h> #include <linux/mm.h> #include <linux/cpuhotplug.h> #include <linux/memblock.h> #include <linux/kmemleak.h> #include <linux/crash_core.h> #include <linux/reboot.h> #include <linux/btf.h> #include <linux/objtool.h> #include <asm/page.h> #include <asm/sections.h> #include <crypto/sha1.h> #include "kallsyms_internal.h" #include "kexec_internal.h" /* Per cpu memory for storing cpu states in case of system crash. */ note_buf_t __percpu *crash_notes; #ifdef CONFIG_CRASH_DUMP int kimage_crash_copy_vmcoreinfo(struct kimage *image) { struct page *vmcoreinfo_page; void *safecopy; if (!IS_ENABLED(CONFIG_CRASH_DUMP)) return 0; if (image->type != KEXEC_TYPE_CRASH) return 0; /* * For kdump, allocate one vmcoreinfo safe copy from the * crash memory. as we have arch_kexec_protect_crashkres() * after kexec syscall, we naturally protect it from write * (even read) access under kernel direct mapping. But on * the other hand, we still need to operate it when crash * happens to generate vmcoreinfo note, hereby we rely on * vmap for this purpose. */ vmcoreinfo_page = kimage_alloc_control_pages(image, 0); if (!vmcoreinfo_page) { pr_warn("Could not allocate vmcoreinfo buffer\n"); return -ENOMEM; } safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL); if (!safecopy) { pr_warn("Could not vmap vmcoreinfo buffer\n"); return -ENOMEM; } image->vmcoreinfo_data_copy = safecopy; crash_update_vmcoreinfo_safecopy(safecopy); return 0; } int kexec_should_crash(struct task_struct *p) { /* * If crash_kexec_post_notifiers is enabled, don't run * crash_kexec() here yet, which must be run after panic * notifiers in panic(). */ if (crash_kexec_post_notifiers) return 0; /* * There are 4 panic() calls in make_task_dead() path, each of which * corresponds to each of these 4 conditions. */ if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) return 1; return 0; } int kexec_crash_loaded(void) { return !!kexec_crash_image; } EXPORT_SYMBOL_GPL(kexec_crash_loaded); /* * No panic_cpu check version of crash_kexec(). This function is called * only when panic_cpu holds the current CPU number; this is the only CPU * which processes crash_kexec routines. */ void __noclone __crash_kexec(struct pt_regs *regs) { /* Take the kexec_lock here to prevent sys_kexec_load * running on one cpu from replacing the crash kernel * we are using after a panic on a different cpu. * * If the crash kernel was not located in a fixed area * of memory the xchg(&kexec_crash_image) would be * sufficient. But since I reuse the memory... */ if (kexec_trylock()) { if (kexec_crash_image) { struct pt_regs fixed_regs; crash_setup_regs(&fixed_regs, regs); crash_save_vmcoreinfo(); machine_crash_shutdown(&fixed_regs); machine_kexec(kexec_crash_image); } kexec_unlock(); } } STACK_FRAME_NON_STANDARD(__crash_kexec); __bpf_kfunc void crash_kexec(struct pt_regs *regs) { int old_cpu, this_cpu; /* * Only one CPU is allowed to execute the crash_kexec() code as with * panic(). Otherwise parallel calls of panic() and crash_kexec() * may stop each other. To exclude them, we use panic_cpu here too. */ old_cpu = PANIC_CPU_INVALID; this_cpu = raw_smp_processor_id(); if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu)) { /* This is the 1st CPU which comes here, so go ahead. */ __crash_kexec(regs); /* * Reset panic_cpu to allow another panic()/crash_kexec() * call. */ atomic_set(&panic_cpu, PANIC_CPU_INVALID); } } static inline resource_size_t crash_resource_size(const struct resource *res) { return !res->end ? 0 : resource_size(res); } int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map, void **addr, unsigned long *sz) { Elf64_Ehdr *ehdr; Elf64_Phdr *phdr; unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz; unsigned char *buf; unsigned int cpu, i; unsigned long long notes_addr; unsigned long mstart, mend; /* extra phdr for vmcoreinfo ELF note */ nr_phdr = nr_cpus + 1; nr_phdr += mem->nr_ranges; /* * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64). * I think this is required by tools like gdb. So same physical * memory will be mapped in two ELF headers. One will contain kernel * text virtual addresses and other will have __va(physical) addresses. */ nr_phdr++; elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr); elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN); buf = vzalloc(elf_sz); if (!buf) return -ENOMEM; ehdr = (Elf64_Ehdr *)buf; phdr = (Elf64_Phdr *)(ehdr + 1); memcpy(ehdr->e_ident, ELFMAG, SELFMAG); ehdr->e_ident[EI_CLASS] = ELFCLASS64; ehdr->e_ident[EI_DATA] = ELFDATA2LSB; ehdr->e_ident[EI_VERSION] = EV_CURRENT; ehdr->e_ident[EI_OSABI] = ELF_OSABI; memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD); ehdr->e_type = ET_CORE; ehdr->e_machine = ELF_ARCH; ehdr->e_version = EV_CURRENT; ehdr->e_phoff = sizeof(Elf64_Ehdr); ehdr->e_ehsize = sizeof(Elf64_Ehdr); ehdr->e_phentsize = sizeof(Elf64_Phdr); /* Prepare one phdr of type PT_NOTE for each possible CPU */ for_each_possible_cpu(cpu) { phdr->p_type = PT_NOTE; notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu)); phdr->p_offset = phdr->p_paddr = notes_addr; phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t); (ehdr->e_phnum)++; phdr++; } /* Prepare one PT_NOTE header for vmcoreinfo */ phdr->p_type = PT_NOTE; phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note(); phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE; (ehdr->e_phnum)++; phdr++; /* Prepare PT_LOAD type program header for kernel text region */ if (need_kernel_map) { phdr->p_type = PT_LOAD; phdr->p_flags = PF_R|PF_W|PF_X; phdr->p_vaddr = (unsigned long) _text; phdr->p_filesz = phdr->p_memsz = _end - _text; phdr->p_offset = phdr->p_paddr = __pa_symbol(_text); ehdr->e_phnum++; phdr++; } /* Go through all the ranges in mem->ranges[] and prepare phdr */ for (i = 0; i < mem->nr_ranges; i++) { mstart = mem->ranges[i].start; mend = mem->ranges[i].end; phdr->p_type = PT_LOAD; phdr->p_flags = PF_R|PF_W|PF_X; phdr->p_offset = mstart; phdr->p_paddr = mstart; phdr->p_vaddr = (unsigned long) __va(mstart); phdr->p_filesz = phdr->p_memsz = mend - mstart + 1; phdr->p_align = 0; ehdr->e_phnum++; #ifdef CONFIG_KEXEC_FILE kexec_dprintk("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n", phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz, ehdr->e_phnum, phdr->p_offset); #endif phdr++; } *addr = buf; *sz = elf_sz; return 0; } int crash_exclude_mem_range(struct crash_mem *mem, unsigned long long mstart, unsigned long long mend) { int i; unsigned long long start, end, p_start, p_end; for (i = 0; i < mem->nr_ranges; i++) { start = mem->ranges[i].start; end = mem->ranges[i].end; p_start = mstart; p_end = mend; if (p_start > end) continue; /* * Because the memory ranges in mem->ranges are stored in * ascending order, when we detect `p_end < start`, we can * immediately exit the for loop, as the subsequent memory * ranges will definitely be outside the range we are looking * for. */ if (p_end < start) break; /* Truncate any area outside of range */ if (p_start < start) p_start = start; if (p_end > end) p_end = end; /* Found completely overlapping range */ if (p_start == start && p_end == end) { memmove(&mem->ranges[i], &mem->ranges[i + 1], (mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i])); i--; mem->nr_ranges--; } else if (p_start > start && p_end < end) { /* Split original range */ if (mem->nr_ranges >= mem->max_nr_ranges) return -ENOMEM; memmove(&mem->ranges[i + 2], &mem->ranges[i + 1], (mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i])); mem->ranges[i].end = p_start - 1; mem->ranges[i + 1].start = p_end + 1; mem->ranges[i + 1].end = end; i++; mem->nr_ranges++; } else if (p_start != start) mem->ranges[i].end = p_start - 1; else mem->ranges[i].start = p_end + 1; } return 0; } ssize_t crash_get_memory_size(void) { ssize_t size = 0; if (!kexec_trylock()) return -EBUSY; size += crash_resource_size(&crashk_res); size += crash_resource_size(&crashk_low_res); kexec_unlock(); return size; } static int __crash_shrink_memory(struct resource *old_res, unsigned long new_size) { struct resource *ram_res; ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); if (!ram_res) return -ENOMEM; ram_res->start = old_res->start + new_size; ram_res->end = old_res->end; ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; ram_res->name = "System RAM"; if (!new_size) { release_resource(old_res); old_res->start = 0; old_res->end = 0; } else { crashk_res.end = ram_res->start - 1; } crash_free_reserved_phys_range(ram_res->start, ram_res->end); insert_resource(&iomem_resource, ram_res); return 0; } int crash_shrink_memory(unsigned long new_size) { int ret = 0; unsigned long old_size, low_size; if (!kexec_trylock()) return -EBUSY; if (kexec_crash_image) { ret = -ENOENT; goto unlock; } low_size = crash_resource_size(&crashk_low_res); old_size = crash_resource_size(&crashk_res) + low_size; new_size = roundup(new_size, KEXEC_CRASH_MEM_ALIGN); if (new_size >= old_size) { ret = (new_size == old_size) ? 0 : -EINVAL; goto unlock; } /* * (low_size > new_size) implies that low_size is greater than zero. * This also means that if low_size is zero, the else branch is taken. * * If low_size is greater than 0, (low_size > new_size) indicates that * crashk_low_res also needs to be shrunken. Otherwise, only crashk_res * needs to be shrunken. */ if (low_size > new_size) { ret = __crash_shrink_memory(&crashk_res, 0); if (ret) goto unlock; ret = __crash_shrink_memory(&crashk_low_res, new_size); } else { ret = __crash_shrink_memory(&crashk_res, new_size - low_size); } /* Swap crashk_res and crashk_low_res if needed */ if (!crashk_res.end && crashk_low_res.end) { crashk_res.start = crashk_low_res.start; crashk_res.end = crashk_low_res.end; release_resource(&crashk_low_res); crashk_low_res.start = 0; crashk_low_res.end = 0; insert_resource(&iomem_resource, &crashk_res); } unlock: kexec_unlock(); return ret; } void crash_save_cpu(struct pt_regs *regs, int cpu) { struct elf_prstatus prstatus; u32 *buf; if ((cpu < 0) || (cpu >= nr_cpu_ids)) return; /* Using ELF notes here is opportunistic. * I need a well defined structure format * for the data I pass, and I need tags * on the data to indicate what information I have * squirrelled away. ELF notes happen to provide * all of that, so there is no need to invent something new. */ buf = (u32 *)per_cpu_ptr(crash_notes, cpu); if (!buf) return; memset(&prstatus, 0, sizeof(prstatus)); prstatus.common.pr_pid = current->pid; elf_core_copy_regs(&prstatus.pr_reg, regs); buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, &prstatus, sizeof(prstatus)); final_note(buf); } static int __init crash_notes_memory_init(void) { /* Allocate memory for saving cpu registers. */ size_t size, align; /* * crash_notes could be allocated across 2 vmalloc pages when percpu * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc * pages are also on 2 continuous physical pages. In this case the * 2nd part of crash_notes in 2nd page could be lost since only the * starting address and size of crash_notes are exported through sysfs. * Here round up the size of crash_notes to the nearest power of two * and pass it to __alloc_percpu as align value. This can make sure * crash_notes is allocated inside one physical page. */ size = sizeof(note_buf_t); align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE); /* * Break compile if size is bigger than PAGE_SIZE since crash_notes * definitely will be in 2 pages with that. */ BUILD_BUG_ON(size > PAGE_SIZE); crash_notes = __alloc_percpu(size, align); if (!crash_notes) { pr_warn("Memory allocation for saving cpu register states failed\n"); return -ENOMEM; } return 0; } subsys_initcall(crash_notes_memory_init); #endif /*CONFIG_CRASH_DUMP*/ #ifdef CONFIG_CRASH_HOTPLUG #undef pr_fmt #define pr_fmt(fmt) "crash hp: " fmt /* * Different than kexec/kdump loading/unloading/jumping/shrinking which * usually rarely happen, there will be many crash hotplug events notified * during one short period, e.g one memory board is hot added and memory * regions are online. So mutex lock __crash_hotplug_lock is used to * serialize the crash hotplug handling specifically. */ static DEFINE_MUTEX(__crash_hotplug_lock); #define crash_hotplug_lock() mutex_lock(&__crash_hotplug_lock) #define crash_hotplug_unlock() mutex_unlock(&__crash_hotplug_lock) /* * This routine utilized when the crash_hotplug sysfs node is read. * It reflects the kernel's ability/permission to update the crash * elfcorehdr directly. */ int crash_check_update_elfcorehdr(void) { int rc = 0; crash_hotplug_lock(); /* Obtain lock while reading crash information */ if (!kexec_trylock()) { pr_info("kexec_trylock() failed, elfcorehdr may be inaccurate\n"); crash_hotplug_unlock(); return 0; } if (kexec_crash_image) { if (kexec_crash_image->file_mode) rc = 1; else rc = kexec_crash_image->update_elfcorehdr; } /* Release lock now that update complete */ kexec_unlock(); crash_hotplug_unlock(); return rc; } /* * To accurately reflect hot un/plug changes of cpu and memory resources * (including onling and offlining of those resources), the elfcorehdr * (which is passed to the crash kernel via the elfcorehdr= parameter) * must be updated with the new list of CPUs and memories. * * In order to make changes to elfcorehdr, two conditions are needed: * First, the segment containing the elfcorehdr must be large enough * to permit a growing number of resources; the elfcorehdr memory size * is based on NR_CPUS_DEFAULT and CRASH_MAX_MEMORY_RANGES. * Second, purgatory must explicitly exclude the elfcorehdr from the * list of segments it checks (since the elfcorehdr changes and thus * would require an update to purgatory itself to update the digest). */ static void crash_handle_hotplug_event(unsigned int hp_action, unsigned int cpu) { struct kimage *image; crash_hotplug_lock(); /* Obtain lock while changing crash information */ if (!kexec_trylock()) { pr_info("kexec_trylock() failed, elfcorehdr may be inaccurate\n"); crash_hotplug_unlock(); return; } /* Check kdump is not loaded */ if (!kexec_crash_image) goto out; image = kexec_crash_image; /* Check that updating elfcorehdr is permitted */ if (!(image->file_mode || image->update_elfcorehdr)) goto out; if (hp_action == KEXEC_CRASH_HP_ADD_CPU || hp_action == KEXEC_CRASH_HP_REMOVE_CPU) pr_debug("hp_action %u, cpu %u\n", hp_action, cpu); else pr_debug("hp_action %u\n", hp_action); /* * The elfcorehdr_index is set to -1 when the struct kimage * is allocated. Find the segment containing the elfcorehdr, * if not already found. */ if (image->elfcorehdr_index < 0) { unsigned long mem; unsigned char *ptr; unsigned int n; for (n = 0; n < image->nr_segments; n++) { mem = image->segment[n].mem; ptr = kmap_local_page(pfn_to_page(mem >> PAGE_SHIFT)); if (ptr) { /* The segment containing elfcorehdr */ if (memcmp(ptr, ELFMAG, SELFMAG) == 0) image->elfcorehdr_index = (int)n; kunmap_local(ptr); } } } if (image->elfcorehdr_index < 0) { pr_err("unable to locate elfcorehdr segment"); goto out; } /* Needed in order for the segments to be updated */ arch_kexec_unprotect_crashkres(); /* Differentiate between normal load and hotplug update */ image->hp_action = hp_action; /* Now invoke arch-specific update handler */ arch_crash_handle_hotplug_event(image); /* No longer handling a hotplug event */ image->hp_action = KEXEC_CRASH_HP_NONE; image->elfcorehdr_updated = true; /* Change back to read-only */ arch_kexec_protect_crashkres(); /* Errors in the callback is not a reason to rollback state */ out: /* Release lock now that update complete */ kexec_unlock(); crash_hotplug_unlock(); } static int crash_memhp_notifier(struct notifier_block *nb, unsigned long val, void *v) { switch (val) { case MEM_ONLINE: crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_MEMORY, KEXEC_CRASH_HP_INVALID_CPU); break; case MEM_OFFLINE: crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_MEMORY, KEXEC_CRASH_HP_INVALID_CPU); break; } return NOTIFY_OK; } static struct notifier_block crash_memhp_nb = { .notifier_call = crash_memhp_notifier, .priority = 0 }; static int crash_cpuhp_online(unsigned int cpu) { crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_CPU, cpu); return 0; } static int crash_cpuhp_offline(unsigned int cpu) { crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_CPU, cpu); return 0; } static int __init crash_hotplug_init(void) { int result = 0; if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) register_memory_notifier(&crash_memhp_nb); if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) { result = cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN, "crash/cpuhp", crash_cpuhp_online, crash_cpuhp_offline); } return result; } subsys_initcall(crash_hotplug_init); #endif |