// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2015-2017 Google, Inc
*
* USB Type-C Port Controller Interface.
*/
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/usb/pd.h>
#include <linux/usb/tcpci.h>
#include <linux/usb/tcpm.h>
#include <linux/usb/typec.h>
#define PD_RETRY_COUNT_DEFAULT 3
#define PD_RETRY_COUNT_3_0_OR_HIGHER 2
#define AUTO_DISCHARGE_DEFAULT_THRESHOLD_MV 3500
#define VSINKPD_MIN_IR_DROP_MV 750
#define VSRC_NEW_MIN_PERCENT 95
#define VSRC_VALID_MIN_MV 500
#define VPPS_NEW_MIN_PERCENT 95
#define VPPS_VALID_MIN_MV 100
#define VSINKDISCONNECT_PD_MIN_PERCENT 90
struct tcpci {
struct device *dev;
struct tcpm_port *port;
struct regmap *regmap;
unsigned int alert_mask;
bool controls_vbus;
struct tcpc_dev tcpc;
struct tcpci_data *data;
};
struct tcpci_chip {
struct tcpci *tcpci;
struct tcpci_data data;
};
struct tcpm_port *tcpci_get_tcpm_port(struct tcpci *tcpci)
{
return tcpci->port;
}
EXPORT_SYMBOL_GPL(tcpci_get_tcpm_port);
static inline struct tcpci *tcpc_to_tcpci(struct tcpc_dev *tcpc)
{
return container_of(tcpc, struct tcpci, tcpc);
}
static int tcpci_read16(struct tcpci *tcpci, unsigned int reg, u16 *val)
{
return regmap_raw_read(tcpci->regmap, reg, val, sizeof(u16));
}
static int tcpci_write16(struct tcpci *tcpci, unsigned int reg, u16 val)
{
return regmap_raw_write(tcpci->regmap, reg, &val, sizeof(u16));
}
static int tcpci_set_cc(struct tcpc_dev *tcpc, enum typec_cc_status cc)
{
struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
bool vconn_pres;
enum typec_cc_polarity polarity = TYPEC_POLARITY_CC1;
unsigned int reg;
int ret;
ret = regmap_read(tcpci->regmap, TCPC_POWER_STATUS, ®);
if (ret < 0)
return ret;
vconn_pres = !!(reg & TCPC_POWER_STATUS_VCONN_PRES);
if (vconn_pres) {
ret = regmap_read(tcpci->regmap, TCPC_TCPC_CTRL, ®);
if (ret < 0)
return ret;
if (reg & TCPC_TCPC_CTRL_ORIENTATION)
polarity = TYPEC_POLARITY_CC2;
}
switch (cc) {
case TYPEC_CC_RA:
reg = (TCPC_ROLE_CTRL_CC_RA << TCPC_ROLE_CTRL_CC1_SHIFT) |
(TCPC_ROLE_CTRL_CC_RA << TCPC_ROLE_CTRL_CC2_SHIFT);
break;
case TYPEC_CC_RD:
reg = (TCPC_ROLE_CTRL_CC_RD << TCPC_ROLE_CTRL_CC1_SHIFT) |
(TCPC_ROLE_CTRL_CC_RD << TCPC_ROLE_CTRL_CC2_SHIFT);
break;
case TYPEC_CC_RP_DEF:
reg = (TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC1_SHIFT) |
(TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC2_SHIFT) |
(TCPC_ROLE_CTRL_RP_VAL_DEF <<
TCPC_ROLE_CTRL_RP_VAL_SHIFT);
break;
case TYPEC_CC_RP_1_5:
reg = (TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC1_SHIFT) |
(TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC2_SHIFT) |
(TCPC_ROLE_CTRL_RP_VAL_1_5 <<
TCPC_ROLE_CTRL_RP_VAL_SHIFT);
break;
case TYPEC_CC_RP_3_0:
reg = (TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC1_SHIFT) |
(TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC2_SHIFT) |
(TCPC_ROLE_CTRL_RP_VAL_3_0 <<
TCPC_ROLE_CTRL_RP_VAL_SHIFT);
break;
case TYPEC_CC_OPEN:
default:
reg = (TCPC_ROLE_CTRL_CC_OPEN << TCPC_ROLE_CTRL_CC1_SHIFT) |
(TCPC_ROLE_CTRL_CC_OPEN << TCPC_ROLE_CTRL_CC2_SHIFT);
break;
}
if (vconn_pres) {
if (polarity == TYPEC_POLARITY_CC2) {
reg &= ~(TCPC_ROLE_CTRL_CC1_MASK << TCPC_ROLE_CTRL_CC1_SHIFT);
reg |= (TCPC_ROLE_CTRL_CC_OPEN << TCPC_ROLE_CTRL_CC1_SHIFT);
} else {
reg &= ~(TCPC_ROLE_CTRL_CC2_MASK << TCPC_ROLE_CTRL_CC2_SHIFT);
reg |= (TCPC_ROLE_CTRL_CC_OPEN << TCPC_ROLE_CTRL_CC2_SHIFT);
}
}
ret = regmap_write(tcpci->regmap, TCPC_ROLE_CTRL, reg);
if (ret < 0)
return ret;
return 0;
}
static int tcpci_apply_rc(struct tcpc_dev *tcpc, enum typec_cc_status cc,
enum typec_cc_polarity polarity)
{
struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
unsigned int reg;
int ret;
ret = regmap_read(tcpci->regmap, TCPC_ROLE_CTRL, ®);
if (ret < 0)
return ret;
/*
* APPLY_RC state is when ROLE_CONTROL.CC1 != ROLE_CONTROL.CC2 and vbus autodischarge on
* disconnect is disabled. Bail out when ROLE_CONTROL.CC1 != ROLE_CONTROL.CC2.
*/
if (((reg & (TCPC_ROLE_CTRL_CC2_MASK << TCPC_ROLE_CTRL_CC2_SHIFT)) >>
TCPC_ROLE_CTRL_CC2_SHIFT) !=
((reg & (TCPC_ROLE_CTRL_CC1_MASK << TCPC_ROLE_CTRL_CC1_SHIFT)) >>
TCPC_ROLE_CTRL_CC1_SHIFT))
return 0;
return regmap_update_bits(tcpci->regmap, TCPC_ROLE_CTRL, polarity == TYPEC_POLARITY_CC1 ?
TCPC_ROLE_CTRL_CC2_MASK << TCPC_ROLE_CTRL_CC2_SHIFT :
TCPC_ROLE_CTRL_CC1_MASK << TCPC_ROLE_CTRL_CC1_SHIFT,
TCPC_ROLE_CTRL_CC_OPEN);
}
static int tcpci_start_toggling(struct tcpc_dev *tcpc,
enum typec_port_type port_type,
enum typec_cc_status cc)
{
int ret;
struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
unsigned int reg = TCPC_ROLE_CTRL_DRP;
if (port_type != TYPEC_PORT_DRP)
return -EOPNOTSUPP;
/* Handle vendor drp toggling */
if (tcpci->data->start_drp_toggling) {
ret = tcpci->data->start_drp_toggling(tcpci, tcpci->data, cc);
if (ret < 0)
return ret;
}
switch (cc) {
default:
case TYPEC_CC_RP_DEF:
reg |= (TCPC_ROLE_CTRL_RP_VAL_DEF <<
TCPC_ROLE_CTRL_RP_VAL_SHIFT);
break;
case TYPEC_CC_RP_1_5:
reg |= (TCPC_ROLE_CTRL_RP_VAL_1_5 <<
TCPC_ROLE_CTRL_RP_VAL_SHIFT);
break;
case TYPEC_CC_RP_3_0:
reg |= (TCPC_ROLE_CTRL_RP_VAL_3_0 <<
TCPC_ROLE_CTRL_RP_VAL_SHIFT);
break;
}
if (cc == TYPEC_CC_RD)
reg |= (TCPC_ROLE_CTRL_CC_RD << TCPC_ROLE_CTRL_CC1_SHIFT) |
(TCPC_ROLE_CTRL_CC_RD << TCPC_ROLE_CTRL_CC2_SHIFT);
else
reg |= (TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC1_SHIFT) |
(TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC2_SHIFT);
ret = regmap_write(tcpci->regmap, TCPC_ROLE_CTRL, reg);
if (ret < 0)
return ret;
return regmap_write(tcpci->regmap, TCPC_COMMAND,
TCPC_CMD_LOOK4CONNECTION);
}
static int tcpci_get_cc(struct tcpc_dev *tcpc,
enum typec_cc_status *cc1, enum typec_cc_status *cc2)
{
struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
unsigned int reg, role_control;
int ret;
ret = regmap_read(tcpci->regmap, TCPC_ROLE_CTRL, &role_control);
if (ret < 0)
return ret;
ret = regmap_read(tcpci->regmap, TCPC_CC_STATUS, ®);
if (ret < 0)
return ret;
*cc1 = tcpci_to_typec_cc((reg >> TCPC_CC_STATUS_CC1_SHIFT) &
TCPC_CC_STATUS_CC1_MASK,
reg & TCPC_CC_STATUS_TERM ||
tcpc_presenting_rd(role_control, CC1));
*cc2 = tcpci_to_typec_cc((reg >> TCPC_CC_STATUS_CC2_SHIFT) &
TCPC_CC_STATUS_CC2_MASK,
reg & TCPC_CC_STATUS_TERM ||
tcpc_presenting_rd(role_control, CC2));
return 0;
}
static int tcpci_set_polarity(struct tcpc_dev *tcpc,
enum typec_cc_polarity polarity)
{
struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
unsigned int reg;
int ret;
enum typec_cc_status cc1, cc2;
/* Obtain Rp setting from role control */
ret = regmap_read(tcpci->regmap, TCPC_ROLE_CTRL, ®);
if (ret < 0)
return ret;
ret = tcpci_get_cc(tcpc, &cc1, &cc2);
if (ret < 0)
return ret;
/*
* When port has drp toggling enabled, ROLE_CONTROL would only have the initial
* terminations for the toggling and does not indicate the final cc
* terminations when ConnectionResult is 0 i.e. drp toggling stops and
* the connection is resolved. Infer port role from TCPC_CC_STATUS based on the
* terminations seen. The port role is then used to set the cc terminations.
*/
if (reg & TCPC_ROLE_CTRL_DRP) {
/* Disable DRP for the OPEN setting to take effect */
reg = reg & ~TCPC_ROLE_CTRL_DRP;
if (polarity == TYPEC_POLARITY_CC2) {
reg &= ~(TCPC_ROLE_CTRL_CC2_MASK << TCPC_ROLE_CTRL_CC2_SHIFT);
/* Local port is source */
if (cc2 == TYPEC_CC_RD)
/* Role control would have the Rp setting when DRP was enabled */
reg |= TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC2_SHIFT;
else
reg |= TCPC_ROLE_CTRL_CC_RD << TCPC_ROLE_CTRL_CC2_SHIFT;
} else {
reg &= ~(TCPC_ROLE_CTRL_CC1_MASK << TCPC_ROLE_CTRL_CC1_SHIFT);
/* Local port is source */
if (cc1 == TYPEC_CC_RD)
/* Role control would have the Rp setting when DRP was enabled */
reg |= TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC1_SHIFT;
else
reg |= TCPC_ROLE_CTRL_CC_RD << TCPC_ROLE_CTRL_CC1_SHIFT;
}
}
if (polarity == TYPEC_POLARITY_CC2)
reg |= TCPC_ROLE_CTRL_CC_OPEN << TCPC_ROLE_CTRL_CC1_SHIFT;
else
reg |= TCPC_ROLE_CTRL_CC_OPEN << TCPC_ROLE_CTRL_CC2_SHIFT;
ret = regmap_write(tcpci->regmap, TCPC_ROLE_CTRL, reg);
if (ret < 0)
return ret;
return regmap_write(tcpci->regmap, TCPC_TCPC_CTRL,
(polarity == TYPEC_POLARITY_CC2) ?
TCPC_TCPC_CTRL_ORIENTATION : 0);
}
static void tcpci_set_partner_usb_comm_capable(struct tcpc_dev *tcpc, bool capable)
{
struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
if (tcpci->data->set_partner_usb_comm_capable)
tcpci->data->set_partner_usb_comm_capable(tcpci, tcpci->data, capable);
}
static int tcpci_set_vconn(struct tcpc_dev *tcpc, bool enable)
{
struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
int ret;
/* Handle vendor set vconn */
if (tcpci->data->set_vconn) {
ret = tcpci->data->set_vconn(tcpci, tcpci->data, enable);
if (ret < 0)
return ret;
}
return regmap_update_bits(tcpci->regmap, TCPC_POWER_CTRL,
TCPC_POWER_CTRL_VCONN_ENABLE,
enable ? TCPC_POWER_CTRL_VCONN_ENABLE : 0);
}
static int tcpci_enable_auto_vbus_discharge(struct tcpc_dev *dev, bool enable)
{
struct tcpci *tcpci = tcpc_to_tcpci(dev);
int ret;
ret = regmap_update_bits(tcpci->regmap, TCPC_POWER_CTRL, TCPC_POWER_CTRL_AUTO_DISCHARGE,
enable ? TCPC_POWER_CTRL_AUTO_DISCHARGE : 0);
return ret;
}
static int tcpci_set_auto_vbus_discharge_threshold(struct tcpc_dev *dev, enum typec_pwr_opmode mode,
bool pps_active, u32 requested_vbus_voltage_mv)
{
struct tcpci *tcpci = tcpc_to_tcpci(dev);
unsigned int pwr_ctrl, threshold = 0;
int ret;
/*
* Indicates that vbus is going to go away due PR_SWAP, hard reset etc.
* Do not discharge vbus here.
*/
if (requested_vbus_voltage_mv == 0)
goto write_thresh;
ret = regmap_read(tcpci->regmap, TCPC_POWER_CTRL, &pwr_ctrl);
if (ret < 0)
return ret;
if (pwr_ctrl & TCPC_FAST_ROLE_SWAP_EN) {
/* To prevent disconnect when the source is fast role swap is capable. */
threshold = AUTO_DISCHARGE_DEFAULT_THRESHOLD_MV;
} else if (mode == TYPEC_PWR_MODE_PD) {
if (pps_active)
threshold = ((VPPS_NEW_MIN_PERCENT * requested_vbus_voltage_mv / 100) -
VSINKPD_MIN_IR_DROP_MV - VPPS_VALID_MIN_MV) *
VSINKDISCONNECT_PD_MIN_PERCENT / 100;
else
threshold = ((VSRC_NEW_MIN_PERCENT * requested_vbus_voltage_mv / 100) -
VSINKPD_MIN_IR_DROP_MV - VSRC_VALID_MIN_MV) *
VSINKDISCONNECT_PD_MIN_PERCENT / 100;
} else {
/* 3.5V for non-pd sink */
threshold = AUTO_DISCHARGE_DEFAULT_THRESHOLD_MV;
}
threshold = threshold / TCPC_VBUS_SINK_DISCONNECT_THRESH_LSB_MV;
if (threshold > TCPC_VBUS_SINK_DISCONNECT_THRESH_MAX)
return -EINVAL;
write_thresh:
return tcpci_write16(tcpci, TCPC_VBUS_SINK_DISCONNECT_THRESH, threshold);
}
static int tcpci_enable_frs(struct tcpc_dev *dev, bool enable)
{
struct tcpci *tcpci = tcpc_to_tcpci(dev);
int ret;
/* To prevent disconnect during FRS, set disconnect threshold to 3.5V */
ret = tcpci_write16(tcpci, TCPC_VBUS_SINK_DISCONNECT_THRESH, enable ? 0 : 0x8c);
if (ret < 0)
return ret;
ret = regmap_update_bits(tcpci->regmap, TCPC_POWER_CTRL, TCPC_FAST_ROLE_SWAP_EN, enable ?
TCPC_FAST_ROLE_SWAP_EN : 0);
return ret;
}
static void tcpci_frs_sourcing_vbus(struct tcpc_dev *dev)
{
struct tcpci *tcpci = tcpc_to_tcpci(dev);
if (tcpci->data->frs_sourcing_vbus)
tcpci->data->frs_sourcing_vbus(tcpci, tcpci->data);
}
static void tcpci_check_contaminant(struct tcpc_dev *dev)
{
struct tcpci *tcpci = tcpc_to_tcpci(dev);
if (tcpci->data->check_contaminant)
tcpci->data->check_contaminant(tcpci, tcpci->data);
}
static int tcpci_set_bist_data(struct tcpc_dev *tcpc, bool enable)
{
struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
return regmap_update_bits(tcpci->regmap, TCPC_TCPC_CTRL, TCPC_TCPC_CTRL_BIST_TM,
enable ? TCPC_TCPC_CTRL_BIST_TM : 0);
}
static int tcpci_set_roles(struct tcpc_dev *tcpc, bool attached,
enum typec_role role, enum typec_data_role data)
{
struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
unsigned int reg;
int ret;
reg = PD_REV20 << TCPC_MSG_HDR_INFO_REV_SHIFT;
if (role == TYPEC_SOURCE)
reg |= TCPC_MSG_HDR_INFO_PWR_ROLE;
if (data == TYPEC_HOST)
reg |= TCPC_MSG_HDR_INFO_DATA_ROLE;
ret = regmap_write(tcpci->regmap, TCPC_MSG_HDR_INFO, reg);
if (ret < 0)
return ret;
return 0;
}
static int tcpci_set_pd_rx(struct tcpc_dev *tcpc, bool enable)
{
struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
unsigned int reg = 0;
int ret;
if (enable) {
reg = TCPC_RX_DETECT_SOP | TCPC_RX_DETECT_HARD_RESET;
if (tcpci->data->cable_comm_capable)
reg |= TCPC_RX_DETECT_SOP1;
}
ret = regmap_write(tcpci->regmap, TCPC_RX_DETECT, reg);
if (ret < 0)
return ret;
return 0;
}
static int tcpci_get_vbus(struct tcpc_dev *tcpc)
{
struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
unsigned int reg;
int ret;
ret = regmap_read(tcpci->regmap, TCPC_POWER_STATUS, ®);
if (ret < 0)
return ret;
return !!(reg & TCPC_POWER_STATUS_VBUS_PRES);
}
static bool tcpci_is_vbus_vsafe0v(struct tcpc_dev *tcpc)
{
struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
unsigned int reg;
int ret;
ret = regmap_read(tcpci->regmap, TCPC_EXTENDED_STATUS, ®);
if (ret < 0)
return false;
return !!(reg & TCPC_EXTENDED_STATUS_VSAFE0V);
}
static int tcpci_set_vbus(struct tcpc_dev *tcpc, bool source, bool sink)
{
struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
int ret;
if (tcpci->data->set_vbus) {
ret = tcpci->data->set_vbus(tcpci, tcpci->data, source, sink);
/* Bypass when ret > 0 */
if (ret != 0)
return ret < 0 ? ret : 0;
}
/* Disable both source and sink first before enabling anything */
if (!source) {
ret = regmap_write(tcpci->regmap, TCPC_COMMAND,
TCPC_CMD_DISABLE_SRC_VBUS);
if (ret < 0)
return ret;
}
if (!sink) {
ret = regmap_write(tcpci->regmap, TCPC_COMMAND,
TCPC_CMD_DISABLE_SINK_VBUS);
if (ret < 0)
return ret;
}
if (source) {
ret = regmap_write(tcpci->regmap, TCPC_COMMAND,
TCPC_CMD_SRC_VBUS_DEFAULT);
if (ret < 0)
return ret;
}
if (sink) {
ret = regmap_write(tcpci->regmap, TCPC_COMMAND,
TCPC_CMD_SINK_VBUS);
if (ret < 0)
return ret;
}
return 0;
}
static int tcpci_pd_transmit(struct tcpc_dev *tcpc, enum tcpm_transmit_type type,
const struct pd_message *msg, unsigned int negotiated_rev)
{
struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
u16 header = msg ? le16_to_cpu(msg->header) : 0;
unsigned int reg, cnt;
int ret;
cnt = msg ? pd_header_cnt(header) * 4 : 0;
/**
* TCPCI spec forbids direct access of TCPC_TX_DATA.
* But, since some of the chipsets offer this capability,
* it's fair to support both.
*/
if (tcpci->data->TX_BUF_BYTE_x_hidden) {
u8 buf[TCPC_TRANSMIT_BUFFER_MAX_LEN] = {0,};
u8 pos = 0;
/* Payload + header + TCPC_TX_BYTE_CNT */
buf[pos++] = cnt + 2;
if (msg)
memcpy(&buf[pos], &msg->header, sizeof(msg->header));
pos += sizeof(header);
if (cnt > 0)
memcpy(&buf[pos], msg->payload, cnt);
pos += cnt;
ret = regmap_raw_write(tcpci->regmap, TCPC_TX_BYTE_CNT, buf, pos);
if (ret < 0)
return ret;
} else {
ret = regmap_write(tcpci->regmap, TCPC_TX_BYTE_CNT, cnt + 2);
if (ret < 0)
return ret;
ret = tcpci_write16(tcpci, TCPC_TX_HDR, header);
if (ret < 0)
return ret;
if (cnt > 0) {
ret = regmap_raw_write(tcpci->regmap, TCPC_TX_DATA, &msg->payload, cnt);
if (ret < 0)
return ret;
}
}
/* nRetryCount is 3 in PD2.0 spec where 2 in PD3.0 spec */
reg = ((negotiated_rev > PD_REV20 ? PD_RETRY_COUNT_3_0_OR_HIGHER : PD_RETRY_COUNT_DEFAULT)
<< TCPC_TRANSMIT_RETRY_SHIFT) | (type << TCPC_TRANSMIT_TYPE_SHIFT);
ret = regmap_write(tcpci->regmap, TCPC_TRANSMIT, reg);
if (ret < 0)
return ret;
return 0;
}
static bool tcpci_cable_comm_capable(struct tcpc_dev *tcpc)
{
struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
return tcpci->data->cable_comm_capable;
}
static bool tcpci_attempt_vconn_swap_discovery(struct tcpc_dev *tcpc)
{
struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
if (tcpci->data->attempt_vconn_swap_discovery)
return tcpci->data->attempt_vconn_swap_discovery(tcpci, tcpci->data);
return false;
}
static int tcpci_init(struct tcpc_dev *tcpc)
{
struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
unsigned long timeout = jiffies + msecs_to_jiffies(2000); /* XXX */
unsigned int reg;
int ret;
while (time_before_eq(jiffies, timeout)) {
ret = regmap_read(tcpci->regmap, TCPC_POWER_STATUS, ®);
if (ret < 0)
return ret;
if (!(reg & TCPC_POWER_STATUS_UNINIT))
break;
usleep_range(10000, 20000);
}
if (time_after(jiffies, timeout))
return -ETIMEDOUT;
ret = tcpci_write16(tcpci, TCPC_FAULT_STATUS, TCPC_FAULT_STATUS_ALL_REG_RST_TO_DEFAULT);
if (ret < 0)
return ret;
/* Handle vendor init */
if (tcpci->data->init) {
ret = tcpci->data->init(tcpci, tcpci->data);
if (ret < 0)
return ret;
}
/* Clear all events */
ret = tcpci_write16(tcpci, TCPC_ALERT, 0xffff);
if (ret < 0)
return ret;
if (tcpci->controls_vbus)
reg = TCPC_POWER_STATUS_VBUS_PRES;
else
reg = 0;
ret = regmap_write(tcpci->regmap, TCPC_POWER_STATUS_MASK, reg);
if (ret < 0)
return ret;
/* Enable Vbus detection */
ret = regmap_write(tcpci->regmap, TCPC_COMMAND,
TCPC_CMD_ENABLE_VBUS_DETECT);
if (ret < 0)
return ret;
reg = TCPC_ALERT_TX_SUCCESS | TCPC_ALERT_TX_FAILED |
TCPC_ALERT_TX_DISCARDED | TCPC_ALERT_RX_STATUS |
TCPC_ALERT_RX_HARD_RST | TCPC_ALERT_CC_STATUS;
if (tcpci->controls_vbus)
reg |= TCPC_ALERT_POWER_STATUS;
/* Enable VSAFE0V status interrupt when detecting VSAFE0V is supported */
if (tcpci->data->vbus_vsafe0v) {
reg |= TCPC_ALERT_EXTENDED_STATUS;
ret = regmap_write(tcpci->regmap, TCPC_EXTENDED_STATUS_MASK,
TCPC_EXTENDED_STATUS_VSAFE0V);
if (ret < 0)
return ret;
}
tcpci->alert_mask = reg;
return tcpci_write16(tcpci, TCPC_ALERT_MASK, reg);
}
irqreturn_t tcpci_irq(struct tcpci *tcpci)
{
u16 status;
int ret;
unsigned int raw;
tcpci_read16(tcpci, TCPC_ALERT, &status);
/*
* Clear alert status for everything except RX_STATUS, which shouldn't
* be cleared until we have successfully retrieved message.
*/
if (status & ~TCPC_ALERT_RX_STATUS)
tcpci_write16(tcpci, TCPC_ALERT,
status & ~TCPC_ALERT_RX_STATUS);
if (status & TCPC_ALERT_CC_STATUS)
tcpm_cc_change(tcpci->port);
if (status & TCPC_ALERT_POWER_STATUS) {
regmap_read(tcpci->regmap, TCPC_POWER_STATUS_MASK, &raw);
/*
* If power status mask has been reset, then the TCPC
* has reset.
*/
if (raw == 0xff)
tcpm_tcpc_reset(tcpci->port);
else
tcpm_vbus_change(tcpci->port);
}
if (status & TCPC_ALERT_RX_STATUS) {
struct pd_message msg;
unsigned int cnt, payload_cnt;
u16 header;
regmap_read(tcpci->regmap, TCPC_RX_BYTE_CNT, &cnt);
/*
* 'cnt' corresponds to READABLE_BYTE_COUNT in section 4.4.14
* of the TCPCI spec [Rev 2.0 Ver 1.0 October 2017] and is
* defined in table 4-36 as one greater than the number of
* bytes received. And that number includes the header. So:
*/
if (cnt > 3)
payload_cnt = cnt - (1 + sizeof(msg.header));
else
payload_cnt = 0;
tcpci_read16(tcpci, TCPC_RX_HDR, &header);
msg.header = cpu_to_le16(header);
if (WARN_ON(payload_cnt > sizeof(msg.payload)))
payload_cnt = sizeof(msg.payload);
if (payload_cnt > 0)
regmap_raw_read(tcpci->regmap, TCPC_RX_DATA,
&msg.payload, payload_cnt);
/* Read complete, clear RX status alert bit */
tcpci_write16(tcpci, TCPC_ALERT, TCPC_ALERT_RX_STATUS);
tcpm_pd_receive(tcpci->port, &msg, TCPC_TX_SOP);
}
if (tcpci->data->vbus_vsafe0v && (status & TCPC_ALERT_EXTENDED_STATUS)) {
ret = regmap_read(tcpci->regmap, TCPC_EXTENDED_STATUS, &raw);
if (!ret && (raw & TCPC_EXTENDED_STATUS_VSAFE0V))
tcpm_vbus_change(tcpci->port);
}
if (status & TCPC_ALERT_RX_HARD_RST)
tcpm_pd_hard_reset(tcpci->port);
if (status & TCPC_ALERT_TX_SUCCESS)
tcpm_pd_transmit_complete(tcpci->port, TCPC_TX_SUCCESS);
else if (status & TCPC_ALERT_TX_DISCARDED)
tcpm_pd_transmit_complete(tcpci->port, TCPC_TX_DISCARDED);
else if (status & TCPC_ALERT_TX_FAILED)
tcpm_pd_transmit_complete(tcpci->port, TCPC_TX_FAILED);
return IRQ_RETVAL(status & tcpci->alert_mask);
}
EXPORT_SYMBOL_GPL(tcpci_irq);
static irqreturn_t _tcpci_irq(int irq, void *dev_id)
{
struct tcpci_chip *chip = dev_id;
return tcpci_irq(chip->tcpci);
}
static const struct regmap_config tcpci_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = 0x7F, /* 0x80 .. 0xFF are vendor defined */
};
static int tcpci_parse_config(struct tcpci *tcpci)
{
tcpci->controls_vbus = true; /* XXX */
tcpci->tcpc.fwnode = device_get_named_child_node(tcpci->dev,
"connector");
if (!tcpci->tcpc.fwnode) {
dev_err(tcpci->dev, "Can't find connector node.\n");
return -EINVAL;
}
return 0;
}
struct tcpci *tcpci_register_port(struct device *dev, struct tcpci_data *data)
{
struct tcpci *tcpci;
int err;
tcpci = devm_kzalloc(dev, sizeof(*tcpci), GFP_KERNEL);
if (!tcpci)
return ERR_PTR(-ENOMEM);
tcpci->dev = dev;
tcpci->data = data;
tcpci->regmap = data->regmap;
tcpci->tcpc.init = tcpci_init;
tcpci->tcpc.get_vbus = tcpci_get_vbus;
tcpci->tcpc.set_vbus = tcpci_set_vbus;
tcpci->tcpc.set_cc = tcpci_set_cc;
tcpci->tcpc.apply_rc = tcpci_apply_rc;
tcpci->tcpc.get_cc = tcpci_get_cc;
tcpci->tcpc.set_polarity = tcpci_set_polarity;
tcpci->tcpc.set_vconn = tcpci_set_vconn;
tcpci->tcpc.start_toggling = tcpci_start_toggling;
tcpci->tcpc.set_pd_rx = tcpci_set_pd_rx;
tcpci->tcpc.set_roles = tcpci_set_roles;
tcpci->tcpc.pd_transmit = tcpci_pd_transmit;
tcpci->tcpc.set_bist_data = tcpci_set_bist_data;
tcpci->tcpc.enable_frs = tcpci_enable_frs;
tcpci->tcpc.frs_sourcing_vbus = tcpci_frs_sourcing_vbus;
tcpci->tcpc.set_partner_usb_comm_capable = tcpci_set_partner_usb_comm_capable;
tcpci->tcpc.cable_comm_capable = tcpci_cable_comm_capable;
tcpci->tcpc.attempt_vconn_swap_discovery = tcpci_attempt_vconn_swap_discovery;
if (tcpci->data->check_contaminant)
tcpci->tcpc.check_contaminant = tcpci_check_contaminant;
if (tcpci->data->auto_discharge_disconnect) {
tcpci->tcpc.enable_auto_vbus_discharge = tcpci_enable_auto_vbus_discharge;
tcpci->tcpc.set_auto_vbus_discharge_threshold =
tcpci_set_auto_vbus_discharge_threshold;
regmap_update_bits(tcpci->regmap, TCPC_POWER_CTRL, TCPC_POWER_CTRL_BLEED_DISCHARGE,
TCPC_POWER_CTRL_BLEED_DISCHARGE);
}
if (tcpci->data->vbus_vsafe0v)
tcpci->tcpc.is_vbus_vsafe0v = tcpci_is_vbus_vsafe0v;
err = tcpci_parse_config(tcpci);
if (err < 0)
return ERR_PTR(err);
tcpci->port = tcpm_register_port(tcpci->dev, &tcpci->tcpc);
if (IS_ERR(tcpci->port)) {
fwnode_handle_put(tcpci->tcpc.fwnode);
return ERR_CAST(tcpci->port);
}
return tcpci;
}
EXPORT_SYMBOL_GPL(tcpci_register_port);
void tcpci_unregister_port(struct tcpci *tcpci)
{
tcpm_unregister_port(tcpci->port);
fwnode_handle_put(tcpci->tcpc.fwnode);
}
EXPORT_SYMBOL_GPL(tcpci_unregister_port);
static int tcpci_probe(struct i2c_client *client)
{
struct tcpci_chip *chip;
int err;
u16 val = 0;
chip = devm_kzalloc(&client->dev, sizeof(*chip), GFP_KERNEL);
if (!chip)
return -ENOMEM;
chip->data.regmap = devm_regmap_init_i2c(client, &tcpci_regmap_config);
if (IS_ERR(chip->data.regmap))
return PTR_ERR(chip->data.regmap);
i2c_set_clientdata(client, chip);
/* Disable chip interrupts before requesting irq */
err = regmap_raw_write(chip->data.regmap, TCPC_ALERT_MASK, &val,
sizeof(u16));
if (err < 0)
return err;
chip->tcpci = tcpci_register_port(&client->dev, &chip->data);
if (IS_ERR(chip->tcpci))
return PTR_ERR(chip->tcpci);
err = devm_request_threaded_irq(&client->dev, client->irq, NULL,
_tcpci_irq,
IRQF_SHARED | IRQF_ONESHOT | IRQF_TRIGGER_LOW,
dev_name(&client->dev), chip);
if (err < 0) {
tcpci_unregister_port(chip->tcpci);
return err;
}
return 0;
}
static void tcpci_remove(struct i2c_client *client)
{
struct tcpci_chip *chip = i2c_get_clientdata(client);
int err;
/* Disable chip interrupts before unregistering port */
err = tcpci_write16(chip->tcpci, TCPC_ALERT_MASK, 0);
if (err < 0)
dev_warn(&client->dev, "Failed to disable irqs (%pe)\n", ERR_PTR(err));
tcpci_unregister_port(chip->tcpci);
}
static const struct i2c_device_id tcpci_id[] = {
{ "tcpci", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, tcpci_id);
#ifdef CONFIG_OF
static const struct of_device_id tcpci_of_match[] = {
{ .compatible = "nxp,ptn5110", },
{ .compatible = "tcpci", },
{},
};
MODULE_DEVICE_TABLE(of, tcpci_of_match);
#endif
static struct i2c_driver tcpci_i2c_driver = {
.driver = {
.name = "tcpci",
.of_match_table = of_match_ptr(tcpci_of_match),
},
.probe = tcpci_probe,
.remove = tcpci_remove,
.id_table = tcpci_id,
};
module_i2c_driver(tcpci_i2c_driver);
MODULE_DESCRIPTION("USB Type-C Port Controller Interface driver");
MODULE_LICENSE("GPL");