Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 | // SPDX-License-Identifier: GPL-2.0-only /* * Just-In-Time compiler for eBPF bytecode on MIPS. * Implementation of JIT functions common to 32-bit and 64-bit CPUs. * * Copyright (c) 2021 Anyfi Networks AB. * Author: Johan Almbladh <johan.almbladh@gmail.com> * * Based on code and ideas from * Copyright (c) 2017 Cavium, Inc. * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com> * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com> */ /* * Code overview * ============= * * - bpf_jit_comp.h * Common definitions and utilities. * * - bpf_jit_comp.c * Implementation of JIT top-level logic and exported JIT API functions. * Implementation of internal operations shared by 32-bit and 64-bit code. * JMP and ALU JIT control code, register control code, shared ALU and * JMP/JMP32 JIT operations. * * - bpf_jit_comp32.c * Implementation of functions to JIT prologue, epilogue and a single eBPF * instruction for 32-bit MIPS CPUs. The functions use shared operations * where possible, and implement the rest for 32-bit MIPS such as ALU64 * operations. * * - bpf_jit_comp64.c * Ditto, for 64-bit MIPS CPUs. * * Zero and sign extension * ======================== * 32-bit MIPS instructions on 64-bit MIPS registers use sign extension, * but the eBPF instruction set mandates zero extension. We let the verifier * insert explicit zero-extensions after 32-bit ALU operations, both for * 32-bit and 64-bit MIPS JITs. Conditional JMP32 operations on 64-bit MIPs * are JITed with sign extensions inserted when so expected. * * ALU operations * ============== * ALU operations on 32/64-bit MIPS and ALU64 operations on 64-bit MIPS are * JITed in the following steps. ALU64 operations on 32-bit MIPS are more * complicated and therefore only processed by special implementations in * step (3). * * 1) valid_alu_i: * Determine if an immediate operation can be emitted as such, or if * we must fall back to the register version. * * 2) rewrite_alu_i: * Convert BPF operation and immediate value to a canonical form for * JITing. In some degenerate cases this form may be a no-op. * * 3) emit_alu_{i,i64,r,64}: * Emit instructions for an ALU or ALU64 immediate or register operation. * * JMP operations * ============== * JMP and JMP32 operations require an JIT instruction offset table for * translating the jump offset. This table is computed by dry-running the * JIT without actually emitting anything. However, the computed PC-relative * offset may overflow the 18-bit offset field width of the native MIPS * branch instruction. In such cases, the long jump is converted into the * following sequence. * * <branch> !<cond> +2 Inverted PC-relative branch * nop Delay slot * j <offset> Unconditional absolute long jump * nop Delay slot * * Since this converted sequence alters the offset table, all offsets must * be re-calculated. This may in turn trigger new branch conversions, so * the process is repeated until no further changes are made. Normally it * completes in 1-2 iterations. If JIT_MAX_ITERATIONS should reached, we * fall back to converting every remaining jump operation. The branch * conversion is independent of how the JMP or JMP32 condition is JITed. * * JMP32 and JMP operations are JITed as follows. * * 1) setup_jmp_{i,r}: * Convert jump conditional and offset into a form that can be JITed. * This form may be a no-op, a canonical form, or an inverted PC-relative * jump if branch conversion is necessary. * * 2) valid_jmp_i: * Determine if an immediate operations can be emitted as such, or if * we must fall back to the register version. Applies to JMP32 for 32-bit * MIPS, and both JMP and JMP32 for 64-bit MIPS. * * 3) emit_jmp_{i,i64,r,r64}: * Emit instructions for an JMP or JMP32 immediate or register operation. * * 4) finish_jmp_{i,r}: * Emit any instructions needed to finish the jump. This includes a nop * for the delay slot if a branch was emitted, and a long absolute jump * if the branch was converted. */ #include <linux/limits.h> #include <linux/bitops.h> #include <linux/errno.h> #include <linux/filter.h> #include <linux/bpf.h> #include <linux/slab.h> #include <asm/bitops.h> #include <asm/cacheflush.h> #include <asm/cpu-features.h> #include <asm/isa-rev.h> #include <asm/uasm.h> #include "bpf_jit_comp.h" /* Convenience macros for descriptor access */ #define CONVERTED(desc) ((desc) & JIT_DESC_CONVERT) #define INDEX(desc) ((desc) & ~JIT_DESC_CONVERT) /* * Push registers on the stack, starting at a given depth from the stack * pointer and increasing. The next depth to be written is returned. */ int push_regs(struct jit_context *ctx, u32 mask, u32 excl, int depth) { int reg; for (reg = 0; reg < BITS_PER_BYTE * sizeof(mask); reg++) if (mask & BIT(reg)) { if ((excl & BIT(reg)) == 0) { if (sizeof(long) == 4) emit(ctx, sw, reg, depth, MIPS_R_SP); else /* sizeof(long) == 8 */ emit(ctx, sd, reg, depth, MIPS_R_SP); } depth += sizeof(long); } ctx->stack_used = max((int)ctx->stack_used, depth); return depth; } /* * Pop registers from the stack, starting at a given depth from the stack * pointer and increasing. The next depth to be read is returned. */ int pop_regs(struct jit_context *ctx, u32 mask, u32 excl, int depth) { int reg; for (reg = 0; reg < BITS_PER_BYTE * sizeof(mask); reg++) if (mask & BIT(reg)) { if ((excl & BIT(reg)) == 0) { if (sizeof(long) == 4) emit(ctx, lw, reg, depth, MIPS_R_SP); else /* sizeof(long) == 8 */ emit(ctx, ld, reg, depth, MIPS_R_SP); } depth += sizeof(long); } return depth; } /* Compute the 28-bit jump target address from a BPF program location */ int get_target(struct jit_context *ctx, u32 loc) { u32 index = INDEX(ctx->descriptors[loc]); unsigned long pc = (unsigned long)&ctx->target[ctx->jit_index]; unsigned long addr = (unsigned long)&ctx->target[index]; if (!ctx->target) return 0; if ((addr ^ pc) & ~MIPS_JMP_MASK) return -1; return addr & MIPS_JMP_MASK; } /* Compute the PC-relative offset to relative BPF program offset */ int get_offset(const struct jit_context *ctx, int off) { return (INDEX(ctx->descriptors[ctx->bpf_index + off]) - ctx->jit_index - 1) * sizeof(u32); } /* dst = imm (register width) */ void emit_mov_i(struct jit_context *ctx, u8 dst, s32 imm) { if (imm >= -0x8000 && imm <= 0x7fff) { emit(ctx, addiu, dst, MIPS_R_ZERO, imm); } else { emit(ctx, lui, dst, (s16)((u32)imm >> 16)); emit(ctx, ori, dst, dst, (u16)(imm & 0xffff)); } clobber_reg(ctx, dst); } /* dst = src (register width) */ void emit_mov_r(struct jit_context *ctx, u8 dst, u8 src) { emit(ctx, ori, dst, src, 0); clobber_reg(ctx, dst); } /* Validate ALU immediate range */ bool valid_alu_i(u8 op, s32 imm) { switch (BPF_OP(op)) { case BPF_NEG: case BPF_LSH: case BPF_RSH: case BPF_ARSH: /* All legal eBPF values are valid */ return true; case BPF_ADD: if (IS_ENABLED(CONFIG_CPU_DADDI_WORKAROUNDS)) return false; /* imm must be 16 bits */ return imm >= -0x8000 && imm <= 0x7fff; case BPF_SUB: if (IS_ENABLED(CONFIG_CPU_DADDI_WORKAROUNDS)) return false; /* -imm must be 16 bits */ return imm >= -0x7fff && imm <= 0x8000; case BPF_AND: case BPF_OR: case BPF_XOR: /* imm must be 16 bits unsigned */ return imm >= 0 && imm <= 0xffff; case BPF_MUL: /* imm must be zero or a positive power of two */ return imm == 0 || (imm > 0 && is_power_of_2(imm)); case BPF_DIV: case BPF_MOD: /* imm must be an 17-bit power of two */ return (u32)imm <= 0x10000 && is_power_of_2((u32)imm); } return false; } /* Rewrite ALU immediate operation */ bool rewrite_alu_i(u8 op, s32 imm, u8 *alu, s32 *val) { bool act = true; switch (BPF_OP(op)) { case BPF_LSH: case BPF_RSH: case BPF_ARSH: case BPF_ADD: case BPF_SUB: case BPF_OR: case BPF_XOR: /* imm == 0 is a no-op */ act = imm != 0; break; case BPF_MUL: if (imm == 1) { /* dst * 1 is a no-op */ act = false; } else if (imm == 0) { /* dst * 0 is dst & 0 */ op = BPF_AND; } else { /* dst * (1 << n) is dst << n */ op = BPF_LSH; imm = ilog2(abs(imm)); } break; case BPF_DIV: if (imm == 1) { /* dst / 1 is a no-op */ act = false; } else { /* dst / (1 << n) is dst >> n */ op = BPF_RSH; imm = ilog2(imm); } break; case BPF_MOD: /* dst % (1 << n) is dst & ((1 << n) - 1) */ op = BPF_AND; imm--; break; } *alu = op; *val = imm; return act; } /* ALU immediate operation (32-bit) */ void emit_alu_i(struct jit_context *ctx, u8 dst, s32 imm, u8 op) { switch (BPF_OP(op)) { /* dst = -dst */ case BPF_NEG: emit(ctx, subu, dst, MIPS_R_ZERO, dst); break; /* dst = dst & imm */ case BPF_AND: emit(ctx, andi, dst, dst, (u16)imm); break; /* dst = dst | imm */ case BPF_OR: emit(ctx, ori, dst, dst, (u16)imm); break; /* dst = dst ^ imm */ case BPF_XOR: emit(ctx, xori, dst, dst, (u16)imm); break; /* dst = dst << imm */ case BPF_LSH: emit(ctx, sll, dst, dst, imm); break; /* dst = dst >> imm */ case BPF_RSH: emit(ctx, srl, dst, dst, imm); break; /* dst = dst >> imm (arithmetic) */ case BPF_ARSH: emit(ctx, sra, dst, dst, imm); break; /* dst = dst + imm */ case BPF_ADD: emit(ctx, addiu, dst, dst, imm); break; /* dst = dst - imm */ case BPF_SUB: emit(ctx, addiu, dst, dst, -imm); break; } clobber_reg(ctx, dst); } /* ALU register operation (32-bit) */ void emit_alu_r(struct jit_context *ctx, u8 dst, u8 src, u8 op) { switch (BPF_OP(op)) { /* dst = dst & src */ case BPF_AND: emit(ctx, and, dst, dst, src); break; /* dst = dst | src */ case BPF_OR: emit(ctx, or, dst, dst, src); break; /* dst = dst ^ src */ case BPF_XOR: emit(ctx, xor, dst, dst, src); break; /* dst = dst << src */ case BPF_LSH: emit(ctx, sllv, dst, dst, src); break; /* dst = dst >> src */ case BPF_RSH: emit(ctx, srlv, dst, dst, src); break; /* dst = dst >> src (arithmetic) */ case BPF_ARSH: emit(ctx, srav, dst, dst, src); break; /* dst = dst + src */ case BPF_ADD: emit(ctx, addu, dst, dst, src); break; /* dst = dst - src */ case BPF_SUB: emit(ctx, subu, dst, dst, src); break; /* dst = dst * src */ case BPF_MUL: if (cpu_has_mips32r1 || cpu_has_mips32r6) { emit(ctx, mul, dst, dst, src); } else { emit(ctx, multu, dst, src); emit(ctx, mflo, dst); } break; /* dst = dst / src */ case BPF_DIV: if (cpu_has_mips32r6) { emit(ctx, divu_r6, dst, dst, src); } else { emit(ctx, divu, dst, src); emit(ctx, mflo, dst); } break; /* dst = dst % src */ case BPF_MOD: if (cpu_has_mips32r6) { emit(ctx, modu, dst, dst, src); } else { emit(ctx, divu, dst, src); emit(ctx, mfhi, dst); } break; } clobber_reg(ctx, dst); } /* Atomic read-modify-write (32-bit) */ void emit_atomic_r(struct jit_context *ctx, u8 dst, u8 src, s16 off, u8 code) { LLSC_sync(ctx); emit(ctx, ll, MIPS_R_T9, off, dst); switch (code) { case BPF_ADD: case BPF_ADD | BPF_FETCH: emit(ctx, addu, MIPS_R_T8, MIPS_R_T9, src); break; case BPF_AND: case BPF_AND | BPF_FETCH: emit(ctx, and, MIPS_R_T8, MIPS_R_T9, src); break; case BPF_OR: case BPF_OR | BPF_FETCH: emit(ctx, or, MIPS_R_T8, MIPS_R_T9, src); break; case BPF_XOR: case BPF_XOR | BPF_FETCH: emit(ctx, xor, MIPS_R_T8, MIPS_R_T9, src); break; case BPF_XCHG: emit(ctx, move, MIPS_R_T8, src); break; } emit(ctx, sc, MIPS_R_T8, off, dst); emit(ctx, LLSC_beqz, MIPS_R_T8, -16 - LLSC_offset); emit(ctx, nop); /* Delay slot */ if (code & BPF_FETCH) { emit(ctx, move, src, MIPS_R_T9); clobber_reg(ctx, src); } } /* Atomic compare-and-exchange (32-bit) */ void emit_cmpxchg_r(struct jit_context *ctx, u8 dst, u8 src, u8 res, s16 off) { LLSC_sync(ctx); emit(ctx, ll, MIPS_R_T9, off, dst); emit(ctx, bne, MIPS_R_T9, res, 12); emit(ctx, move, MIPS_R_T8, src); /* Delay slot */ emit(ctx, sc, MIPS_R_T8, off, dst); emit(ctx, LLSC_beqz, MIPS_R_T8, -20 - LLSC_offset); emit(ctx, move, res, MIPS_R_T9); /* Delay slot */ clobber_reg(ctx, res); } /* Swap bytes and truncate a register word or half word */ void emit_bswap_r(struct jit_context *ctx, u8 dst, u32 width) { u8 tmp = MIPS_R_T8; u8 msk = MIPS_R_T9; switch (width) { /* Swap bytes in a word */ case 32: if (cpu_has_mips32r2 || cpu_has_mips32r6) { emit(ctx, wsbh, dst, dst); emit(ctx, rotr, dst, dst, 16); } else { emit(ctx, sll, tmp, dst, 16); /* tmp = dst << 16 */ emit(ctx, srl, dst, dst, 16); /* dst = dst >> 16 */ emit(ctx, or, dst, dst, tmp); /* dst = dst | tmp */ emit(ctx, lui, msk, 0xff); /* msk = 0x00ff0000 */ emit(ctx, ori, msk, msk, 0xff); /* msk = msk | 0xff */ emit(ctx, and, tmp, dst, msk); /* tmp = dst & msk */ emit(ctx, sll, tmp, tmp, 8); /* tmp = tmp << 8 */ emit(ctx, srl, dst, dst, 8); /* dst = dst >> 8 */ emit(ctx, and, dst, dst, msk); /* dst = dst & msk */ emit(ctx, or, dst, dst, tmp); /* reg = dst | tmp */ } break; /* Swap bytes in a half word */ case 16: if (cpu_has_mips32r2 || cpu_has_mips32r6) { emit(ctx, wsbh, dst, dst); emit(ctx, andi, dst, dst, 0xffff); } else { emit(ctx, andi, tmp, dst, 0xff00); /* t = d & 0xff00 */ emit(ctx, srl, tmp, tmp, 8); /* t = t >> 8 */ emit(ctx, andi, dst, dst, 0x00ff); /* d = d & 0x00ff */ emit(ctx, sll, dst, dst, 8); /* d = d << 8 */ emit(ctx, or, dst, dst, tmp); /* d = d | t */ } break; } clobber_reg(ctx, dst); } /* Validate jump immediate range */ bool valid_jmp_i(u8 op, s32 imm) { switch (op) { case JIT_JNOP: /* Immediate value not used */ return true; case BPF_JEQ: case BPF_JNE: /* No immediate operation */ return false; case BPF_JSET: case JIT_JNSET: /* imm must be 16 bits unsigned */ return imm >= 0 && imm <= 0xffff; case BPF_JGE: case BPF_JLT: case BPF_JSGE: case BPF_JSLT: /* imm must be 16 bits */ return imm >= -0x8000 && imm <= 0x7fff; case BPF_JGT: case BPF_JLE: case BPF_JSGT: case BPF_JSLE: /* imm + 1 must be 16 bits */ return imm >= -0x8001 && imm <= 0x7ffe; } return false; } /* Invert a conditional jump operation */ static u8 invert_jmp(u8 op) { switch (op) { case BPF_JA: return JIT_JNOP; case BPF_JEQ: return BPF_JNE; case BPF_JNE: return BPF_JEQ; case BPF_JSET: return JIT_JNSET; case BPF_JGT: return BPF_JLE; case BPF_JGE: return BPF_JLT; case BPF_JLT: return BPF_JGE; case BPF_JLE: return BPF_JGT; case BPF_JSGT: return BPF_JSLE; case BPF_JSGE: return BPF_JSLT; case BPF_JSLT: return BPF_JSGE; case BPF_JSLE: return BPF_JSGT; } return 0; } /* Prepare a PC-relative jump operation */ static void setup_jmp(struct jit_context *ctx, u8 bpf_op, s16 bpf_off, u8 *jit_op, s32 *jit_off) { u32 *descp = &ctx->descriptors[ctx->bpf_index]; int op = bpf_op; int offset = 0; /* Do not compute offsets on the first pass */ if (INDEX(*descp) == 0) goto done; /* Skip jumps never taken */ if (bpf_op == JIT_JNOP) goto done; /* Convert jumps always taken */ if (bpf_op == BPF_JA) *descp |= JIT_DESC_CONVERT; /* * Current ctx->jit_index points to the start of the branch preamble. * Since the preamble differs among different branch conditionals, * the current index cannot be used to compute the branch offset. * Instead, we use the offset table value for the next instruction, * which gives the index immediately after the branch delay slot. */ if (!CONVERTED(*descp)) { int target = ctx->bpf_index + bpf_off + 1; int origin = ctx->bpf_index + 1; offset = (INDEX(ctx->descriptors[target]) - INDEX(ctx->descriptors[origin]) + 1) * sizeof(u32); } /* * The PC-relative branch offset field on MIPS is 18 bits signed, * so if the computed offset is larger than this we generate a an * absolute jump that we skip with an inverted conditional branch. */ if (CONVERTED(*descp) || offset < -0x20000 || offset > 0x1ffff) { offset = 3 * sizeof(u32); op = invert_jmp(bpf_op); ctx->changes += !CONVERTED(*descp); *descp |= JIT_DESC_CONVERT; } done: *jit_off = offset; *jit_op = op; } /* Prepare a PC-relative jump operation with immediate conditional */ void setup_jmp_i(struct jit_context *ctx, s32 imm, u8 width, u8 bpf_op, s16 bpf_off, u8 *jit_op, s32 *jit_off) { bool always = false; bool never = false; switch (bpf_op) { case BPF_JEQ: case BPF_JNE: break; case BPF_JSET: case BPF_JLT: never = imm == 0; break; case BPF_JGE: always = imm == 0; break; case BPF_JGT: never = (u32)imm == U32_MAX; break; case BPF_JLE: always = (u32)imm == U32_MAX; break; case BPF_JSGT: never = imm == S32_MAX && width == 32; break; case BPF_JSGE: always = imm == S32_MIN && width == 32; break; case BPF_JSLT: never = imm == S32_MIN && width == 32; break; case BPF_JSLE: always = imm == S32_MAX && width == 32; break; } if (never) bpf_op = JIT_JNOP; if (always) bpf_op = BPF_JA; setup_jmp(ctx, bpf_op, bpf_off, jit_op, jit_off); } /* Prepare a PC-relative jump operation with register conditional */ void setup_jmp_r(struct jit_context *ctx, bool same_reg, u8 bpf_op, s16 bpf_off, u8 *jit_op, s32 *jit_off) { switch (bpf_op) { case BPF_JSET: break; case BPF_JEQ: case BPF_JGE: case BPF_JLE: case BPF_JSGE: case BPF_JSLE: if (same_reg) bpf_op = BPF_JA; break; case BPF_JNE: case BPF_JLT: case BPF_JGT: case BPF_JSGT: case BPF_JSLT: if (same_reg) bpf_op = JIT_JNOP; break; } setup_jmp(ctx, bpf_op, bpf_off, jit_op, jit_off); } /* Finish a PC-relative jump operation */ int finish_jmp(struct jit_context *ctx, u8 jit_op, s16 bpf_off) { /* Emit conditional branch delay slot */ if (jit_op != JIT_JNOP) emit(ctx, nop); /* * Emit an absolute long jump with delay slot, * if the PC-relative branch was converted. */ if (CONVERTED(ctx->descriptors[ctx->bpf_index])) { int target = get_target(ctx, ctx->bpf_index + bpf_off + 1); if (target < 0) return -1; emit(ctx, j, target); emit(ctx, nop); } return 0; } /* Jump immediate (32-bit) */ void emit_jmp_i(struct jit_context *ctx, u8 dst, s32 imm, s32 off, u8 op) { switch (op) { /* No-op, used internally for branch optimization */ case JIT_JNOP: break; /* PC += off if dst & imm */ case BPF_JSET: emit(ctx, andi, MIPS_R_T9, dst, (u16)imm); emit(ctx, bnez, MIPS_R_T9, off); break; /* PC += off if (dst & imm) == 0 (not in BPF, used for long jumps) */ case JIT_JNSET: emit(ctx, andi, MIPS_R_T9, dst, (u16)imm); emit(ctx, beqz, MIPS_R_T9, off); break; /* PC += off if dst > imm */ case BPF_JGT: emit(ctx, sltiu, MIPS_R_T9, dst, imm + 1); emit(ctx, beqz, MIPS_R_T9, off); break; /* PC += off if dst >= imm */ case BPF_JGE: emit(ctx, sltiu, MIPS_R_T9, dst, imm); emit(ctx, beqz, MIPS_R_T9, off); break; /* PC += off if dst < imm */ case BPF_JLT: emit(ctx, sltiu, MIPS_R_T9, dst, imm); emit(ctx, bnez, MIPS_R_T9, off); break; /* PC += off if dst <= imm */ case BPF_JLE: emit(ctx, sltiu, MIPS_R_T9, dst, imm + 1); emit(ctx, bnez, MIPS_R_T9, off); break; /* PC += off if dst > imm (signed) */ case BPF_JSGT: emit(ctx, slti, MIPS_R_T9, dst, imm + 1); emit(ctx, beqz, MIPS_R_T9, off); break; /* PC += off if dst >= imm (signed) */ case BPF_JSGE: emit(ctx, slti, MIPS_R_T9, dst, imm); emit(ctx, beqz, MIPS_R_T9, off); break; /* PC += off if dst < imm (signed) */ case BPF_JSLT: emit(ctx, slti, MIPS_R_T9, dst, imm); emit(ctx, bnez, MIPS_R_T9, off); break; /* PC += off if dst <= imm (signed) */ case BPF_JSLE: emit(ctx, slti, MIPS_R_T9, dst, imm + 1); emit(ctx, bnez, MIPS_R_T9, off); break; } } /* Jump register (32-bit) */ void emit_jmp_r(struct jit_context *ctx, u8 dst, u8 src, s32 off, u8 op) { switch (op) { /* No-op, used internally for branch optimization */ case JIT_JNOP: break; /* PC += off if dst == src */ case BPF_JEQ: emit(ctx, beq, dst, src, off); break; /* PC += off if dst != src */ case BPF_JNE: emit(ctx, bne, dst, src, off); break; /* PC += off if dst & src */ case BPF_JSET: emit(ctx, and, MIPS_R_T9, dst, src); emit(ctx, bnez, MIPS_R_T9, off); break; /* PC += off if (dst & imm) == 0 (not in BPF, used for long jumps) */ case JIT_JNSET: emit(ctx, and, MIPS_R_T9, dst, src); emit(ctx, beqz, MIPS_R_T9, off); break; /* PC += off if dst > src */ case BPF_JGT: emit(ctx, sltu, MIPS_R_T9, src, dst); emit(ctx, bnez, MIPS_R_T9, off); break; /* PC += off if dst >= src */ case BPF_JGE: emit(ctx, sltu, MIPS_R_T9, dst, src); emit(ctx, beqz, MIPS_R_T9, off); break; /* PC += off if dst < src */ case BPF_JLT: emit(ctx, sltu, MIPS_R_T9, dst, src); emit(ctx, bnez, MIPS_R_T9, off); break; /* PC += off if dst <= src */ case BPF_JLE: emit(ctx, sltu, MIPS_R_T9, src, dst); emit(ctx, beqz, MIPS_R_T9, off); break; /* PC += off if dst > src (signed) */ case BPF_JSGT: emit(ctx, slt, MIPS_R_T9, src, dst); emit(ctx, bnez, MIPS_R_T9, off); break; /* PC += off if dst >= src (signed) */ case BPF_JSGE: emit(ctx, slt, MIPS_R_T9, dst, src); emit(ctx, beqz, MIPS_R_T9, off); break; /* PC += off if dst < src (signed) */ case BPF_JSLT: emit(ctx, slt, MIPS_R_T9, dst, src); emit(ctx, bnez, MIPS_R_T9, off); break; /* PC += off if dst <= src (signed) */ case BPF_JSLE: emit(ctx, slt, MIPS_R_T9, src, dst); emit(ctx, beqz, MIPS_R_T9, off); break; } } /* Jump always */ int emit_ja(struct jit_context *ctx, s16 off) { int target = get_target(ctx, ctx->bpf_index + off + 1); if (target < 0) return -1; emit(ctx, j, target); emit(ctx, nop); return 0; } /* Jump to epilogue */ int emit_exit(struct jit_context *ctx) { int target = get_target(ctx, ctx->program->len); if (target < 0) return -1; emit(ctx, j, target); emit(ctx, nop); return 0; } /* Build the program body from eBPF bytecode */ static int build_body(struct jit_context *ctx) { const struct bpf_prog *prog = ctx->program; unsigned int i; ctx->stack_used = 0; for (i = 0; i < prog->len; i++) { const struct bpf_insn *insn = &prog->insnsi[i]; u32 *descp = &ctx->descriptors[i]; int ret; access_reg(ctx, insn->src_reg); access_reg(ctx, insn->dst_reg); ctx->bpf_index = i; if (ctx->target == NULL) { ctx->changes += INDEX(*descp) != ctx->jit_index; *descp &= JIT_DESC_CONVERT; *descp |= ctx->jit_index; } ret = build_insn(insn, ctx); if (ret < 0) return ret; if (ret > 0) { i++; if (ctx->target == NULL) descp[1] = ctx->jit_index; } } /* Store the end offset, where the epilogue begins */ ctx->descriptors[prog->len] = ctx->jit_index; return 0; } /* Set the branch conversion flag on all instructions */ static void set_convert_flag(struct jit_context *ctx, bool enable) { const struct bpf_prog *prog = ctx->program; u32 flag = enable ? JIT_DESC_CONVERT : 0; unsigned int i; for (i = 0; i <= prog->len; i++) ctx->descriptors[i] = INDEX(ctx->descriptors[i]) | flag; } static void jit_fill_hole(void *area, unsigned int size) { u32 *p; /* We are guaranteed to have aligned memory. */ for (p = area; size >= sizeof(u32); size -= sizeof(u32)) uasm_i_break(&p, BRK_BUG); /* Increments p */ } bool bpf_jit_needs_zext(void) { return true; } struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog) { struct bpf_prog *tmp, *orig_prog = prog; struct bpf_binary_header *header = NULL; struct jit_context ctx; bool tmp_blinded = false; unsigned int tmp_idx; unsigned int image_size; u8 *image_ptr; int tries; /* * If BPF JIT was not enabled then we must fall back to * the interpreter. */ if (!prog->jit_requested) return orig_prog; /* * If constant blinding was enabled and we failed during blinding * then we must fall back to the interpreter. Otherwise, we save * the new JITed code. */ tmp = bpf_jit_blind_constants(prog); if (IS_ERR(tmp)) return orig_prog; if (tmp != prog) { tmp_blinded = true; prog = tmp; } memset(&ctx, 0, sizeof(ctx)); ctx.program = prog; /* * Not able to allocate memory for descriptors[], then * we must fall back to the interpreter */ ctx.descriptors = kcalloc(prog->len + 1, sizeof(*ctx.descriptors), GFP_KERNEL); if (ctx.descriptors == NULL) goto out_err; /* First pass discovers used resources */ if (build_body(&ctx) < 0) goto out_err; /* * Second pass computes instruction offsets. * If any PC-relative branches are out of range, a sequence of * a PC-relative branch + a jump is generated, and we have to * try again from the beginning to generate the new offsets. * This is done until no additional conversions are necessary. * The last two iterations are done with all branches being * converted, to guarantee offset table convergence within a * fixed number of iterations. */ ctx.jit_index = 0; build_prologue(&ctx); tmp_idx = ctx.jit_index; tries = JIT_MAX_ITERATIONS; do { ctx.jit_index = tmp_idx; ctx.changes = 0; if (tries == 2) set_convert_flag(&ctx, true); if (build_body(&ctx) < 0) goto out_err; } while (ctx.changes > 0 && --tries > 0); if (WARN_ONCE(ctx.changes > 0, "JIT offsets failed to converge")) goto out_err; build_epilogue(&ctx, MIPS_R_RA); /* Now we know the size of the structure to make */ image_size = sizeof(u32) * ctx.jit_index; header = bpf_jit_binary_alloc(image_size, &image_ptr, sizeof(u32), jit_fill_hole); /* * Not able to allocate memory for the structure then * we must fall back to the interpretation */ if (header == NULL) goto out_err; /* Actual pass to generate final JIT code */ ctx.target = (u32 *)image_ptr; ctx.jit_index = 0; /* * If building the JITed code fails somehow, * we fall back to the interpretation. */ build_prologue(&ctx); if (build_body(&ctx) < 0) goto out_err; build_epilogue(&ctx, MIPS_R_RA); /* Populate line info meta data */ set_convert_flag(&ctx, false); bpf_prog_fill_jited_linfo(prog, &ctx.descriptors[1]); /* Set as read-only exec and flush instruction cache */ if (bpf_jit_binary_lock_ro(header)) goto out_err; flush_icache_range((unsigned long)header, (unsigned long)&ctx.target[ctx.jit_index]); if (bpf_jit_enable > 1) bpf_jit_dump(prog->len, image_size, 2, ctx.target); prog->bpf_func = (void *)ctx.target; prog->jited = 1; prog->jited_len = image_size; out: if (tmp_blinded) bpf_jit_prog_release_other(prog, prog == orig_prog ? tmp : orig_prog); kfree(ctx.descriptors); return prog; out_err: prog = orig_prog; if (header) bpf_jit_binary_free(header); goto out; } |