Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Just-In-Time compiler for eBPF bytecode on MIPS.
 * Implementation of JIT functions common to 32-bit and 64-bit CPUs.
 *
 * Copyright (c) 2021 Anyfi Networks AB.
 * Author: Johan Almbladh <johan.almbladh@gmail.com>
 *
 * Based on code and ideas from
 * Copyright (c) 2017 Cavium, Inc.
 * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
 * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
 */

/*
 * Code overview
 * =============
 *
 * - bpf_jit_comp.h
 *   Common definitions and utilities.
 *
 * - bpf_jit_comp.c
 *   Implementation of JIT top-level logic and exported JIT API functions.
 *   Implementation of internal operations shared by 32-bit and 64-bit code.
 *   JMP and ALU JIT control code, register control code, shared ALU and
 *   JMP/JMP32 JIT operations.
 *
 * - bpf_jit_comp32.c
 *   Implementation of functions to JIT prologue, epilogue and a single eBPF
 *   instruction for 32-bit MIPS CPUs. The functions use shared operations
 *   where possible, and implement the rest for 32-bit MIPS such as ALU64
 *   operations.
 *
 * - bpf_jit_comp64.c
 *   Ditto, for 64-bit MIPS CPUs.
 *
 * Zero and sign extension
 * ========================
 * 32-bit MIPS instructions on 64-bit MIPS registers use sign extension,
 * but the eBPF instruction set mandates zero extension. We let the verifier
 * insert explicit zero-extensions after 32-bit ALU operations, both for
 * 32-bit and 64-bit MIPS JITs. Conditional JMP32 operations on 64-bit MIPs
 * are JITed with sign extensions inserted when so expected.
 *
 * ALU operations
 * ==============
 * ALU operations on 32/64-bit MIPS and ALU64 operations on 64-bit MIPS are
 * JITed in the following steps. ALU64 operations on 32-bit MIPS are more
 * complicated and therefore only processed by special implementations in
 * step (3).
 *
 * 1) valid_alu_i:
 *    Determine if an immediate operation can be emitted as such, or if
 *    we must fall back to the register version.
 *
 * 2) rewrite_alu_i:
 *    Convert BPF operation and immediate value to a canonical form for
 *    JITing. In some degenerate cases this form may be a no-op.
 *
 * 3) emit_alu_{i,i64,r,64}:
 *    Emit instructions for an ALU or ALU64 immediate or register operation.
 *
 * JMP operations
 * ==============
 * JMP and JMP32 operations require an JIT instruction offset table for
 * translating the jump offset. This table is computed by dry-running the
 * JIT without actually emitting anything. However, the computed PC-relative
 * offset may overflow the 18-bit offset field width of the native MIPS
 * branch instruction. In such cases, the long jump is converted into the
 * following sequence.
 *
 *    <branch> !<cond> +2    Inverted PC-relative branch
 *    nop                    Delay slot
 *    j <offset>             Unconditional absolute long jump
 *    nop                    Delay slot
 *
 * Since this converted sequence alters the offset table, all offsets must
 * be re-calculated. This may in turn trigger new branch conversions, so
 * the process is repeated until no further changes are made. Normally it
 * completes in 1-2 iterations. If JIT_MAX_ITERATIONS should reached, we
 * fall back to converting every remaining jump operation. The branch
 * conversion is independent of how the JMP or JMP32 condition is JITed.
 *
 * JMP32 and JMP operations are JITed as follows.
 *
 * 1) setup_jmp_{i,r}:
 *    Convert jump conditional and offset into a form that can be JITed.
 *    This form may be a no-op, a canonical form, or an inverted PC-relative
 *    jump if branch conversion is necessary.
 *
 * 2) valid_jmp_i:
 *    Determine if an immediate operations can be emitted as such, or if
 *    we must fall back to the register version. Applies to JMP32 for 32-bit
 *    MIPS, and both JMP and JMP32 for 64-bit MIPS.
 *
 * 3) emit_jmp_{i,i64,r,r64}:
 *    Emit instructions for an JMP or JMP32 immediate or register operation.
 *
 * 4) finish_jmp_{i,r}:
 *    Emit any instructions needed to finish the jump. This includes a nop
 *    for the delay slot if a branch was emitted, and a long absolute jump
 *    if the branch was converted.
 */

#include <linux/limits.h>
#include <linux/bitops.h>
#include <linux/errno.h>
#include <linux/filter.h>
#include <linux/bpf.h>
#include <linux/slab.h>
#include <asm/bitops.h>
#include <asm/cacheflush.h>
#include <asm/cpu-features.h>
#include <asm/isa-rev.h>
#include <asm/uasm.h>

#include "bpf_jit_comp.h"

/* Convenience macros for descriptor access */
#define CONVERTED(desc)	((desc) & JIT_DESC_CONVERT)
#define INDEX(desc)	((desc) & ~JIT_DESC_CONVERT)

/*
 * Push registers on the stack, starting at a given depth from the stack
 * pointer and increasing. The next depth to be written is returned.
 */
int push_regs(struct jit_context *ctx, u32 mask, u32 excl, int depth)
{
	int reg;

	for (reg = 0; reg < BITS_PER_BYTE * sizeof(mask); reg++)
		if (mask & BIT(reg)) {
			if ((excl & BIT(reg)) == 0) {
				if (sizeof(long) == 4)
					emit(ctx, sw, reg, depth, MIPS_R_SP);
				else /* sizeof(long) == 8 */
					emit(ctx, sd, reg, depth, MIPS_R_SP);
			}
			depth += sizeof(long);
		}

	ctx->stack_used = max((int)ctx->stack_used, depth);
	return depth;
}

/*
 * Pop registers from the stack, starting at a given depth from the stack
 * pointer and increasing. The next depth to be read is returned.
 */
int pop_regs(struct jit_context *ctx, u32 mask, u32 excl, int depth)
{
	int reg;

	for (reg = 0; reg < BITS_PER_BYTE * sizeof(mask); reg++)
		if (mask & BIT(reg)) {
			if ((excl & BIT(reg)) == 0) {
				if (sizeof(long) == 4)
					emit(ctx, lw, reg, depth, MIPS_R_SP);
				else /* sizeof(long) == 8 */
					emit(ctx, ld, reg, depth, MIPS_R_SP);
			}
			depth += sizeof(long);
		}

	return depth;
}

/* Compute the 28-bit jump target address from a BPF program location */
int get_target(struct jit_context *ctx, u32 loc)
{
	u32 index = INDEX(ctx->descriptors[loc]);
	unsigned long pc = (unsigned long)&ctx->target[ctx->jit_index];
	unsigned long addr = (unsigned long)&ctx->target[index];

	if (!ctx->target)
		return 0;

	if ((addr ^ pc) & ~MIPS_JMP_MASK)
		return -1;

	return addr & MIPS_JMP_MASK;
}

/* Compute the PC-relative offset to relative BPF program offset */
int get_offset(const struct jit_context *ctx, int off)
{
	return (INDEX(ctx->descriptors[ctx->bpf_index + off]) -
		ctx->jit_index - 1) * sizeof(u32);
}

/* dst = imm (register width) */
void emit_mov_i(struct jit_context *ctx, u8 dst, s32 imm)
{
	if (imm >= -0x8000 && imm <= 0x7fff) {
		emit(ctx, addiu, dst, MIPS_R_ZERO, imm);
	} else {
		emit(ctx, lui, dst, (s16)((u32)imm >> 16));
		emit(ctx, ori, dst, dst, (u16)(imm & 0xffff));
	}
	clobber_reg(ctx, dst);
}

/* dst = src (register width) */
void emit_mov_r(struct jit_context *ctx, u8 dst, u8 src)
{
	emit(ctx, ori, dst, src, 0);
	clobber_reg(ctx, dst);
}

/* Validate ALU immediate range */
bool valid_alu_i(u8 op, s32 imm)
{
	switch (BPF_OP(op)) {
	case BPF_NEG:
	case BPF_LSH:
	case BPF_RSH:
	case BPF_ARSH:
		/* All legal eBPF values are valid */
		return true;
	case BPF_ADD:
		if (IS_ENABLED(CONFIG_CPU_DADDI_WORKAROUNDS))
			return false;
		/* imm must be 16 bits */
		return imm >= -0x8000 && imm <= 0x7fff;
	case BPF_SUB:
		if (IS_ENABLED(CONFIG_CPU_DADDI_WORKAROUNDS))
			return false;
		/* -imm must be 16 bits */
		return imm >= -0x7fff && imm <= 0x8000;
	case BPF_AND:
	case BPF_OR:
	case BPF_XOR:
		/* imm must be 16 bits unsigned */
		return imm >= 0 && imm <= 0xffff;
	case BPF_MUL:
		/* imm must be zero or a positive power of two */
		return imm == 0 || (imm > 0 && is_power_of_2(imm));
	case BPF_DIV:
	case BPF_MOD:
		/* imm must be an 17-bit power of two */
		return (u32)imm <= 0x10000 && is_power_of_2((u32)imm);
	}
	return false;
}

/* Rewrite ALU immediate operation */
bool rewrite_alu_i(u8 op, s32 imm, u8 *alu, s32 *val)
{
	bool act = true;

	switch (BPF_OP(op)) {
	case BPF_LSH:
	case BPF_RSH:
	case BPF_ARSH:
	case BPF_ADD:
	case BPF_SUB:
	case BPF_OR:
	case BPF_XOR:
		/* imm == 0 is a no-op */
		act = imm != 0;
		break;
	case BPF_MUL:
		if (imm == 1) {
			/* dst * 1 is a no-op */
			act = false;
		} else if (imm == 0) {
			/* dst * 0 is dst & 0 */
			op = BPF_AND;
		} else {
			/* dst * (1 << n) is dst << n */
			op = BPF_LSH;
			imm = ilog2(abs(imm));
		}
		break;
	case BPF_DIV:
		if (imm == 1) {
			/* dst / 1 is a no-op */
			act = false;
		} else {
			/* dst / (1 << n) is dst >> n */
			op = BPF_RSH;
			imm = ilog2(imm);
		}
		break;
	case BPF_MOD:
		/* dst % (1 << n) is dst & ((1 << n) - 1) */
		op = BPF_AND;
		imm--;
		break;
	}

	*alu = op;
	*val = imm;
	return act;
}

/* ALU immediate operation (32-bit) */
void emit_alu_i(struct jit_context *ctx, u8 dst, s32 imm, u8 op)
{
	switch (BPF_OP(op)) {
	/* dst = -dst */
	case BPF_NEG:
		emit(ctx, subu, dst, MIPS_R_ZERO, dst);
		break;
	/* dst = dst & imm */
	case BPF_AND:
		emit(ctx, andi, dst, dst, (u16)imm);
		break;
	/* dst = dst | imm */
	case BPF_OR:
		emit(ctx, ori, dst, dst, (u16)imm);
		break;
	/* dst = dst ^ imm */
	case BPF_XOR:
		emit(ctx, xori, dst, dst, (u16)imm);
		break;
	/* dst = dst << imm */
	case BPF_LSH:
		emit(ctx, sll, dst, dst, imm);
		break;
	/* dst = dst >> imm */
	case BPF_RSH:
		emit(ctx, srl, dst, dst, imm);
		break;
	/* dst = dst >> imm (arithmetic) */
	case BPF_ARSH:
		emit(ctx, sra, dst, dst, imm);
		break;
	/* dst = dst + imm */
	case BPF_ADD:
		emit(ctx, addiu, dst, dst, imm);
		break;
	/* dst = dst - imm */
	case BPF_SUB:
		emit(ctx, addiu, dst, dst, -imm);
		break;
	}
	clobber_reg(ctx, dst);
}

/* ALU register operation (32-bit) */
void emit_alu_r(struct jit_context *ctx, u8 dst, u8 src, u8 op)
{
	switch (BPF_OP(op)) {
	/* dst = dst & src */
	case BPF_AND:
		emit(ctx, and, dst, dst, src);
		break;
	/* dst = dst | src */
	case BPF_OR:
		emit(ctx, or, dst, dst, src);
		break;
	/* dst = dst ^ src */
	case BPF_XOR:
		emit(ctx, xor, dst, dst, src);
		break;
	/* dst = dst << src */
	case BPF_LSH:
		emit(ctx, sllv, dst, dst, src);
		break;
	/* dst = dst >> src */
	case BPF_RSH:
		emit(ctx, srlv, dst, dst, src);
		break;
	/* dst = dst >> src (arithmetic) */
	case BPF_ARSH:
		emit(ctx, srav, dst, dst, src);
		break;
	/* dst = dst + src */
	case BPF_ADD:
		emit(ctx, addu, dst, dst, src);
		break;
	/* dst = dst - src */
	case BPF_SUB:
		emit(ctx, subu, dst, dst, src);
		break;
	/* dst = dst * src */
	case BPF_MUL:
		if (cpu_has_mips32r1 || cpu_has_mips32r6) {
			emit(ctx, mul, dst, dst, src);
		} else {
			emit(ctx, multu, dst, src);
			emit(ctx, mflo, dst);
		}
		break;
	/* dst = dst / src */
	case BPF_DIV:
		if (cpu_has_mips32r6) {
			emit(ctx, divu_r6, dst, dst, src);
		} else {
			emit(ctx, divu, dst, src);
			emit(ctx, mflo, dst);
		}
		break;
	/* dst = dst % src */
	case BPF_MOD:
		if (cpu_has_mips32r6) {
			emit(ctx, modu, dst, dst, src);
		} else {
			emit(ctx, divu, dst, src);
			emit(ctx, mfhi, dst);
		}
		break;
	}
	clobber_reg(ctx, dst);
}

/* Atomic read-modify-write (32-bit) */
void emit_atomic_r(struct jit_context *ctx, u8 dst, u8 src, s16 off, u8 code)
{
	LLSC_sync(ctx);
	emit(ctx, ll, MIPS_R_T9, off, dst);
	switch (code) {
	case BPF_ADD:
	case BPF_ADD | BPF_FETCH:
		emit(ctx, addu, MIPS_R_T8, MIPS_R_T9, src);
		break;
	case BPF_AND:
	case BPF_AND | BPF_FETCH:
		emit(ctx, and, MIPS_R_T8, MIPS_R_T9, src);
		break;
	case BPF_OR:
	case BPF_OR | BPF_FETCH:
		emit(ctx, or, MIPS_R_T8, MIPS_R_T9, src);
		break;
	case BPF_XOR:
	case BPF_XOR | BPF_FETCH:
		emit(ctx, xor, MIPS_R_T8, MIPS_R_T9, src);
		break;
	case BPF_XCHG:
		emit(ctx, move, MIPS_R_T8, src);
		break;
	}
	emit(ctx, sc, MIPS_R_T8, off, dst);
	emit(ctx, LLSC_beqz, MIPS_R_T8, -16 - LLSC_offset);
	emit(ctx, nop); /* Delay slot */

	if (code & BPF_FETCH) {
		emit(ctx, move, src, MIPS_R_T9);
		clobber_reg(ctx, src);
	}
}

/* Atomic compare-and-exchange (32-bit) */
void emit_cmpxchg_r(struct jit_context *ctx, u8 dst, u8 src, u8 res, s16 off)
{
	LLSC_sync(ctx);
	emit(ctx, ll, MIPS_R_T9, off, dst);
	emit(ctx, bne, MIPS_R_T9, res, 12);
	emit(ctx, move, MIPS_R_T8, src);     /* Delay slot */
	emit(ctx, sc, MIPS_R_T8, off, dst);
	emit(ctx, LLSC_beqz, MIPS_R_T8, -20 - LLSC_offset);
	emit(ctx, move, res, MIPS_R_T9);     /* Delay slot */
	clobber_reg(ctx, res);
}

/* Swap bytes and truncate a register word or half word */
void emit_bswap_r(struct jit_context *ctx, u8 dst, u32 width)
{
	u8 tmp = MIPS_R_T8;
	u8 msk = MIPS_R_T9;

	switch (width) {
	/* Swap bytes in a word */
	case 32:
		if (cpu_has_mips32r2 || cpu_has_mips32r6) {
			emit(ctx, wsbh, dst, dst);
			emit(ctx, rotr, dst, dst, 16);
		} else {
			emit(ctx, sll, tmp, dst, 16);    /* tmp  = dst << 16 */
			emit(ctx, srl, dst, dst, 16);    /* dst = dst >> 16  */
			emit(ctx, or, dst, dst, tmp);    /* dst = dst | tmp  */

			emit(ctx, lui, msk, 0xff);       /* msk = 0x00ff0000 */
			emit(ctx, ori, msk, msk, 0xff);  /* msk = msk | 0xff */

			emit(ctx, and, tmp, dst, msk);   /* tmp = dst & msk  */
			emit(ctx, sll, tmp, tmp, 8);     /* tmp = tmp << 8   */
			emit(ctx, srl, dst, dst, 8);     /* dst = dst >> 8   */
			emit(ctx, and, dst, dst, msk);   /* dst = dst & msk  */
			emit(ctx, or, dst, dst, tmp);    /* reg = dst | tmp  */
		}
		break;
	/* Swap bytes in a half word */
	case 16:
		if (cpu_has_mips32r2 || cpu_has_mips32r6) {
			emit(ctx, wsbh, dst, dst);
			emit(ctx, andi, dst, dst, 0xffff);
		} else {
			emit(ctx, andi, tmp, dst, 0xff00); /* t = d & 0xff00 */
			emit(ctx, srl, tmp, tmp, 8);       /* t = t >> 8     */
			emit(ctx, andi, dst, dst, 0x00ff); /* d = d & 0x00ff */
			emit(ctx, sll, dst, dst, 8);       /* d = d << 8     */
			emit(ctx, or,  dst, dst, tmp);     /* d = d | t      */
		}
		break;
	}
	clobber_reg(ctx, dst);
}

/* Validate jump immediate range */
bool valid_jmp_i(u8 op, s32 imm)
{
	switch (op) {
	case JIT_JNOP:
		/* Immediate value not used */
		return true;
	case BPF_JEQ:
	case BPF_JNE:
		/* No immediate operation */
		return false;
	case BPF_JSET:
	case JIT_JNSET:
		/* imm must be 16 bits unsigned */
		return imm >= 0 && imm <= 0xffff;
	case BPF_JGE:
	case BPF_JLT:
	case BPF_JSGE:
	case BPF_JSLT:
		/* imm must be 16 bits */
		return imm >= -0x8000 && imm <= 0x7fff;
	case BPF_JGT:
	case BPF_JLE:
	case BPF_JSGT:
	case BPF_JSLE:
		/* imm + 1 must be 16 bits */
		return imm >= -0x8001 && imm <= 0x7ffe;
	}
	return false;
}

/* Invert a conditional jump operation */
static u8 invert_jmp(u8 op)
{
	switch (op) {
	case BPF_JA: return JIT_JNOP;
	case BPF_JEQ: return BPF_JNE;
	case BPF_JNE: return BPF_JEQ;
	case BPF_JSET: return JIT_JNSET;
	case BPF_JGT: return BPF_JLE;
	case BPF_JGE: return BPF_JLT;
	case BPF_JLT: return BPF_JGE;
	case BPF_JLE: return BPF_JGT;
	case BPF_JSGT: return BPF_JSLE;
	case BPF_JSGE: return BPF_JSLT;
	case BPF_JSLT: return BPF_JSGE;
	case BPF_JSLE: return BPF_JSGT;
	}
	return 0;
}

/* Prepare a PC-relative jump operation */
static void setup_jmp(struct jit_context *ctx, u8 bpf_op,
		      s16 bpf_off, u8 *jit_op, s32 *jit_off)
{
	u32 *descp = &ctx->descriptors[ctx->bpf_index];
	int op = bpf_op;
	int offset = 0;

	/* Do not compute offsets on the first pass */
	if (INDEX(*descp) == 0)
		goto done;

	/* Skip jumps never taken */
	if (bpf_op == JIT_JNOP)
		goto done;

	/* Convert jumps always taken */
	if (bpf_op == BPF_JA)
		*descp |= JIT_DESC_CONVERT;

	/*
	 * Current ctx->jit_index points to the start of the branch preamble.
	 * Since the preamble differs among different branch conditionals,
	 * the current index cannot be used to compute the branch offset.
	 * Instead, we use the offset table value for the next instruction,
	 * which gives the index immediately after the branch delay slot.
	 */
	if (!CONVERTED(*descp)) {
		int target = ctx->bpf_index + bpf_off + 1;
		int origin = ctx->bpf_index + 1;

		offset = (INDEX(ctx->descriptors[target]) -
			  INDEX(ctx->descriptors[origin]) + 1) * sizeof(u32);
	}

	/*
	 * The PC-relative branch offset field on MIPS is 18 bits signed,
	 * so if the computed offset is larger than this we generate a an
	 * absolute jump that we skip with an inverted conditional branch.
	 */
	if (CONVERTED(*descp) || offset < -0x20000 || offset > 0x1ffff) {
		offset = 3 * sizeof(u32);
		op = invert_jmp(bpf_op);
		ctx->changes += !CONVERTED(*descp);
		*descp |= JIT_DESC_CONVERT;
	}

done:
	*jit_off = offset;
	*jit_op = op;
}

/* Prepare a PC-relative jump operation with immediate conditional */
void setup_jmp_i(struct jit_context *ctx, s32 imm, u8 width,
		 u8 bpf_op, s16 bpf_off, u8 *jit_op, s32 *jit_off)
{
	bool always = false;
	bool never = false;

	switch (bpf_op) {
	case BPF_JEQ:
	case BPF_JNE:
		break;
	case BPF_JSET:
	case BPF_JLT:
		never = imm == 0;
		break;
	case BPF_JGE:
		always = imm == 0;
		break;
	case BPF_JGT:
		never = (u32)imm == U32_MAX;
		break;
	case BPF_JLE:
		always = (u32)imm == U32_MAX;
		break;
	case BPF_JSGT:
		never = imm == S32_MAX && width == 32;
		break;
	case BPF_JSGE:
		always = imm == S32_MIN && width == 32;
		break;
	case BPF_JSLT:
		never = imm == S32_MIN && width == 32;
		break;
	case BPF_JSLE:
		always = imm == S32_MAX && width == 32;
		break;
	}

	if (never)
		bpf_op = JIT_JNOP;
	if (always)
		bpf_op = BPF_JA;
	setup_jmp(ctx, bpf_op, bpf_off, jit_op, jit_off);
}

/* Prepare a PC-relative jump operation with register conditional */
void setup_jmp_r(struct jit_context *ctx, bool same_reg,
		 u8 bpf_op, s16 bpf_off, u8 *jit_op, s32 *jit_off)
{
	switch (bpf_op) {
	case BPF_JSET:
		break;
	case BPF_JEQ:
	case BPF_JGE:
	case BPF_JLE:
	case BPF_JSGE:
	case BPF_JSLE:
		if (same_reg)
			bpf_op = BPF_JA;
		break;
	case BPF_JNE:
	case BPF_JLT:
	case BPF_JGT:
	case BPF_JSGT:
	case BPF_JSLT:
		if (same_reg)
			bpf_op = JIT_JNOP;
		break;
	}
	setup_jmp(ctx, bpf_op, bpf_off, jit_op, jit_off);
}

/* Finish a PC-relative jump operation */
int finish_jmp(struct jit_context *ctx, u8 jit_op, s16 bpf_off)
{
	/* Emit conditional branch delay slot */
	if (jit_op != JIT_JNOP)
		emit(ctx, nop);
	/*
	 * Emit an absolute long jump with delay slot,
	 * if the PC-relative branch was converted.
	 */
	if (CONVERTED(ctx->descriptors[ctx->bpf_index])) {
		int target = get_target(ctx, ctx->bpf_index + bpf_off + 1);

		if (target < 0)
			return -1;
		emit(ctx, j, target);
		emit(ctx, nop);
	}
	return 0;
}

/* Jump immediate (32-bit) */
void emit_jmp_i(struct jit_context *ctx, u8 dst, s32 imm, s32 off, u8 op)
{
	switch (op) {
	/* No-op, used internally for branch optimization */
	case JIT_JNOP:
		break;
	/* PC += off if dst & imm */
	case BPF_JSET:
		emit(ctx, andi, MIPS_R_T9, dst, (u16)imm);
		emit(ctx, bnez, MIPS_R_T9, off);
		break;
	/* PC += off if (dst & imm) == 0 (not in BPF, used for long jumps) */
	case JIT_JNSET:
		emit(ctx, andi, MIPS_R_T9, dst, (u16)imm);
		emit(ctx, beqz, MIPS_R_T9, off);
		break;
	/* PC += off if dst > imm */
	case BPF_JGT:
		emit(ctx, sltiu, MIPS_R_T9, dst, imm + 1);
		emit(ctx, beqz, MIPS_R_T9, off);
		break;
	/* PC += off if dst >= imm */
	case BPF_JGE:
		emit(ctx, sltiu, MIPS_R_T9, dst, imm);
		emit(ctx, beqz, MIPS_R_T9, off);
		break;
	/* PC += off if dst < imm */
	case BPF_JLT:
		emit(ctx, sltiu, MIPS_R_T9, dst, imm);
		emit(ctx, bnez, MIPS_R_T9, off);
		break;
	/* PC += off if dst <= imm */
	case BPF_JLE:
		emit(ctx, sltiu, MIPS_R_T9, dst, imm + 1);
		emit(ctx, bnez, MIPS_R_T9, off);
		break;
	/* PC += off if dst > imm (signed) */
	case BPF_JSGT:
		emit(ctx, slti, MIPS_R_T9, dst, imm + 1);
		emit(ctx, beqz, MIPS_R_T9, off);
		break;
	/* PC += off if dst >= imm (signed) */
	case BPF_JSGE:
		emit(ctx, slti, MIPS_R_T9, dst, imm);
		emit(ctx, beqz, MIPS_R_T9, off);
		break;
	/* PC += off if dst < imm (signed) */
	case BPF_JSLT:
		emit(ctx, slti, MIPS_R_T9, dst, imm);
		emit(ctx, bnez, MIPS_R_T9, off);
		break;
	/* PC += off if dst <= imm (signed) */
	case BPF_JSLE:
		emit(ctx, slti, MIPS_R_T9, dst, imm + 1);
		emit(ctx, bnez, MIPS_R_T9, off);
		break;
	}
}

/* Jump register (32-bit) */
void emit_jmp_r(struct jit_context *ctx, u8 dst, u8 src, s32 off, u8 op)
{
	switch (op) {
	/* No-op, used internally for branch optimization */
	case JIT_JNOP:
		break;
	/* PC += off if dst == src */
	case BPF_JEQ:
		emit(ctx, beq, dst, src, off);
		break;
	/* PC += off if dst != src */
	case BPF_JNE:
		emit(ctx, bne, dst, src, off);
		break;
	/* PC += off if dst & src */
	case BPF_JSET:
		emit(ctx, and, MIPS_R_T9, dst, src);
		emit(ctx, bnez, MIPS_R_T9, off);
		break;
	/* PC += off if (dst & imm) == 0 (not in BPF, used for long jumps) */
	case JIT_JNSET:
		emit(ctx, and, MIPS_R_T9, dst, src);
		emit(ctx, beqz, MIPS_R_T9, off);
		break;
	/* PC += off if dst > src */
	case BPF_JGT:
		emit(ctx, sltu, MIPS_R_T9, src, dst);
		emit(ctx, bnez, MIPS_R_T9, off);
		break;
	/* PC += off if dst >= src */
	case BPF_JGE:
		emit(ctx, sltu, MIPS_R_T9, dst, src);
		emit(ctx, beqz, MIPS_R_T9, off);
		break;
	/* PC += off if dst < src */
	case BPF_JLT:
		emit(ctx, sltu, MIPS_R_T9, dst, src);
		emit(ctx, bnez, MIPS_R_T9, off);
		break;
	/* PC += off if dst <= src */
	case BPF_JLE:
		emit(ctx, sltu, MIPS_R_T9, src, dst);
		emit(ctx, beqz, MIPS_R_T9, off);
		break;
	/* PC += off if dst > src (signed) */
	case BPF_JSGT:
		emit(ctx, slt, MIPS_R_T9, src, dst);
		emit(ctx, bnez, MIPS_R_T9, off);
		break;
	/* PC += off if dst >= src (signed) */
	case BPF_JSGE:
		emit(ctx, slt, MIPS_R_T9, dst, src);
		emit(ctx, beqz, MIPS_R_T9, off);
		break;
	/* PC += off if dst < src (signed) */
	case BPF_JSLT:
		emit(ctx, slt, MIPS_R_T9, dst, src);
		emit(ctx, bnez, MIPS_R_T9, off);
		break;
	/* PC += off if dst <= src (signed) */
	case BPF_JSLE:
		emit(ctx, slt, MIPS_R_T9, src, dst);
		emit(ctx, beqz, MIPS_R_T9, off);
		break;
	}
}

/* Jump always */
int emit_ja(struct jit_context *ctx, s16 off)
{
	int target = get_target(ctx, ctx->bpf_index + off + 1);

	if (target < 0)
		return -1;
	emit(ctx, j, target);
	emit(ctx, nop);
	return 0;
}

/* Jump to epilogue */
int emit_exit(struct jit_context *ctx)
{
	int target = get_target(ctx, ctx->program->len);

	if (target < 0)
		return -1;
	emit(ctx, j, target);
	emit(ctx, nop);
	return 0;
}

/* Build the program body from eBPF bytecode */
static int build_body(struct jit_context *ctx)
{
	const struct bpf_prog *prog = ctx->program;
	unsigned int i;

	ctx->stack_used = 0;
	for (i = 0; i < prog->len; i++) {
		const struct bpf_insn *insn = &prog->insnsi[i];
		u32 *descp = &ctx->descriptors[i];
		int ret;

		access_reg(ctx, insn->src_reg);
		access_reg(ctx, insn->dst_reg);

		ctx->bpf_index = i;
		if (ctx->target == NULL) {
			ctx->changes += INDEX(*descp) != ctx->jit_index;
			*descp &= JIT_DESC_CONVERT;
			*descp |= ctx->jit_index;
		}

		ret = build_insn(insn, ctx);
		if (ret < 0)
			return ret;

		if (ret > 0) {
			i++;
			if (ctx->target == NULL)
				descp[1] = ctx->jit_index;
		}
	}

	/* Store the end offset, where the epilogue begins */
	ctx->descriptors[prog->len] = ctx->jit_index;
	return 0;
}

/* Set the branch conversion flag on all instructions */
static void set_convert_flag(struct jit_context *ctx, bool enable)
{
	const struct bpf_prog *prog = ctx->program;
	u32 flag = enable ? JIT_DESC_CONVERT : 0;
	unsigned int i;

	for (i = 0; i <= prog->len; i++)
		ctx->descriptors[i] = INDEX(ctx->descriptors[i]) | flag;
}

static void jit_fill_hole(void *area, unsigned int size)
{
	u32 *p;

	/* We are guaranteed to have aligned memory. */
	for (p = area; size >= sizeof(u32); size -= sizeof(u32))
		uasm_i_break(&p, BRK_BUG); /* Increments p */
}

bool bpf_jit_needs_zext(void)
{
	return true;
}

struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
{
	struct bpf_prog *tmp, *orig_prog = prog;
	struct bpf_binary_header *header = NULL;
	struct jit_context ctx;
	bool tmp_blinded = false;
	unsigned int tmp_idx;
	unsigned int image_size;
	u8 *image_ptr;
	int tries;

	/*
	 * If BPF JIT was not enabled then we must fall back to
	 * the interpreter.
	 */
	if (!prog->jit_requested)
		return orig_prog;
	/*
	 * If constant blinding was enabled and we failed during blinding
	 * then we must fall back to the interpreter. Otherwise, we save
	 * the new JITed code.
	 */
	tmp = bpf_jit_blind_constants(prog);
	if (IS_ERR(tmp))
		return orig_prog;
	if (tmp != prog) {
		tmp_blinded = true;
		prog = tmp;
	}

	memset(&ctx, 0, sizeof(ctx));
	ctx.program = prog;

	/*
	 * Not able to allocate memory for descriptors[], then
	 * we must fall back to the interpreter
	 */
	ctx.descriptors = kcalloc(prog->len + 1, sizeof(*ctx.descriptors),
				  GFP_KERNEL);
	if (ctx.descriptors == NULL)
		goto out_err;

	/* First pass discovers used resources */
	if (build_body(&ctx) < 0)
		goto out_err;
	/*
	 * Second pass computes instruction offsets.
	 * If any PC-relative branches are out of range, a sequence of
	 * a PC-relative branch + a jump is generated, and we have to
	 * try again from the beginning to generate the new offsets.
	 * This is done until no additional conversions are necessary.
	 * The last two iterations are done with all branches being
	 * converted, to guarantee offset table convergence within a
	 * fixed number of iterations.
	 */
	ctx.jit_index = 0;
	build_prologue(&ctx);
	tmp_idx = ctx.jit_index;

	tries = JIT_MAX_ITERATIONS;
	do {
		ctx.jit_index = tmp_idx;
		ctx.changes = 0;
		if (tries == 2)
			set_convert_flag(&ctx, true);
		if (build_body(&ctx) < 0)
			goto out_err;
	} while (ctx.changes > 0 && --tries > 0);

	if (WARN_ONCE(ctx.changes > 0, "JIT offsets failed to converge"))
		goto out_err;

	build_epilogue(&ctx, MIPS_R_RA);

	/* Now we know the size of the structure to make */
	image_size = sizeof(u32) * ctx.jit_index;
	header = bpf_jit_binary_alloc(image_size, &image_ptr,
				      sizeof(u32), jit_fill_hole);
	/*
	 * Not able to allocate memory for the structure then
	 * we must fall back to the interpretation
	 */
	if (header == NULL)
		goto out_err;

	/* Actual pass to generate final JIT code */
	ctx.target = (u32 *)image_ptr;
	ctx.jit_index = 0;

	/*
	 * If building the JITed code fails somehow,
	 * we fall back to the interpretation.
	 */
	build_prologue(&ctx);
	if (build_body(&ctx) < 0)
		goto out_err;
	build_epilogue(&ctx, MIPS_R_RA);

	/* Populate line info meta data */
	set_convert_flag(&ctx, false);
	bpf_prog_fill_jited_linfo(prog, &ctx.descriptors[1]);

	/* Set as read-only exec and flush instruction cache */
	if (bpf_jit_binary_lock_ro(header))
		goto out_err;
	flush_icache_range((unsigned long)header,
			   (unsigned long)&ctx.target[ctx.jit_index]);

	if (bpf_jit_enable > 1)
		bpf_jit_dump(prog->len, image_size, 2, ctx.target);

	prog->bpf_func = (void *)ctx.target;
	prog->jited = 1;
	prog->jited_len = image_size;

out:
	if (tmp_blinded)
		bpf_jit_prog_release_other(prog, prog == orig_prog ?
					   tmp : orig_prog);
	kfree(ctx.descriptors);
	return prog;

out_err:
	prog = orig_prog;
	if (header)
		bpf_jit_binary_free(header);
	goto out;
}