Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 | // SPDX-License-Identifier: GPL-2.0-only /* * Simple CPU accounting cgroup controller */ #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE #include <asm/cputime.h> #endif #ifdef CONFIG_IRQ_TIME_ACCOUNTING /* * There are no locks covering percpu hardirq/softirq time. * They are only modified in vtime_account, on corresponding CPU * with interrupts disabled. So, writes are safe. * They are read and saved off onto struct rq in update_rq_clock(). * This may result in other CPU reading this CPU's irq time and can * race with irq/vtime_account on this CPU. We would either get old * or new value with a side effect of accounting a slice of irq time to wrong * task when irq is in progress while we read rq->clock. That is a worthy * compromise in place of having locks on each irq in account_system_time. */ DEFINE_PER_CPU(struct irqtime, cpu_irqtime); static int sched_clock_irqtime; void enable_sched_clock_irqtime(void) { sched_clock_irqtime = 1; } void disable_sched_clock_irqtime(void) { sched_clock_irqtime = 0; } static void irqtime_account_delta(struct irqtime *irqtime, u64 delta, enum cpu_usage_stat idx) { u64 *cpustat = kcpustat_this_cpu->cpustat; u64_stats_update_begin(&irqtime->sync); cpustat[idx] += delta; irqtime->total += delta; irqtime->tick_delta += delta; u64_stats_update_end(&irqtime->sync); } /* * Called after incrementing preempt_count on {soft,}irq_enter * and before decrementing preempt_count on {soft,}irq_exit. */ void irqtime_account_irq(struct task_struct *curr, unsigned int offset) { struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime); unsigned int pc; s64 delta; int cpu; if (!sched_clock_irqtime) return; cpu = smp_processor_id(); delta = sched_clock_cpu(cpu) - irqtime->irq_start_time; irqtime->irq_start_time += delta; pc = irq_count() - offset; /* * We do not account for softirq time from ksoftirqd here. * We want to continue accounting softirq time to ksoftirqd thread * in that case, so as not to confuse scheduler with a special task * that do not consume any time, but still wants to run. */ if (pc & HARDIRQ_MASK) irqtime_account_delta(irqtime, delta, CPUTIME_IRQ); else if ((pc & SOFTIRQ_OFFSET) && curr != this_cpu_ksoftirqd()) irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ); } static u64 irqtime_tick_accounted(u64 maxtime) { struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime); u64 delta; delta = min(irqtime->tick_delta, maxtime); irqtime->tick_delta -= delta; return delta; } #else /* CONFIG_IRQ_TIME_ACCOUNTING */ #define sched_clock_irqtime (0) static u64 irqtime_tick_accounted(u64 dummy) { return 0; } #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ static inline void task_group_account_field(struct task_struct *p, int index, u64 tmp) { /* * Since all updates are sure to touch the root cgroup, we * get ourselves ahead and touch it first. If the root cgroup * is the only cgroup, then nothing else should be necessary. * */ __this_cpu_add(kernel_cpustat.cpustat[index], tmp); cgroup_account_cputime_field(p, index, tmp); } /* * Account user CPU time to a process. * @p: the process that the CPU time gets accounted to * @cputime: the CPU time spent in user space since the last update */ void account_user_time(struct task_struct *p, u64 cputime) { int index; /* Add user time to process. */ p->utime += cputime; account_group_user_time(p, cputime); index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; /* Add user time to cpustat. */ task_group_account_field(p, index, cputime); /* Account for user time used */ acct_account_cputime(p); } /* * Account guest CPU time to a process. * @p: the process that the CPU time gets accounted to * @cputime: the CPU time spent in virtual machine since the last update */ void account_guest_time(struct task_struct *p, u64 cputime) { u64 *cpustat = kcpustat_this_cpu->cpustat; /* Add guest time to process. */ p->utime += cputime; account_group_user_time(p, cputime); p->gtime += cputime; /* Add guest time to cpustat. */ if (task_nice(p) > 0) { task_group_account_field(p, CPUTIME_NICE, cputime); cpustat[CPUTIME_GUEST_NICE] += cputime; } else { task_group_account_field(p, CPUTIME_USER, cputime); cpustat[CPUTIME_GUEST] += cputime; } } /* * Account system CPU time to a process and desired cpustat field * @p: the process that the CPU time gets accounted to * @cputime: the CPU time spent in kernel space since the last update * @index: pointer to cpustat field that has to be updated */ void account_system_index_time(struct task_struct *p, u64 cputime, enum cpu_usage_stat index) { /* Add system time to process. */ p->stime += cputime; account_group_system_time(p, cputime); /* Add system time to cpustat. */ task_group_account_field(p, index, cputime); /* Account for system time used */ acct_account_cputime(p); } /* * Account system CPU time to a process. * @p: the process that the CPU time gets accounted to * @hardirq_offset: the offset to subtract from hardirq_count() * @cputime: the CPU time spent in kernel space since the last update */ void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime) { int index; if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { account_guest_time(p, cputime); return; } if (hardirq_count() - hardirq_offset) index = CPUTIME_IRQ; else if (in_serving_softirq()) index = CPUTIME_SOFTIRQ; else index = CPUTIME_SYSTEM; account_system_index_time(p, cputime, index); } /* * Account for involuntary wait time. * @cputime: the CPU time spent in involuntary wait */ void account_steal_time(u64 cputime) { u64 *cpustat = kcpustat_this_cpu->cpustat; cpustat[CPUTIME_STEAL] += cputime; } /* * Account for idle time. * @cputime: the CPU time spent in idle wait */ void account_idle_time(u64 cputime) { u64 *cpustat = kcpustat_this_cpu->cpustat; struct rq *rq = this_rq(); if (atomic_read(&rq->nr_iowait) > 0) cpustat[CPUTIME_IOWAIT] += cputime; else cpustat[CPUTIME_IDLE] += cputime; } #ifdef CONFIG_SCHED_CORE /* * Account for forceidle time due to core scheduling. * * REQUIRES: schedstat is enabled. */ void __account_forceidle_time(struct task_struct *p, u64 delta) { __schedstat_add(p->stats.core_forceidle_sum, delta); task_group_account_field(p, CPUTIME_FORCEIDLE, delta); } #endif /* * When a guest is interrupted for a longer amount of time, missed clock * ticks are not redelivered later. Due to that, this function may on * occasion account more time than the calling functions think elapsed. */ static __always_inline u64 steal_account_process_time(u64 maxtime) { #ifdef CONFIG_PARAVIRT if (static_key_false(¶virt_steal_enabled)) { u64 steal; steal = paravirt_steal_clock(smp_processor_id()); steal -= this_rq()->prev_steal_time; steal = min(steal, maxtime); account_steal_time(steal); this_rq()->prev_steal_time += steal; return steal; } #endif return 0; } /* * Account how much elapsed time was spent in steal, irq, or softirq time. */ static inline u64 account_other_time(u64 max) { u64 accounted; lockdep_assert_irqs_disabled(); accounted = steal_account_process_time(max); if (accounted < max) accounted += irqtime_tick_accounted(max - accounted); return accounted; } #ifdef CONFIG_64BIT static inline u64 read_sum_exec_runtime(struct task_struct *t) { return t->se.sum_exec_runtime; } #else static u64 read_sum_exec_runtime(struct task_struct *t) { u64 ns; struct rq_flags rf; struct rq *rq; rq = task_rq_lock(t, &rf); ns = t->se.sum_exec_runtime; task_rq_unlock(rq, t, &rf); return ns; } #endif /* * Accumulate raw cputime values of dead tasks (sig->[us]time) and live * tasks (sum on group iteration) belonging to @tsk's group. */ void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times) { struct signal_struct *sig = tsk->signal; u64 utime, stime; struct task_struct *t; unsigned int seq, nextseq; unsigned long flags; /* * Update current task runtime to account pending time since last * scheduler action or thread_group_cputime() call. This thread group * might have other running tasks on different CPUs, but updating * their runtime can affect syscall performance, so we skip account * those pending times and rely only on values updated on tick or * other scheduler action. */ if (same_thread_group(current, tsk)) (void) task_sched_runtime(current); rcu_read_lock(); /* Attempt a lockless read on the first round. */ nextseq = 0; do { seq = nextseq; flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq); times->utime = sig->utime; times->stime = sig->stime; times->sum_exec_runtime = sig->sum_sched_runtime; for_each_thread(tsk, t) { task_cputime(t, &utime, &stime); times->utime += utime; times->stime += stime; times->sum_exec_runtime += read_sum_exec_runtime(t); } /* If lockless access failed, take the lock. */ nextseq = 1; } while (need_seqretry(&sig->stats_lock, seq)); done_seqretry_irqrestore(&sig->stats_lock, seq, flags); rcu_read_unlock(); } #ifdef CONFIG_IRQ_TIME_ACCOUNTING /* * Account a tick to a process and cpustat * @p: the process that the CPU time gets accounted to * @user_tick: is the tick from userspace * @rq: the pointer to rq * * Tick demultiplexing follows the order * - pending hardirq update * - pending softirq update * - user_time * - idle_time * - system time * - check for guest_time * - else account as system_time * * Check for hardirq is done both for system and user time as there is * no timer going off while we are on hardirq and hence we may never get an * opportunity to update it solely in system time. * p->stime and friends are only updated on system time and not on irq * softirq as those do not count in task exec_runtime any more. */ static void irqtime_account_process_tick(struct task_struct *p, int user_tick, int ticks) { u64 other, cputime = TICK_NSEC * ticks; /* * When returning from idle, many ticks can get accounted at * once, including some ticks of steal, irq, and softirq time. * Subtract those ticks from the amount of time accounted to * idle, or potentially user or system time. Due to rounding, * other time can exceed ticks occasionally. */ other = account_other_time(ULONG_MAX); if (other >= cputime) return; cputime -= other; if (this_cpu_ksoftirqd() == p) { /* * ksoftirqd time do not get accounted in cpu_softirq_time. * So, we have to handle it separately here. * Also, p->stime needs to be updated for ksoftirqd. */ account_system_index_time(p, cputime, CPUTIME_SOFTIRQ); } else if (user_tick) { account_user_time(p, cputime); } else if (p == this_rq()->idle) { account_idle_time(cputime); } else if (p->flags & PF_VCPU) { /* System time or guest time */ account_guest_time(p, cputime); } else { account_system_index_time(p, cputime, CPUTIME_SYSTEM); } } static void irqtime_account_idle_ticks(int ticks) { irqtime_account_process_tick(current, 0, ticks); } #else /* CONFIG_IRQ_TIME_ACCOUNTING */ static inline void irqtime_account_idle_ticks(int ticks) { } static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick, int nr_ticks) { } #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ /* * Use precise platform statistics if available: */ #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE # ifndef __ARCH_HAS_VTIME_TASK_SWITCH void vtime_task_switch(struct task_struct *prev) { if (is_idle_task(prev)) vtime_account_idle(prev); else vtime_account_kernel(prev); vtime_flush(prev); arch_vtime_task_switch(prev); } # endif void vtime_account_irq(struct task_struct *tsk, unsigned int offset) { unsigned int pc = irq_count() - offset; if (pc & HARDIRQ_OFFSET) { vtime_account_hardirq(tsk); } else if (pc & SOFTIRQ_OFFSET) { vtime_account_softirq(tsk); } else if (!IS_ENABLED(CONFIG_HAVE_VIRT_CPU_ACCOUNTING_IDLE) && is_idle_task(tsk)) { vtime_account_idle(tsk); } else { vtime_account_kernel(tsk); } } void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev, u64 *ut, u64 *st) { *ut = curr->utime; *st = curr->stime; } void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) { *ut = p->utime; *st = p->stime; } EXPORT_SYMBOL_GPL(task_cputime_adjusted); void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) { struct task_cputime cputime; thread_group_cputime(p, &cputime); *ut = cputime.utime; *st = cputime.stime; } #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */ /* * Account a single tick of CPU time. * @p: the process that the CPU time gets accounted to * @user_tick: indicates if the tick is a user or a system tick */ void account_process_tick(struct task_struct *p, int user_tick) { u64 cputime, steal; if (vtime_accounting_enabled_this_cpu()) return; if (sched_clock_irqtime) { irqtime_account_process_tick(p, user_tick, 1); return; } cputime = TICK_NSEC; steal = steal_account_process_time(ULONG_MAX); if (steal >= cputime) return; cputime -= steal; if (user_tick) account_user_time(p, cputime); else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET)) account_system_time(p, HARDIRQ_OFFSET, cputime); else account_idle_time(cputime); } /* * Account multiple ticks of idle time. * @ticks: number of stolen ticks */ void account_idle_ticks(unsigned long ticks) { u64 cputime, steal; if (sched_clock_irqtime) { irqtime_account_idle_ticks(ticks); return; } cputime = ticks * TICK_NSEC; steal = steal_account_process_time(ULONG_MAX); if (steal >= cputime) return; cputime -= steal; account_idle_time(cputime); } /* * Adjust tick based cputime random precision against scheduler runtime * accounting. * * Tick based cputime accounting depend on random scheduling timeslices of a * task to be interrupted or not by the timer. Depending on these * circumstances, the number of these interrupts may be over or * under-optimistic, matching the real user and system cputime with a variable * precision. * * Fix this by scaling these tick based values against the total runtime * accounted by the CFS scheduler. * * This code provides the following guarantees: * * stime + utime == rtime * stime_i+1 >= stime_i, utime_i+1 >= utime_i * * Assuming that rtime_i+1 >= rtime_i. */ void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev, u64 *ut, u64 *st) { u64 rtime, stime, utime; unsigned long flags; /* Serialize concurrent callers such that we can honour our guarantees */ raw_spin_lock_irqsave(&prev->lock, flags); rtime = curr->sum_exec_runtime; /* * This is possible under two circumstances: * - rtime isn't monotonic after all (a bug); * - we got reordered by the lock. * * In both cases this acts as a filter such that the rest of the code * can assume it is monotonic regardless of anything else. */ if (prev->stime + prev->utime >= rtime) goto out; stime = curr->stime; utime = curr->utime; /* * If either stime or utime are 0, assume all runtime is userspace. * Once a task gets some ticks, the monotonicity code at 'update:' * will ensure things converge to the observed ratio. */ if (stime == 0) { utime = rtime; goto update; } if (utime == 0) { stime = rtime; goto update; } stime = mul_u64_u64_div_u64(stime, rtime, stime + utime); update: /* * Make sure stime doesn't go backwards; this preserves monotonicity * for utime because rtime is monotonic. * * utime_i+1 = rtime_i+1 - stime_i * = rtime_i+1 - (rtime_i - utime_i) * = (rtime_i+1 - rtime_i) + utime_i * >= utime_i */ if (stime < prev->stime) stime = prev->stime; utime = rtime - stime; /* * Make sure utime doesn't go backwards; this still preserves * monotonicity for stime, analogous argument to above. */ if (utime < prev->utime) { utime = prev->utime; stime = rtime - utime; } prev->stime = stime; prev->utime = utime; out: *ut = prev->utime; *st = prev->stime; raw_spin_unlock_irqrestore(&prev->lock, flags); } void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) { struct task_cputime cputime = { .sum_exec_runtime = p->se.sum_exec_runtime, }; if (task_cputime(p, &cputime.utime, &cputime.stime)) cputime.sum_exec_runtime = task_sched_runtime(p); cputime_adjust(&cputime, &p->prev_cputime, ut, st); } EXPORT_SYMBOL_GPL(task_cputime_adjusted); void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) { struct task_cputime cputime; thread_group_cputime(p, &cputime); cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st); } #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN static u64 vtime_delta(struct vtime *vtime) { unsigned long long clock; clock = sched_clock(); if (clock < vtime->starttime) return 0; return clock - vtime->starttime; } static u64 get_vtime_delta(struct vtime *vtime) { u64 delta = vtime_delta(vtime); u64 other; /* * Unlike tick based timing, vtime based timing never has lost * ticks, and no need for steal time accounting to make up for * lost ticks. Vtime accounts a rounded version of actual * elapsed time. Limit account_other_time to prevent rounding * errors from causing elapsed vtime to go negative. */ other = account_other_time(delta); WARN_ON_ONCE(vtime->state == VTIME_INACTIVE); vtime->starttime += delta; return delta - other; } static void vtime_account_system(struct task_struct *tsk, struct vtime *vtime) { vtime->stime += get_vtime_delta(vtime); if (vtime->stime >= TICK_NSEC) { account_system_time(tsk, irq_count(), vtime->stime); vtime->stime = 0; } } static void vtime_account_guest(struct task_struct *tsk, struct vtime *vtime) { vtime->gtime += get_vtime_delta(vtime); if (vtime->gtime >= TICK_NSEC) { account_guest_time(tsk, vtime->gtime); vtime->gtime = 0; } } static void __vtime_account_kernel(struct task_struct *tsk, struct vtime *vtime) { /* We might have scheduled out from guest path */ if (vtime->state == VTIME_GUEST) vtime_account_guest(tsk, vtime); else vtime_account_system(tsk, vtime); } void vtime_account_kernel(struct task_struct *tsk) { struct vtime *vtime = &tsk->vtime; if (!vtime_delta(vtime)) return; write_seqcount_begin(&vtime->seqcount); __vtime_account_kernel(tsk, vtime); write_seqcount_end(&vtime->seqcount); } void vtime_user_enter(struct task_struct *tsk) { struct vtime *vtime = &tsk->vtime; write_seqcount_begin(&vtime->seqcount); vtime_account_system(tsk, vtime); vtime->state = VTIME_USER; write_seqcount_end(&vtime->seqcount); } void vtime_user_exit(struct task_struct *tsk) { struct vtime *vtime = &tsk->vtime; write_seqcount_begin(&vtime->seqcount); vtime->utime += get_vtime_delta(vtime); if (vtime->utime >= TICK_NSEC) { account_user_time(tsk, vtime->utime); vtime->utime = 0; } vtime->state = VTIME_SYS; write_seqcount_end(&vtime->seqcount); } void vtime_guest_enter(struct task_struct *tsk) { struct vtime *vtime = &tsk->vtime; /* * The flags must be updated under the lock with * the vtime_starttime flush and update. * That enforces a right ordering and update sequence * synchronization against the reader (task_gtime()) * that can thus safely catch up with a tickless delta. */ write_seqcount_begin(&vtime->seqcount); vtime_account_system(tsk, vtime); tsk->flags |= PF_VCPU; vtime->state = VTIME_GUEST; write_seqcount_end(&vtime->seqcount); } EXPORT_SYMBOL_GPL(vtime_guest_enter); void vtime_guest_exit(struct task_struct *tsk) { struct vtime *vtime = &tsk->vtime; write_seqcount_begin(&vtime->seqcount); vtime_account_guest(tsk, vtime); tsk->flags &= ~PF_VCPU; vtime->state = VTIME_SYS; write_seqcount_end(&vtime->seqcount); } EXPORT_SYMBOL_GPL(vtime_guest_exit); void vtime_account_idle(struct task_struct *tsk) { account_idle_time(get_vtime_delta(&tsk->vtime)); } void vtime_task_switch_generic(struct task_struct *prev) { struct vtime *vtime = &prev->vtime; write_seqcount_begin(&vtime->seqcount); if (vtime->state == VTIME_IDLE) vtime_account_idle(prev); else __vtime_account_kernel(prev, vtime); vtime->state = VTIME_INACTIVE; vtime->cpu = -1; write_seqcount_end(&vtime->seqcount); vtime = ¤t->vtime; write_seqcount_begin(&vtime->seqcount); if (is_idle_task(current)) vtime->state = VTIME_IDLE; else if (current->flags & PF_VCPU) vtime->state = VTIME_GUEST; else vtime->state = VTIME_SYS; vtime->starttime = sched_clock(); vtime->cpu = smp_processor_id(); write_seqcount_end(&vtime->seqcount); } void vtime_init_idle(struct task_struct *t, int cpu) { struct vtime *vtime = &t->vtime; unsigned long flags; local_irq_save(flags); write_seqcount_begin(&vtime->seqcount); vtime->state = VTIME_IDLE; vtime->starttime = sched_clock(); vtime->cpu = cpu; write_seqcount_end(&vtime->seqcount); local_irq_restore(flags); } u64 task_gtime(struct task_struct *t) { struct vtime *vtime = &t->vtime; unsigned int seq; u64 gtime; if (!vtime_accounting_enabled()) return t->gtime; do { seq = read_seqcount_begin(&vtime->seqcount); gtime = t->gtime; if (vtime->state == VTIME_GUEST) gtime += vtime->gtime + vtime_delta(vtime); } while (read_seqcount_retry(&vtime->seqcount, seq)); return gtime; } /* * Fetch cputime raw values from fields of task_struct and * add up the pending nohz execution time since the last * cputime snapshot. */ bool task_cputime(struct task_struct *t, u64 *utime, u64 *stime) { struct vtime *vtime = &t->vtime; unsigned int seq; u64 delta; int ret; if (!vtime_accounting_enabled()) { *utime = t->utime; *stime = t->stime; return false; } do { ret = false; seq = read_seqcount_begin(&vtime->seqcount); *utime = t->utime; *stime = t->stime; /* Task is sleeping or idle, nothing to add */ if (vtime->state < VTIME_SYS) continue; ret = true; delta = vtime_delta(vtime); /* * Task runs either in user (including guest) or kernel space, * add pending nohz time to the right place. */ if (vtime->state == VTIME_SYS) *stime += vtime->stime + delta; else *utime += vtime->utime + delta; } while (read_seqcount_retry(&vtime->seqcount, seq)); return ret; } static int vtime_state_fetch(struct vtime *vtime, int cpu) { int state = READ_ONCE(vtime->state); /* * We raced against a context switch, fetch the * kcpustat task again. */ if (vtime->cpu != cpu && vtime->cpu != -1) return -EAGAIN; /* * Two possible things here: * 1) We are seeing the scheduling out task (prev) or any past one. * 2) We are seeing the scheduling in task (next) but it hasn't * passed though vtime_task_switch() yet so the pending * cputime of the prev task may not be flushed yet. * * Case 1) is ok but 2) is not. So wait for a safe VTIME state. */ if (state == VTIME_INACTIVE) return -EAGAIN; return state; } static u64 kcpustat_user_vtime(struct vtime *vtime) { if (vtime->state == VTIME_USER) return vtime->utime + vtime_delta(vtime); else if (vtime->state == VTIME_GUEST) return vtime->gtime + vtime_delta(vtime); return 0; } static int kcpustat_field_vtime(u64 *cpustat, struct task_struct *tsk, enum cpu_usage_stat usage, int cpu, u64 *val) { struct vtime *vtime = &tsk->vtime; unsigned int seq; do { int state; seq = read_seqcount_begin(&vtime->seqcount); state = vtime_state_fetch(vtime, cpu); if (state < 0) return state; *val = cpustat[usage]; /* * Nice VS unnice cputime accounting may be inaccurate if * the nice value has changed since the last vtime update. * But proper fix would involve interrupting target on nice * updates which is a no go on nohz_full (although the scheduler * may still interrupt the target if rescheduling is needed...) */ switch (usage) { case CPUTIME_SYSTEM: if (state == VTIME_SYS) *val += vtime->stime + vtime_delta(vtime); break; case CPUTIME_USER: if (task_nice(tsk) <= 0) *val += kcpustat_user_vtime(vtime); break; case CPUTIME_NICE: if (task_nice(tsk) > 0) *val += kcpustat_user_vtime(vtime); break; case CPUTIME_GUEST: if (state == VTIME_GUEST && task_nice(tsk) <= 0) *val += vtime->gtime + vtime_delta(vtime); break; case CPUTIME_GUEST_NICE: if (state == VTIME_GUEST && task_nice(tsk) > 0) *val += vtime->gtime + vtime_delta(vtime); break; default: break; } } while (read_seqcount_retry(&vtime->seqcount, seq)); return 0; } u64 kcpustat_field(struct kernel_cpustat *kcpustat, enum cpu_usage_stat usage, int cpu) { u64 *cpustat = kcpustat->cpustat; u64 val = cpustat[usage]; struct rq *rq; int err; if (!vtime_accounting_enabled_cpu(cpu)) return val; rq = cpu_rq(cpu); for (;;) { struct task_struct *curr; rcu_read_lock(); curr = rcu_dereference(rq->curr); if (WARN_ON_ONCE(!curr)) { rcu_read_unlock(); return cpustat[usage]; } err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val); rcu_read_unlock(); if (!err) return val; cpu_relax(); } } EXPORT_SYMBOL_GPL(kcpustat_field); static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst, const struct kernel_cpustat *src, struct task_struct *tsk, int cpu) { struct vtime *vtime = &tsk->vtime; unsigned int seq; do { u64 *cpustat; u64 delta; int state; seq = read_seqcount_begin(&vtime->seqcount); state = vtime_state_fetch(vtime, cpu); if (state < 0) return state; *dst = *src; cpustat = dst->cpustat; /* Task is sleeping, dead or idle, nothing to add */ if (state < VTIME_SYS) continue; delta = vtime_delta(vtime); /* * Task runs either in user (including guest) or kernel space, * add pending nohz time to the right place. */ if (state == VTIME_SYS) { cpustat[CPUTIME_SYSTEM] += vtime->stime + delta; } else if (state == VTIME_USER) { if (task_nice(tsk) > 0) cpustat[CPUTIME_NICE] += vtime->utime + delta; else cpustat[CPUTIME_USER] += vtime->utime + delta; } else { WARN_ON_ONCE(state != VTIME_GUEST); if (task_nice(tsk) > 0) { cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta; cpustat[CPUTIME_NICE] += vtime->gtime + delta; } else { cpustat[CPUTIME_GUEST] += vtime->gtime + delta; cpustat[CPUTIME_USER] += vtime->gtime + delta; } } } while (read_seqcount_retry(&vtime->seqcount, seq)); return 0; } void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu) { const struct kernel_cpustat *src = &kcpustat_cpu(cpu); struct rq *rq; int err; if (!vtime_accounting_enabled_cpu(cpu)) { *dst = *src; return; } rq = cpu_rq(cpu); for (;;) { struct task_struct *curr; rcu_read_lock(); curr = rcu_dereference(rq->curr); if (WARN_ON_ONCE(!curr)) { rcu_read_unlock(); *dst = *src; return; } err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu); rcu_read_unlock(); if (!err) return; cpu_relax(); } } EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch); #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */ |