Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
// SPDX-License-Identifier: GPL-2.0-only
/*
 * MIPS-specific support for Broadcom STB S2/S3/S5 power management
 *
 * Copyright (C) 2016-2017 Broadcom
 */

#include <linux/kernel.h>
#include <linux/printk.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/delay.h>
#include <linux/suspend.h>
#include <asm/bmips.h>
#include <asm/tlbflush.h>

#include "pm.h"

#define S2_NUM_PARAMS		6
#define MAX_NUM_MEMC		3

/* S3 constants */
#define MAX_GP_REGS		16
#define MAX_CP0_REGS		32
#define NUM_MEMC_CLIENTS	128
#define AON_CTRL_RAM_SIZE	128
#define BRCMSTB_S3_MAGIC	0x5AFEB007

#define CLEAR_RESET_MASK	0x01

/* Index each CP0 register that needs to be saved */
#define CONTEXT		0
#define USER_LOCAL	1
#define PGMK		2
#define HWRENA		3
#define COMPARE		4
#define STATUS		5
#define CONFIG		6
#define MODE		7
#define EDSP		8
#define BOOT_VEC	9
#define EBASE		10

struct brcmstb_memc {
	void __iomem *ddr_phy_base;
	void __iomem *arb_base;
};

struct brcmstb_pm_control {
	void __iomem *aon_ctrl_base;
	void __iomem *aon_sram_base;
	void __iomem *timers_base;
	struct brcmstb_memc memcs[MAX_NUM_MEMC];
	int num_memc;
};

struct brcm_pm_s3_context {
	u32			cp0_regs[MAX_CP0_REGS];
	u32			memc0_rts[NUM_MEMC_CLIENTS];
	u32			sc_boot_vec;
};

struct brcmstb_mem_transfer;

struct brcmstb_mem_transfer {
	struct brcmstb_mem_transfer	*next;
	void				*src;
	void				*dst;
	dma_addr_t			pa_src;
	dma_addr_t			pa_dst;
	u32				len;
	u8				key;
	u8				mode;
	u8				src_remapped;
	u8				dst_remapped;
	u8				src_dst_remapped;
};

#define AON_SAVE_SRAM(base, idx, val) \
	__raw_writel(val, base + (idx << 2))

/* Used for saving registers in asm */
u32 gp_regs[MAX_GP_REGS];

#define	BSP_CLOCK_STOP		0x00
#define PM_INITIATE		0x01

static struct brcmstb_pm_control ctrl;

static void brcm_pm_save_cp0_context(struct brcm_pm_s3_context *ctx)
{
	/* Generic MIPS */
	ctx->cp0_regs[CONTEXT] = read_c0_context();
	ctx->cp0_regs[USER_LOCAL] = read_c0_userlocal();
	ctx->cp0_regs[PGMK] = read_c0_pagemask();
	ctx->cp0_regs[HWRENA] = read_c0_cache();
	ctx->cp0_regs[COMPARE] = read_c0_compare();
	ctx->cp0_regs[STATUS] = read_c0_status();

	/* Broadcom specific */
	ctx->cp0_regs[CONFIG] = read_c0_brcm_config();
	ctx->cp0_regs[MODE] = read_c0_brcm_mode();
	ctx->cp0_regs[EDSP] = read_c0_brcm_edsp();
	ctx->cp0_regs[BOOT_VEC] = read_c0_brcm_bootvec();
	ctx->cp0_regs[EBASE] = read_c0_ebase();

	ctx->sc_boot_vec = bmips_read_zscm_reg(0xa0);
}

static void brcm_pm_restore_cp0_context(struct brcm_pm_s3_context *ctx)
{
	/* Restore cp0 state */
	bmips_write_zscm_reg(0xa0, ctx->sc_boot_vec);

	/* Generic MIPS */
	write_c0_context(ctx->cp0_regs[CONTEXT]);
	write_c0_userlocal(ctx->cp0_regs[USER_LOCAL]);
	write_c0_pagemask(ctx->cp0_regs[PGMK]);
	write_c0_cache(ctx->cp0_regs[HWRENA]);
	write_c0_compare(ctx->cp0_regs[COMPARE]);
	write_c0_status(ctx->cp0_regs[STATUS]);

	/* Broadcom specific */
	write_c0_brcm_config(ctx->cp0_regs[CONFIG]);
	write_c0_brcm_mode(ctx->cp0_regs[MODE]);
	write_c0_brcm_edsp(ctx->cp0_regs[EDSP]);
	write_c0_brcm_bootvec(ctx->cp0_regs[BOOT_VEC]);
	write_c0_ebase(ctx->cp0_regs[EBASE]);
}

static void  brcmstb_pm_handshake(void)
{
	void __iomem *base = ctrl.aon_ctrl_base;
	u32 tmp;

	/* BSP power handshake, v1 */
	tmp = __raw_readl(base + AON_CTRL_HOST_MISC_CMDS);
	tmp &= ~1UL;
	__raw_writel(tmp, base + AON_CTRL_HOST_MISC_CMDS);
	(void)__raw_readl(base + AON_CTRL_HOST_MISC_CMDS);

	__raw_writel(0, base + AON_CTRL_PM_INITIATE);
	(void)__raw_readl(base + AON_CTRL_PM_INITIATE);
	__raw_writel(BSP_CLOCK_STOP | PM_INITIATE,
		     base + AON_CTRL_PM_INITIATE);
	/*
	 * HACK: BSP may have internal race on the CLOCK_STOP command.
	 * Avoid touching the BSP for a few milliseconds.
	 */
	mdelay(3);
}

static void brcmstb_pm_s5(void)
{
	void __iomem *base = ctrl.aon_ctrl_base;

	brcmstb_pm_handshake();

	/* Clear magic s3 warm-boot value */
	AON_SAVE_SRAM(ctrl.aon_sram_base, 0, 0);

	/* Set the countdown */
	__raw_writel(0x10, base + AON_CTRL_PM_CPU_WAIT_COUNT);
	(void)__raw_readl(base + AON_CTRL_PM_CPU_WAIT_COUNT);

	/* Prepare to S5 cold boot */
	__raw_writel(PM_COLD_CONFIG, base + AON_CTRL_PM_CTRL);
	(void)__raw_readl(base + AON_CTRL_PM_CTRL);

	__raw_writel((PM_COLD_CONFIG | PM_PWR_DOWN), base +
		      AON_CTRL_PM_CTRL);
	(void)__raw_readl(base + AON_CTRL_PM_CTRL);

	__asm__ __volatile__(
	"	wait\n"
	: : : "memory");
}

static int brcmstb_pm_s3(void)
{
	struct brcm_pm_s3_context s3_context;
	void __iomem *memc_arb_base;
	unsigned long flags;
	u32 tmp;
	int i;

	/* Prepare for s3 */
	AON_SAVE_SRAM(ctrl.aon_sram_base, 0, BRCMSTB_S3_MAGIC);
	AON_SAVE_SRAM(ctrl.aon_sram_base, 1, (u32)&s3_reentry);
	AON_SAVE_SRAM(ctrl.aon_sram_base, 2, 0);

	/* Clear RESET_HISTORY */
	tmp = __raw_readl(ctrl.aon_ctrl_base + AON_CTRL_RESET_CTRL);
	tmp &= ~CLEAR_RESET_MASK;
	__raw_writel(tmp, ctrl.aon_ctrl_base + AON_CTRL_RESET_CTRL);

	local_irq_save(flags);

	/* Inhibit DDR_RSTb pulse for both MMCs*/
	for (i = 0; i < ctrl.num_memc; i++) {
		tmp = __raw_readl(ctrl.memcs[i].ddr_phy_base +
			DDR40_PHY_CONTROL_REGS_0_STANDBY_CTRL);

		tmp &= ~0x0f;
		__raw_writel(tmp, ctrl.memcs[i].ddr_phy_base +
			DDR40_PHY_CONTROL_REGS_0_STANDBY_CTRL);
		tmp |= (0x05 | BIT(5));
		__raw_writel(tmp, ctrl.memcs[i].ddr_phy_base +
			DDR40_PHY_CONTROL_REGS_0_STANDBY_CTRL);
	}

	/* Save CP0 context */
	brcm_pm_save_cp0_context(&s3_context);

	/* Save RTS(skip debug register) */
	memc_arb_base = ctrl.memcs[0].arb_base + 4;
	for (i = 0; i < NUM_MEMC_CLIENTS; i++) {
		s3_context.memc0_rts[i] = __raw_readl(memc_arb_base);
		memc_arb_base += 4;
	}

	/* Save I/O context */
	local_flush_tlb_all();
	_dma_cache_wback_inv(0, ~0);

	brcm_pm_do_s3(ctrl.aon_ctrl_base, current_cpu_data.dcache.linesz);

	/* CPU reconfiguration */
	local_flush_tlb_all();
	bmips_cpu_setup();
	cpumask_clear(&bmips_booted_mask);

	/* Restore RTS (skip debug register) */
	memc_arb_base = ctrl.memcs[0].arb_base + 4;
	for (i = 0; i < NUM_MEMC_CLIENTS; i++) {
		__raw_writel(s3_context.memc0_rts[i], memc_arb_base);
		memc_arb_base += 4;
	}

	/* restore CP0 context */
	brcm_pm_restore_cp0_context(&s3_context);

	local_irq_restore(flags);

	return 0;
}

static int brcmstb_pm_s2(void)
{
	/*
	 * We need to pass 6 arguments to an assembly function. Lets avoid the
	 * stack and pass arguments in a explicit 4 byte array. The assembly
	 * code assumes all arguments are 4 bytes and arguments are ordered
	 * like so:
	 *
	 * 0: AON_CTRl base register
	 * 1: DDR_PHY base register
	 * 2: TIMERS base resgister
	 * 3: I-Cache line size
	 * 4: Restart vector address
	 * 5: Restart vector size
	 */
	u32 s2_params[6];

	/* Prepare s2 parameters */
	s2_params[0] = (u32)ctrl.aon_ctrl_base;
	s2_params[1] = (u32)ctrl.memcs[0].ddr_phy_base;
	s2_params[2] = (u32)ctrl.timers_base;
	s2_params[3] = (u32)current_cpu_data.icache.linesz;
	s2_params[4] = (u32)BMIPS_WARM_RESTART_VEC;
	s2_params[5] = (u32)(bmips_smp_int_vec_end -
		bmips_smp_int_vec);

	/* Drop to standby */
	brcm_pm_do_s2(s2_params);

	return 0;
}

static int brcmstb_pm_standby(bool deep_standby)
{
	brcmstb_pm_handshake();

	/* Send IRQs to BMIPS_WARM_RESTART_VEC */
	clear_c0_cause(CAUSEF_IV);
	irq_disable_hazard();
	set_c0_status(ST0_BEV);
	irq_disable_hazard();

	if (deep_standby)
		brcmstb_pm_s3();
	else
		brcmstb_pm_s2();

	/* Send IRQs to normal runtime vectors */
	clear_c0_status(ST0_BEV);
	irq_disable_hazard();
	set_c0_cause(CAUSEF_IV);
	irq_disable_hazard();

	return 0;
}

static int brcmstb_pm_enter(suspend_state_t state)
{
	int ret = -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		ret = brcmstb_pm_standby(false);
		break;
	case PM_SUSPEND_MEM:
		ret = brcmstb_pm_standby(true);
		break;
	}

	return ret;
}

static int brcmstb_pm_valid(suspend_state_t state)
{
	switch (state) {
	case PM_SUSPEND_STANDBY:
		return true;
	case PM_SUSPEND_MEM:
		return true;
	default:
		return false;
	}
}

static const struct platform_suspend_ops brcmstb_pm_ops = {
	.enter		= brcmstb_pm_enter,
	.valid		= brcmstb_pm_valid,
};

static const struct of_device_id aon_ctrl_dt_ids[] = {
	{ .compatible = "brcm,brcmstb-aon-ctrl" },
	{ /* sentinel */ }
};

static const struct of_device_id ddr_phy_dt_ids[] = {
	{ .compatible = "brcm,brcmstb-ddr-phy" },
	{ /* sentinel */ }
};

static const struct of_device_id arb_dt_ids[] = {
	{ .compatible = "brcm,brcmstb-memc-arb" },
	{ /* sentinel */ }
};

static const struct of_device_id timers_ids[] = {
	{ .compatible = "brcm,brcmstb-timers" },
	{ /* sentinel */ }
};

static inline void __iomem *brcmstb_ioremap_node(struct device_node *dn,
						 int index)
{
	return of_io_request_and_map(dn, index, dn->full_name);
}

static void __iomem *brcmstb_ioremap_match(const struct of_device_id *matches,
					   int index, const void **ofdata)
{
	struct device_node *dn;
	const struct of_device_id *match;

	dn = of_find_matching_node_and_match(NULL, matches, &match);
	if (!dn)
		return ERR_PTR(-EINVAL);

	if (ofdata)
		*ofdata = match->data;

	return brcmstb_ioremap_node(dn, index);
}

static int brcmstb_pm_init(void)
{
	struct device_node *dn;
	void __iomem *base;
	int i;

	/* AON ctrl registers */
	base = brcmstb_ioremap_match(aon_ctrl_dt_ids, 0, NULL);
	if (IS_ERR(base)) {
		pr_err("error mapping AON_CTRL\n");
		goto aon_err;
	}
	ctrl.aon_ctrl_base = base;

	/* AON SRAM registers */
	base = brcmstb_ioremap_match(aon_ctrl_dt_ids, 1, NULL);
	if (IS_ERR(base)) {
		pr_err("error mapping AON_SRAM\n");
		goto sram_err;
	}
	ctrl.aon_sram_base = base;

	ctrl.num_memc = 0;
	/* Map MEMC DDR PHY registers */
	for_each_matching_node(dn, ddr_phy_dt_ids) {
		i = ctrl.num_memc;
		if (i >= MAX_NUM_MEMC) {
			pr_warn("Too many MEMCs (max %d)\n", MAX_NUM_MEMC);
			of_node_put(dn);
			break;
		}
		base = brcmstb_ioremap_node(dn, 0);
		if (IS_ERR(base)) {
			of_node_put(dn);
			goto ddr_err;
		}

		ctrl.memcs[i].ddr_phy_base = base;
		ctrl.num_memc++;
	}

	/* MEMC ARB registers */
	base = brcmstb_ioremap_match(arb_dt_ids, 0, NULL);
	if (IS_ERR(base)) {
		pr_err("error mapping MEMC ARB\n");
		goto ddr_err;
	}
	ctrl.memcs[0].arb_base = base;

	/* Timer registers */
	base = brcmstb_ioremap_match(timers_ids, 0, NULL);
	if (IS_ERR(base)) {
		pr_err("error mapping timers\n");
		goto tmr_err;
	}
	ctrl.timers_base = base;

	/* s3 cold boot aka s5 */
	pm_power_off = brcmstb_pm_s5;

	suspend_set_ops(&brcmstb_pm_ops);

	return 0;

tmr_err:
	iounmap(ctrl.memcs[0].arb_base);
ddr_err:
	for (i = 0; i < ctrl.num_memc; i++)
		iounmap(ctrl.memcs[i].ddr_phy_base);

	iounmap(ctrl.aon_sram_base);
sram_err:
	iounmap(ctrl.aon_ctrl_base);
aon_err:
	return PTR_ERR(base);
}
arch_initcall(brcmstb_pm_init);