Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 | // SPDX-License-Identifier: GPL-2.0-only /* * OMAP MPUSS low power code * * Copyright (C) 2011 Texas Instruments, Inc. * Santosh Shilimkar <santosh.shilimkar@ti.com> * * OMAP4430 MPUSS mainly consists of dual Cortex-A9 with per-CPU * Local timer and Watchdog, GIC, SCU, PL310 L2 cache controller, * CPU0 and CPU1 LPRM modules. * CPU0, CPU1 and MPUSS each have there own power domain and * hence multiple low power combinations of MPUSS are possible. * * The CPU0 and CPU1 can't support Closed switch Retention (CSWR) * because the mode is not supported by hw constraints of dormant * mode. While waking up from the dormant mode, a reset signal * to the Cortex-A9 processor must be asserted by the external * power controller. * * With architectural inputs and hardware recommendations, only * below modes are supported from power gain vs latency point of view. * * CPU0 CPU1 MPUSS * ---------------------------------------------- * ON ON ON * ON(Inactive) OFF ON(Inactive) * OFF OFF CSWR * OFF OFF OSWR * OFF OFF OFF(Device OFF *TBD) * ---------------------------------------------- * * Note: CPU0 is the master core and it is the last CPU to go down * and first to wake-up when MPUSS low power states are excercised */ #include <linux/cpuidle.h> #include <linux/kernel.h> #include <linux/io.h> #include <linux/errno.h> #include <linux/linkage.h> #include <linux/smp.h> #include <asm/cacheflush.h> #include <asm/tlbflush.h> #include <asm/smp_scu.h> #include <asm/suspend.h> #include <asm/virt.h> #include <asm/hardware/cache-l2x0.h> #include "soc.h" #include "common.h" #include "omap44xx.h" #include "omap4-sar-layout.h" #include "pm.h" #include "prcm_mpu44xx.h" #include "prcm_mpu54xx.h" #include "prminst44xx.h" #include "prcm44xx.h" #include "prm44xx.h" #include "prm-regbits-44xx.h" static void __iomem *sar_base; static u32 old_cpu1_ns_pa_addr; #if defined(CONFIG_PM) && defined(CONFIG_SMP) struct omap4_cpu_pm_info { struct powerdomain *pwrdm; void __iomem *scu_sar_addr; void __iomem *wkup_sar_addr; void __iomem *l2x0_sar_addr; }; /** * struct cpu_pm_ops - CPU pm operations * @finish_suspend: CPU suspend finisher function pointer * @resume: CPU resume function pointer * @scu_prepare: CPU Snoop Control program function pointer * @hotplug_restart: CPU restart function pointer * * Structure holds functions pointer for CPU low power operations like * suspend, resume and scu programming. */ struct cpu_pm_ops { int (*finish_suspend)(unsigned long cpu_state); void (*resume)(void); void (*scu_prepare)(unsigned int cpu_id, unsigned int cpu_state); void (*hotplug_restart)(void); }; static DEFINE_PER_CPU(struct omap4_cpu_pm_info, omap4_pm_info); static struct powerdomain *mpuss_pd; static u32 cpu_context_offset; static int default_finish_suspend(unsigned long cpu_state) { omap_do_wfi(); return 0; } static void dummy_cpu_resume(void) {} static void dummy_scu_prepare(unsigned int cpu_id, unsigned int cpu_state) {} static struct cpu_pm_ops omap_pm_ops = { .finish_suspend = default_finish_suspend, .resume = dummy_cpu_resume, .scu_prepare = dummy_scu_prepare, .hotplug_restart = dummy_cpu_resume, }; /* * Program the wakeup routine address for the CPU0 and CPU1 * used for OFF or DORMANT wakeup. */ static inline void set_cpu_wakeup_addr(unsigned int cpu_id, u32 addr) { struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu_id); if (pm_info->wkup_sar_addr) writel_relaxed(addr, pm_info->wkup_sar_addr); } /* * Store the SCU power status value to scratchpad memory */ static void scu_pwrst_prepare(unsigned int cpu_id, unsigned int cpu_state) { struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu_id); u32 scu_pwr_st; switch (cpu_state) { case PWRDM_POWER_RET: scu_pwr_st = SCU_PM_DORMANT; break; case PWRDM_POWER_OFF: scu_pwr_st = SCU_PM_POWEROFF; break; case PWRDM_POWER_ON: case PWRDM_POWER_INACTIVE: default: scu_pwr_st = SCU_PM_NORMAL; break; } if (pm_info->scu_sar_addr) writel_relaxed(scu_pwr_st, pm_info->scu_sar_addr); } /* Helper functions for MPUSS OSWR */ static inline void mpuss_clear_prev_logic_pwrst(void) { u32 reg; reg = omap4_prminst_read_inst_reg(OMAP4430_PRM_PARTITION, OMAP4430_PRM_MPU_INST, OMAP4_RM_MPU_MPU_CONTEXT_OFFSET); omap4_prminst_write_inst_reg(reg, OMAP4430_PRM_PARTITION, OMAP4430_PRM_MPU_INST, OMAP4_RM_MPU_MPU_CONTEXT_OFFSET); } static inline void cpu_clear_prev_logic_pwrst(unsigned int cpu_id) { u32 reg; if (cpu_id) { reg = omap4_prcm_mpu_read_inst_reg(OMAP4430_PRCM_MPU_CPU1_INST, cpu_context_offset); omap4_prcm_mpu_write_inst_reg(reg, OMAP4430_PRCM_MPU_CPU1_INST, cpu_context_offset); } else { reg = omap4_prcm_mpu_read_inst_reg(OMAP4430_PRCM_MPU_CPU0_INST, cpu_context_offset); omap4_prcm_mpu_write_inst_reg(reg, OMAP4430_PRCM_MPU_CPU0_INST, cpu_context_offset); } } /* * Store the CPU cluster state for L2X0 low power operations. */ static void l2x0_pwrst_prepare(unsigned int cpu_id, unsigned int save_state) { struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu_id); if (pm_info->l2x0_sar_addr) writel_relaxed(save_state, pm_info->l2x0_sar_addr); } /* * Save the L2X0 AUXCTRL and POR value to SAR memory. Its used to * in every restore MPUSS OFF path. */ #ifdef CONFIG_CACHE_L2X0 static void __init save_l2x0_context(void) { void __iomem *l2x0_base = omap4_get_l2cache_base(); if (l2x0_base && sar_base) { writel_relaxed(l2x0_saved_regs.aux_ctrl, sar_base + L2X0_AUXCTRL_OFFSET); writel_relaxed(l2x0_saved_regs.prefetch_ctrl, sar_base + L2X0_PREFETCH_CTRL_OFFSET); } } #else static void __init save_l2x0_context(void) {} #endif /** * omap4_enter_lowpower: OMAP4 MPUSS Low Power Entry Function * The purpose of this function is to manage low power programming * of OMAP4 MPUSS subsystem * @cpu : CPU ID * @power_state: Low power state. * @rcuidle: RCU needs to be idled * * MPUSS states for the context save: * save_state = * 0 - Nothing lost and no need to save: MPUSS INACTIVE * 1 - CPUx L1 and logic lost: MPUSS CSWR * 2 - CPUx L1 and logic lost + GIC lost: MPUSS OSWR * 3 - CPUx L1 and logic lost + GIC + L2 lost: DEVICE OFF */ __cpuidle int omap4_enter_lowpower(unsigned int cpu, unsigned int power_state, bool rcuidle) { struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu); unsigned int save_state = 0, cpu_logic_state = PWRDM_POWER_RET; if (omap_rev() == OMAP4430_REV_ES1_0) return -ENXIO; switch (power_state) { case PWRDM_POWER_ON: case PWRDM_POWER_INACTIVE: save_state = 0; break; case PWRDM_POWER_OFF: cpu_logic_state = PWRDM_POWER_OFF; save_state = 1; break; case PWRDM_POWER_RET: if (IS_PM44XX_ERRATUM(PM_OMAP4_CPU_OSWR_DISABLE)) save_state = 0; break; default: /* * CPUx CSWR is invalid hardware state. Also CPUx OSWR * doesn't make much scense, since logic is lost and $L1 * needs to be cleaned because of coherency. This makes * CPUx OSWR equivalent to CPUX OFF and hence not supported */ WARN_ON(1); return -ENXIO; } pwrdm_pre_transition(NULL); /* * Check MPUSS next state and save interrupt controller if needed. * In MPUSS OSWR or device OFF, interrupt controller contest is lost. */ mpuss_clear_prev_logic_pwrst(); if ((pwrdm_read_next_pwrst(mpuss_pd) == PWRDM_POWER_RET) && (pwrdm_read_logic_retst(mpuss_pd) == PWRDM_POWER_OFF)) save_state = 2; cpu_clear_prev_logic_pwrst(cpu); pwrdm_set_next_pwrst(pm_info->pwrdm, power_state); pwrdm_set_logic_retst(pm_info->pwrdm, cpu_logic_state); if (rcuidle) ct_cpuidle_enter(); set_cpu_wakeup_addr(cpu, __pa_symbol(omap_pm_ops.resume)); omap_pm_ops.scu_prepare(cpu, power_state); l2x0_pwrst_prepare(cpu, save_state); /* * Call low level function with targeted low power state. */ if (save_state) cpu_suspend(save_state, omap_pm_ops.finish_suspend); else omap_pm_ops.finish_suspend(save_state); if (IS_PM44XX_ERRATUM(PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD) && cpu) gic_dist_enable(); if (rcuidle) ct_cpuidle_exit(); /* * Restore the CPUx power state to ON otherwise CPUx * power domain can transitions to programmed low power * state while doing WFI outside the low powe code. On * secure devices, CPUx does WFI which can result in * domain transition */ pwrdm_set_next_pwrst(pm_info->pwrdm, PWRDM_POWER_ON); pwrdm_post_transition(NULL); return 0; } /** * omap4_hotplug_cpu: OMAP4 CPU hotplug entry * @cpu : CPU ID * @power_state: CPU low power state. */ int omap4_hotplug_cpu(unsigned int cpu, unsigned int power_state) { struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu); unsigned int cpu_state = 0; if (omap_rev() == OMAP4430_REV_ES1_0) return -ENXIO; /* Use the achievable power state for the domain */ power_state = pwrdm_get_valid_lp_state(pm_info->pwrdm, false, power_state); if (power_state == PWRDM_POWER_OFF) cpu_state = 1; pwrdm_clear_all_prev_pwrst(pm_info->pwrdm); pwrdm_set_next_pwrst(pm_info->pwrdm, power_state); set_cpu_wakeup_addr(cpu, __pa_symbol(omap_pm_ops.hotplug_restart)); omap_pm_ops.scu_prepare(cpu, power_state); /* * CPU never retuns back if targeted power state is OFF mode. * CPU ONLINE follows normal CPU ONLINE ptah via * omap4_secondary_startup(). */ omap_pm_ops.finish_suspend(cpu_state); pwrdm_set_next_pwrst(pm_info->pwrdm, PWRDM_POWER_ON); return 0; } /* * Enable Mercury Fast HG retention mode by default. */ static void enable_mercury_retention_mode(void) { u32 reg; reg = omap4_prcm_mpu_read_inst_reg(OMAP54XX_PRCM_MPU_DEVICE_INST, OMAP54XX_PRCM_MPU_PRM_PSCON_COUNT_OFFSET); /* Enable HG_EN, HG_RAMPUP = fast mode */ reg |= BIT(24) | BIT(25); omap4_prcm_mpu_write_inst_reg(reg, OMAP54XX_PRCM_MPU_DEVICE_INST, OMAP54XX_PRCM_MPU_PRM_PSCON_COUNT_OFFSET); } /* * Initialise OMAP4 MPUSS */ int __init omap4_mpuss_init(void) { struct omap4_cpu_pm_info *pm_info; if (omap_rev() == OMAP4430_REV_ES1_0) { WARN(1, "Power Management not supported on OMAP4430 ES1.0\n"); return -ENODEV; } /* Initilaise per CPU PM information */ pm_info = &per_cpu(omap4_pm_info, 0x0); if (sar_base) { pm_info->scu_sar_addr = sar_base + SCU_OFFSET0; if (cpu_is_omap44xx()) pm_info->wkup_sar_addr = sar_base + CPU0_WAKEUP_NS_PA_ADDR_OFFSET; else pm_info->wkup_sar_addr = sar_base + OMAP5_CPU0_WAKEUP_NS_PA_ADDR_OFFSET; pm_info->l2x0_sar_addr = sar_base + L2X0_SAVE_OFFSET0; } pm_info->pwrdm = pwrdm_lookup("cpu0_pwrdm"); if (!pm_info->pwrdm) { pr_err("Lookup failed for CPU0 pwrdm\n"); return -ENODEV; } /* Clear CPU previous power domain state */ pwrdm_clear_all_prev_pwrst(pm_info->pwrdm); cpu_clear_prev_logic_pwrst(0); /* Initialise CPU0 power domain state to ON */ pwrdm_set_next_pwrst(pm_info->pwrdm, PWRDM_POWER_ON); pm_info = &per_cpu(omap4_pm_info, 0x1); if (sar_base) { pm_info->scu_sar_addr = sar_base + SCU_OFFSET1; if (cpu_is_omap44xx()) pm_info->wkup_sar_addr = sar_base + CPU1_WAKEUP_NS_PA_ADDR_OFFSET; else pm_info->wkup_sar_addr = sar_base + OMAP5_CPU1_WAKEUP_NS_PA_ADDR_OFFSET; pm_info->l2x0_sar_addr = sar_base + L2X0_SAVE_OFFSET1; } pm_info->pwrdm = pwrdm_lookup("cpu1_pwrdm"); if (!pm_info->pwrdm) { pr_err("Lookup failed for CPU1 pwrdm\n"); return -ENODEV; } /* Clear CPU previous power domain state */ pwrdm_clear_all_prev_pwrst(pm_info->pwrdm); cpu_clear_prev_logic_pwrst(1); /* Initialise CPU1 power domain state to ON */ pwrdm_set_next_pwrst(pm_info->pwrdm, PWRDM_POWER_ON); mpuss_pd = pwrdm_lookup("mpu_pwrdm"); if (!mpuss_pd) { pr_err("Failed to lookup MPUSS power domain\n"); return -ENODEV; } pwrdm_clear_all_prev_pwrst(mpuss_pd); mpuss_clear_prev_logic_pwrst(); if (sar_base) { /* Save device type on scratchpad for low level code to use */ writel_relaxed((omap_type() != OMAP2_DEVICE_TYPE_GP) ? 1 : 0, sar_base + OMAP_TYPE_OFFSET); save_l2x0_context(); } if (cpu_is_omap44xx()) { omap_pm_ops.finish_suspend = omap4_finish_suspend; omap_pm_ops.resume = omap4_cpu_resume; omap_pm_ops.scu_prepare = scu_pwrst_prepare; omap_pm_ops.hotplug_restart = omap4_secondary_startup; cpu_context_offset = OMAP4_RM_CPU0_CPU0_CONTEXT_OFFSET; } else if (soc_is_omap54xx() || soc_is_dra7xx()) { cpu_context_offset = OMAP54XX_RM_CPU0_CPU0_CONTEXT_OFFSET; enable_mercury_retention_mode(); } if (cpu_is_omap446x()) omap_pm_ops.hotplug_restart = omap4460_secondary_startup; return 0; } #endif u32 omap4_get_cpu1_ns_pa_addr(void) { return old_cpu1_ns_pa_addr; } /* * For kexec, we must set CPU1_WAKEUP_NS_PA_ADDR to point to * current kernel's secondary_startup() early before * clockdomains_init(). Otherwise clockdomain_init() can * wake CPU1 and cause a hang. */ void __init omap4_mpuss_early_init(void) { unsigned long startup_pa; void __iomem *ns_pa_addr; if (!(soc_is_omap44xx() || soc_is_omap54xx())) return; sar_base = omap4_get_sar_ram_base(); /* Save old NS_PA_ADDR for validity checks later on */ if (soc_is_omap44xx()) ns_pa_addr = sar_base + CPU1_WAKEUP_NS_PA_ADDR_OFFSET; else ns_pa_addr = sar_base + OMAP5_CPU1_WAKEUP_NS_PA_ADDR_OFFSET; old_cpu1_ns_pa_addr = readl_relaxed(ns_pa_addr); if (soc_is_omap443x()) startup_pa = __pa_symbol(omap4_secondary_startup); else if (soc_is_omap446x()) startup_pa = __pa_symbol(omap4460_secondary_startup); else if ((__boot_cpu_mode & MODE_MASK) == HYP_MODE) startup_pa = __pa_symbol(omap5_secondary_hyp_startup); else startup_pa = __pa_symbol(omap5_secondary_startup); if (soc_is_omap44xx()) writel_relaxed(startup_pa, sar_base + CPU1_WAKEUP_NS_PA_ADDR_OFFSET); else writel_relaxed(startup_pa, sar_base + OMAP5_CPU1_WAKEUP_NS_PA_ADDR_OFFSET); } |