// SPDX-License-Identifier: GPL-2.0
/*
* Hantro G1 post-processor support
*
* Copyright (C) 2019 Collabora, Ltd.
*/
#include <linux/dma-mapping.h>
#include <linux/types.h>
#include "hantro.h"
#include "hantro_hw.h"
#include "hantro_g1_regs.h"
#include "hantro_g2_regs.h"
#include "hantro_v4l2.h"
#define HANTRO_PP_REG_WRITE(vpu, reg_name, val) \
{ \
hantro_reg_write(vpu, \
&hantro_g1_postproc_regs.reg_name, \
val); \
}
#define HANTRO_PP_REG_WRITE_RELAXED(vpu, reg_name, val) \
{ \
hantro_reg_write_relaxed(vpu, \
&hantro_g1_postproc_regs.reg_name, \
val); \
}
#define VPU_PP_IN_YUYV 0x0
#define VPU_PP_IN_NV12 0x1
#define VPU_PP_IN_YUV420 0x2
#define VPU_PP_IN_YUV240_TILED 0x5
#define VPU_PP_OUT_RGB 0x0
#define VPU_PP_OUT_YUYV 0x3
static const struct hantro_postproc_regs hantro_g1_postproc_regs = {
.pipeline_en = {G1_REG_PP_INTERRUPT, 1, 0x1},
.max_burst = {G1_REG_PP_DEV_CONFIG, 0, 0x1f},
.clk_gate = {G1_REG_PP_DEV_CONFIG, 1, 0x1},
.out_swap32 = {G1_REG_PP_DEV_CONFIG, 5, 0x1},
.out_endian = {G1_REG_PP_DEV_CONFIG, 6, 0x1},
.out_luma_base = {G1_REG_PP_OUT_LUMA_BASE, 0, 0xffffffff},
.input_width = {G1_REG_PP_INPUT_SIZE, 0, 0x1ff},
.input_height = {G1_REG_PP_INPUT_SIZE, 9, 0x1ff},
.output_width = {G1_REG_PP_CONTROL, 4, 0x7ff},
.output_height = {G1_REG_PP_CONTROL, 15, 0x7ff},
.input_fmt = {G1_REG_PP_CONTROL, 29, 0x7},
.output_fmt = {G1_REG_PP_CONTROL, 26, 0x7},
.orig_width = {G1_REG_PP_MASK1_ORIG_WIDTH, 23, 0x1ff},
.display_width = {G1_REG_PP_DISPLAY_WIDTH, 0, 0xfff},
};
bool hantro_needs_postproc(const struct hantro_ctx *ctx,
const struct hantro_fmt *fmt)
{
if (ctx->is_encoder)
return false;
if (ctx->need_postproc)
return true;
return fmt->postprocessed;
}
static void hantro_postproc_g1_enable(struct hantro_ctx *ctx)
{
struct hantro_dev *vpu = ctx->dev;
struct vb2_v4l2_buffer *dst_buf;
u32 src_pp_fmt, dst_pp_fmt;
dma_addr_t dst_dma;
/* Turn on pipeline mode. Must be done first. */
HANTRO_PP_REG_WRITE(vpu, pipeline_en, 0x1);
src_pp_fmt = VPU_PP_IN_NV12;
switch (ctx->vpu_dst_fmt->fourcc) {
case V4L2_PIX_FMT_YUYV:
dst_pp_fmt = VPU_PP_OUT_YUYV;
break;
default:
WARN(1, "output format %d not supported by the post-processor, this wasn't expected.",
ctx->vpu_dst_fmt->fourcc);
dst_pp_fmt = 0;
break;
}
dst_buf = v4l2_m2m_next_dst_buf(ctx->fh.m2m_ctx);
dst_dma = vb2_dma_contig_plane_dma_addr(&dst_buf->vb2_buf, 0);
HANTRO_PP_REG_WRITE(vpu, clk_gate, 0x1);
HANTRO_PP_REG_WRITE(vpu, out_endian, 0x1);
HANTRO_PP_REG_WRITE(vpu, out_swap32, 0x1);
HANTRO_PP_REG_WRITE(vpu, max_burst, 16);
HANTRO_PP_REG_WRITE(vpu, out_luma_base, dst_dma);
HANTRO_PP_REG_WRITE(vpu, input_width, MB_WIDTH(ctx->dst_fmt.width));
HANTRO_PP_REG_WRITE(vpu, input_height, MB_HEIGHT(ctx->dst_fmt.height));
HANTRO_PP_REG_WRITE(vpu, input_fmt, src_pp_fmt);
HANTRO_PP_REG_WRITE(vpu, output_fmt, dst_pp_fmt);
HANTRO_PP_REG_WRITE(vpu, output_width, ctx->dst_fmt.width);
HANTRO_PP_REG_WRITE(vpu, output_height, ctx->dst_fmt.height);
HANTRO_PP_REG_WRITE(vpu, orig_width, MB_WIDTH(ctx->dst_fmt.width));
HANTRO_PP_REG_WRITE(vpu, display_width, ctx->dst_fmt.width);
}
static int down_scale_factor(struct hantro_ctx *ctx)
{
if (ctx->src_fmt.width <= ctx->dst_fmt.width)
return 0;
return DIV_ROUND_CLOSEST(ctx->src_fmt.width, ctx->dst_fmt.width);
}
static void hantro_postproc_g2_enable(struct hantro_ctx *ctx)
{
struct hantro_dev *vpu = ctx->dev;
struct vb2_v4l2_buffer *dst_buf;
int down_scale = down_scale_factor(ctx);
int out_depth;
size_t chroma_offset;
dma_addr_t dst_dma;
dst_buf = hantro_get_dst_buf(ctx);
dst_dma = vb2_dma_contig_plane_dma_addr(&dst_buf->vb2_buf, 0);
chroma_offset = ctx->dst_fmt.plane_fmt[0].bytesperline *
ctx->dst_fmt.height;
if (down_scale) {
hantro_reg_write(vpu, &g2_down_scale_e, 1);
hantro_reg_write(vpu, &g2_down_scale_y, down_scale >> 2);
hantro_reg_write(vpu, &g2_down_scale_x, down_scale >> 2);
hantro_write_addr(vpu, G2_DS_DST, dst_dma);
hantro_write_addr(vpu, G2_DS_DST_CHR, dst_dma + (chroma_offset >> down_scale));
} else {
hantro_write_addr(vpu, G2_RS_OUT_LUMA_ADDR, dst_dma);
hantro_write_addr(vpu, G2_RS_OUT_CHROMA_ADDR, dst_dma + chroma_offset);
}
out_depth = hantro_get_format_depth(ctx->dst_fmt.pixelformat);
if (ctx->dev->variant->legacy_regs) {
u8 pp_shift = 0;
if (out_depth > 8)
pp_shift = 16 - out_depth;
hantro_reg_write(ctx->dev, &g2_rs_out_bit_depth, out_depth);
hantro_reg_write(ctx->dev, &g2_pp_pix_shift, pp_shift);
} else {
hantro_reg_write(vpu, &g2_output_8_bits, out_depth > 8 ? 0 : 1);
hantro_reg_write(vpu, &g2_output_format, out_depth > 8 ? 1 : 0);
}
hantro_reg_write(vpu, &g2_out_rs_e, 1);
}
static int hantro_postproc_g2_enum_framesizes(struct hantro_ctx *ctx,
struct v4l2_frmsizeenum *fsize)
{
/**
* G2 scaler can scale down by 0, 2, 4 or 8
* use fsize->index has power of 2 diviser
**/
if (fsize->index > 3)
return -EINVAL;
if (!ctx->src_fmt.width || !ctx->src_fmt.height)
return -EINVAL;
fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
fsize->discrete.width = ctx->src_fmt.width >> fsize->index;
fsize->discrete.height = ctx->src_fmt.height >> fsize->index;
return 0;
}
void hantro_postproc_free(struct hantro_ctx *ctx)
{
struct hantro_dev *vpu = ctx->dev;
struct v4l2_m2m_ctx *m2m_ctx = ctx->fh.m2m_ctx;
struct vb2_queue *queue = &m2m_ctx->cap_q_ctx.q;
unsigned int i;
for (i = 0; i < queue->max_num_buffers; ++i) {
struct hantro_aux_buf *priv = &ctx->postproc.dec_q[i];
if (priv->cpu) {
dma_free_attrs(vpu->dev, priv->size, priv->cpu,
priv->dma, priv->attrs);
priv->cpu = NULL;
}
}
}
static unsigned int hantro_postproc_buffer_size(struct hantro_ctx *ctx)
{
struct v4l2_pix_format_mplane pix_mp;
const struct hantro_fmt *fmt;
unsigned int buf_size;
/* this should always pick native format */
fmt = hantro_get_default_fmt(ctx, false, ctx->bit_depth, HANTRO_AUTO_POSTPROC);
if (!fmt)
return 0;
v4l2_fill_pixfmt_mp(&pix_mp, fmt->fourcc, ctx->src_fmt.width,
ctx->src_fmt.height);
buf_size = pix_mp.plane_fmt[0].sizeimage;
if (ctx->vpu_src_fmt->fourcc == V4L2_PIX_FMT_H264_SLICE)
buf_size += hantro_h264_mv_size(pix_mp.width,
pix_mp.height);
else if (ctx->vpu_src_fmt->fourcc == V4L2_PIX_FMT_VP9_FRAME)
buf_size += hantro_vp9_mv_size(pix_mp.width,
pix_mp.height);
else if (ctx->vpu_src_fmt->fourcc == V4L2_PIX_FMT_HEVC_SLICE)
buf_size += hantro_hevc_mv_size(pix_mp.width,
pix_mp.height);
else if (ctx->vpu_src_fmt->fourcc == V4L2_PIX_FMT_AV1_FRAME)
buf_size += hantro_av1_mv_size(pix_mp.width,
pix_mp.height);
return buf_size;
}
static int hantro_postproc_alloc(struct hantro_ctx *ctx, int index)
{
struct hantro_dev *vpu = ctx->dev;
struct hantro_aux_buf *priv = &ctx->postproc.dec_q[index];
unsigned int buf_size = hantro_postproc_buffer_size(ctx);
if (!buf_size)
return -EINVAL;
/*
* The buffers on this queue are meant as intermediate
* buffers for the decoder, so no mapping is needed.
*/
priv->attrs = DMA_ATTR_NO_KERNEL_MAPPING;
priv->cpu = dma_alloc_attrs(vpu->dev, buf_size, &priv->dma,
GFP_KERNEL, priv->attrs);
if (!priv->cpu)
return -ENOMEM;
priv->size = buf_size;
return 0;
}
int hantro_postproc_init(struct hantro_ctx *ctx)
{
struct v4l2_m2m_ctx *m2m_ctx = ctx->fh.m2m_ctx;
struct vb2_queue *cap_queue = &m2m_ctx->cap_q_ctx.q;
unsigned int num_buffers = vb2_get_num_buffers(cap_queue);
unsigned int i;
int ret;
for (i = 0; i < num_buffers; i++) {
ret = hantro_postproc_alloc(ctx, i);
if (ret)
return ret;
}
return 0;
}
dma_addr_t
hantro_postproc_get_dec_buf_addr(struct hantro_ctx *ctx, int index)
{
struct hantro_aux_buf *priv = &ctx->postproc.dec_q[index];
unsigned int buf_size = hantro_postproc_buffer_size(ctx);
struct hantro_dev *vpu = ctx->dev;
int ret;
if (priv->size < buf_size && priv->cpu) {
/* buffer is too small, release it */
dma_free_attrs(vpu->dev, priv->size, priv->cpu,
priv->dma, priv->attrs);
priv->cpu = NULL;
}
if (!priv->cpu) {
/* buffer not already allocated, try getting a new one */
ret = hantro_postproc_alloc(ctx, index);
if (ret)
return 0;
}
if (!priv->cpu)
return 0;
return priv->dma;
}
static void hantro_postproc_g1_disable(struct hantro_ctx *ctx)
{
struct hantro_dev *vpu = ctx->dev;
HANTRO_PP_REG_WRITE(vpu, pipeline_en, 0x0);
}
static void hantro_postproc_g2_disable(struct hantro_ctx *ctx)
{
struct hantro_dev *vpu = ctx->dev;
hantro_reg_write(vpu, &g2_out_rs_e, 0);
}
void hantro_postproc_disable(struct hantro_ctx *ctx)
{
struct hantro_dev *vpu = ctx->dev;
if (vpu->variant->postproc_ops && vpu->variant->postproc_ops->disable)
vpu->variant->postproc_ops->disable(ctx);
}
void hantro_postproc_enable(struct hantro_ctx *ctx)
{
struct hantro_dev *vpu = ctx->dev;
if (vpu->variant->postproc_ops && vpu->variant->postproc_ops->enable)
vpu->variant->postproc_ops->enable(ctx);
}
int hanto_postproc_enum_framesizes(struct hantro_ctx *ctx,
struct v4l2_frmsizeenum *fsize)
{
struct hantro_dev *vpu = ctx->dev;
if (vpu->variant->postproc_ops && vpu->variant->postproc_ops->enum_framesizes)
return vpu->variant->postproc_ops->enum_framesizes(ctx, fsize);
return -EINVAL;
}
const struct hantro_postproc_ops hantro_g1_postproc_ops = {
.enable = hantro_postproc_g1_enable,
.disable = hantro_postproc_g1_disable,
};
const struct hantro_postproc_ops hantro_g2_postproc_ops = {
.enable = hantro_postproc_g2_enable,
.disable = hantro_postproc_g2_disable,
.enum_framesizes = hantro_postproc_g2_enum_framesizes,
};