Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
// SPDX-License-Identifier: GPL-2.0
/*
 * Memory bandwidth monitoring and allocation library
 *
 * Copyright (C) 2018 Intel Corporation
 *
 * Authors:
 *    Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>,
 *    Fenghua Yu <fenghua.yu@intel.com>
 */
#include "resctrl.h"

#define UNCORE_IMC		"uncore_imc"
#define READ_FILE_NAME		"events/cas_count_read"
#define WRITE_FILE_NAME		"events/cas_count_write"
#define DYN_PMU_PATH		"/sys/bus/event_source/devices"
#define SCALE			0.00006103515625
#define MAX_IMCS		20
#define MAX_TOKENS		5
#define READ			0
#define WRITE			1
#define CON_MON_MBM_LOCAL_BYTES_PATH				\
	"%s/%s/mon_groups/%s/mon_data/mon_L3_%02d/mbm_local_bytes"

#define CON_MBM_LOCAL_BYTES_PATH		\
	"%s/%s/mon_data/mon_L3_%02d/mbm_local_bytes"

#define MON_MBM_LOCAL_BYTES_PATH		\
	"%s/mon_groups/%s/mon_data/mon_L3_%02d/mbm_local_bytes"

#define MBM_LOCAL_BYTES_PATH			\
	"%s/mon_data/mon_L3_%02d/mbm_local_bytes"

#define CON_MON_LCC_OCCUP_PATH		\
	"%s/%s/mon_groups/%s/mon_data/mon_L3_%02d/llc_occupancy"

#define CON_LCC_OCCUP_PATH		\
	"%s/%s/mon_data/mon_L3_%02d/llc_occupancy"

#define MON_LCC_OCCUP_PATH		\
	"%s/mon_groups/%s/mon_data/mon_L3_%02d/llc_occupancy"

#define LCC_OCCUP_PATH			\
	"%s/mon_data/mon_L3_%02d/llc_occupancy"

struct membw_read_format {
	__u64 value;         /* The value of the event */
	__u64 time_enabled;  /* if PERF_FORMAT_TOTAL_TIME_ENABLED */
	__u64 time_running;  /* if PERF_FORMAT_TOTAL_TIME_RUNNING */
	__u64 id;            /* if PERF_FORMAT_ID */
};

struct imc_counter_config {
	__u32 type;
	__u64 event;
	__u64 umask;
	struct perf_event_attr pe;
	struct membw_read_format return_value;
	int fd;
};

static char mbm_total_path[1024];
static int imcs;
static struct imc_counter_config imc_counters_config[MAX_IMCS][2];

void membw_initialize_perf_event_attr(int i, int j)
{
	memset(&imc_counters_config[i][j].pe, 0,
	       sizeof(struct perf_event_attr));
	imc_counters_config[i][j].pe.type = imc_counters_config[i][j].type;
	imc_counters_config[i][j].pe.size = sizeof(struct perf_event_attr);
	imc_counters_config[i][j].pe.disabled = 1;
	imc_counters_config[i][j].pe.inherit = 1;
	imc_counters_config[i][j].pe.exclude_guest = 0;
	imc_counters_config[i][j].pe.config =
		imc_counters_config[i][j].umask << 8 |
		imc_counters_config[i][j].event;
	imc_counters_config[i][j].pe.sample_type = PERF_SAMPLE_IDENTIFIER;
	imc_counters_config[i][j].pe.read_format =
		PERF_FORMAT_TOTAL_TIME_ENABLED | PERF_FORMAT_TOTAL_TIME_RUNNING;
}

void membw_ioctl_perf_event_ioc_reset_enable(int i, int j)
{
	ioctl(imc_counters_config[i][j].fd, PERF_EVENT_IOC_RESET, 0);
	ioctl(imc_counters_config[i][j].fd, PERF_EVENT_IOC_ENABLE, 0);
}

void membw_ioctl_perf_event_ioc_disable(int i, int j)
{
	ioctl(imc_counters_config[i][j].fd, PERF_EVENT_IOC_DISABLE, 0);
}

/*
 * get_event_and_umask:	Parse config into event and umask
 * @cas_count_cfg:	Config
 * @count:		iMC number
 * @op:			Operation (read/write)
 */
void get_event_and_umask(char *cas_count_cfg, int count, bool op)
{
	char *token[MAX_TOKENS];
	int i = 0;

	strcat(cas_count_cfg, ",");
	token[0] = strtok(cas_count_cfg, "=,");

	for (i = 1; i < MAX_TOKENS; i++)
		token[i] = strtok(NULL, "=,");

	for (i = 0; i < MAX_TOKENS; i++) {
		if (!token[i])
			break;
		if (strcmp(token[i], "event") == 0) {
			if (op == READ)
				imc_counters_config[count][READ].event =
				strtol(token[i + 1], NULL, 16);
			else
				imc_counters_config[count][WRITE].event =
				strtol(token[i + 1], NULL, 16);
		}
		if (strcmp(token[i], "umask") == 0) {
			if (op == READ)
				imc_counters_config[count][READ].umask =
				strtol(token[i + 1], NULL, 16);
			else
				imc_counters_config[count][WRITE].umask =
				strtol(token[i + 1], NULL, 16);
		}
	}
}

static int open_perf_event(int i, int cpu_no, int j)
{
	imc_counters_config[i][j].fd =
		perf_event_open(&imc_counters_config[i][j].pe, -1, cpu_no, -1,
				PERF_FLAG_FD_CLOEXEC);

	if (imc_counters_config[i][j].fd == -1) {
		fprintf(stderr, "Error opening leader %llx\n",
			imc_counters_config[i][j].pe.config);

		return -1;
	}

	return 0;
}

/* Get type and config (read and write) of an iMC counter */
static int read_from_imc_dir(char *imc_dir, int count)
{
	char cas_count_cfg[1024], imc_counter_cfg[1024], imc_counter_type[1024];
	FILE *fp;

	/* Get type of iMC counter */
	sprintf(imc_counter_type, "%s%s", imc_dir, "type");
	fp = fopen(imc_counter_type, "r");
	if (!fp) {
		ksft_perror("Failed to open iMC counter type file");

		return -1;
	}
	if (fscanf(fp, "%u", &imc_counters_config[count][READ].type) <= 0) {
		ksft_perror("Could not get iMC type");
		fclose(fp);

		return -1;
	}
	fclose(fp);

	imc_counters_config[count][WRITE].type =
				imc_counters_config[count][READ].type;

	/* Get read config */
	sprintf(imc_counter_cfg, "%s%s", imc_dir, READ_FILE_NAME);
	fp = fopen(imc_counter_cfg, "r");
	if (!fp) {
		ksft_perror("Failed to open iMC config file");

		return -1;
	}
	if (fscanf(fp, "%s", cas_count_cfg) <= 0) {
		ksft_perror("Could not get iMC cas count read");
		fclose(fp);

		return -1;
	}
	fclose(fp);

	get_event_and_umask(cas_count_cfg, count, READ);

	/* Get write config */
	sprintf(imc_counter_cfg, "%s%s", imc_dir, WRITE_FILE_NAME);
	fp = fopen(imc_counter_cfg, "r");
	if (!fp) {
		ksft_perror("Failed to open iMC config file");

		return -1;
	}
	if  (fscanf(fp, "%s", cas_count_cfg) <= 0) {
		ksft_perror("Could not get iMC cas count write");
		fclose(fp);

		return -1;
	}
	fclose(fp);

	get_event_and_umask(cas_count_cfg, count, WRITE);

	return 0;
}

/*
 * A system can have 'n' number of iMC (Integrated Memory Controller)
 * counters, get that 'n'. For each iMC counter get it's type and config.
 * Also, each counter has two configs, one for read and the other for write.
 * A config again has two parts, event and umask.
 * Enumerate all these details into an array of structures.
 *
 * Return: >= 0 on success. < 0 on failure.
 */
static int num_of_imcs(void)
{
	char imc_dir[512], *temp;
	unsigned int count = 0;
	struct dirent *ep;
	int ret;
	DIR *dp;

	dp = opendir(DYN_PMU_PATH);
	if (dp) {
		while ((ep = readdir(dp))) {
			temp = strstr(ep->d_name, UNCORE_IMC);
			if (!temp)
				continue;

			/*
			 * imc counters are named as "uncore_imc_<n>", hence
			 * increment the pointer to point to <n>. Note that
			 * sizeof(UNCORE_IMC) would count for null character as
			 * well and hence the last underscore character in
			 * uncore_imc'_' need not be counted.
			 */
			temp = temp + sizeof(UNCORE_IMC);

			/*
			 * Some directories under "DYN_PMU_PATH" could have
			 * names like "uncore_imc_free_running", hence, check if
			 * first character is a numerical digit or not.
			 */
			if (temp[0] >= '0' && temp[0] <= '9') {
				sprintf(imc_dir, "%s/%s/", DYN_PMU_PATH,
					ep->d_name);
				ret = read_from_imc_dir(imc_dir, count);
				if (ret) {
					closedir(dp);

					return ret;
				}
				count++;
			}
		}
		closedir(dp);
		if (count == 0) {
			ksft_print_msg("Unable to find iMC counters\n");

			return -1;
		}
	} else {
		ksft_perror("Unable to open PMU directory");

		return -1;
	}

	return count;
}

static int initialize_mem_bw_imc(void)
{
	int imc, j;

	imcs = num_of_imcs();
	if (imcs <= 0)
		return imcs;

	/* Initialize perf_event_attr structures for all iMC's */
	for (imc = 0; imc < imcs; imc++) {
		for (j = 0; j < 2; j++)
			membw_initialize_perf_event_attr(imc, j);
	}

	return 0;
}

/*
 * get_mem_bw_imc:	Memory band width as reported by iMC counters
 * @cpu_no:		CPU number that the benchmark PID is binded to
 * @bw_report:		Bandwidth report type (reads, writes)
 *
 * Memory B/W utilized by a process on a socket can be calculated using
 * iMC counters. Perf events are used to read these counters.
 *
 * Return: = 0 on success. < 0 on failure.
 */
static int get_mem_bw_imc(int cpu_no, char *bw_report, float *bw_imc)
{
	float reads, writes, of_mul_read, of_mul_write;
	int imc, j, ret;

	/* Start all iMC counters to log values (both read and write) */
	reads = 0, writes = 0, of_mul_read = 1, of_mul_write = 1;
	for (imc = 0; imc < imcs; imc++) {
		for (j = 0; j < 2; j++) {
			ret = open_perf_event(imc, cpu_no, j);
			if (ret)
				return -1;
		}
		for (j = 0; j < 2; j++)
			membw_ioctl_perf_event_ioc_reset_enable(imc, j);
	}

	sleep(1);

	/* Stop counters after a second to get results (both read and write) */
	for (imc = 0; imc < imcs; imc++) {
		for (j = 0; j < 2; j++)
			membw_ioctl_perf_event_ioc_disable(imc, j);
	}

	/*
	 * Get results which are stored in struct type imc_counter_config
	 * Take over flow into consideration before calculating total b/w
	 */
	for (imc = 0; imc < imcs; imc++) {
		struct imc_counter_config *r =
			&imc_counters_config[imc][READ];
		struct imc_counter_config *w =
			&imc_counters_config[imc][WRITE];

		if (read(r->fd, &r->return_value,
			 sizeof(struct membw_read_format)) == -1) {
			ksft_perror("Couldn't get read b/w through iMC");

			return -1;
		}

		if (read(w->fd, &w->return_value,
			 sizeof(struct membw_read_format)) == -1) {
			ksft_perror("Couldn't get write bw through iMC");

			return -1;
		}

		__u64 r_time_enabled = r->return_value.time_enabled;
		__u64 r_time_running = r->return_value.time_running;

		if (r_time_enabled != r_time_running)
			of_mul_read = (float)r_time_enabled /
					(float)r_time_running;

		__u64 w_time_enabled = w->return_value.time_enabled;
		__u64 w_time_running = w->return_value.time_running;

		if (w_time_enabled != w_time_running)
			of_mul_write = (float)w_time_enabled /
					(float)w_time_running;
		reads += r->return_value.value * of_mul_read * SCALE;
		writes += w->return_value.value * of_mul_write * SCALE;
	}

	for (imc = 0; imc < imcs; imc++) {
		close(imc_counters_config[imc][READ].fd);
		close(imc_counters_config[imc][WRITE].fd);
	}

	if (strcmp(bw_report, "reads") == 0) {
		*bw_imc = reads;
		return 0;
	}

	if (strcmp(bw_report, "writes") == 0) {
		*bw_imc = writes;
		return 0;
	}

	*bw_imc = reads + writes;
	return 0;
}

void set_mbm_path(const char *ctrlgrp, const char *mongrp, int domain_id)
{
	if (ctrlgrp && mongrp)
		sprintf(mbm_total_path, CON_MON_MBM_LOCAL_BYTES_PATH,
			RESCTRL_PATH, ctrlgrp, mongrp, domain_id);
	else if (!ctrlgrp && mongrp)
		sprintf(mbm_total_path, MON_MBM_LOCAL_BYTES_PATH, RESCTRL_PATH,
			mongrp, domain_id);
	else if (ctrlgrp && !mongrp)
		sprintf(mbm_total_path, CON_MBM_LOCAL_BYTES_PATH, RESCTRL_PATH,
			ctrlgrp, domain_id);
	else if (!ctrlgrp && !mongrp)
		sprintf(mbm_total_path, MBM_LOCAL_BYTES_PATH, RESCTRL_PATH,
			domain_id);
}

/*
 * initialize_mem_bw_resctrl:	Appropriately populate "mbm_total_path"
 * @ctrlgrp:			Name of the control monitor group (con_mon grp)
 * @mongrp:			Name of the monitor group (mon grp)
 * @cpu_no:			CPU number that the benchmark PID is binded to
 * @resctrl_val:		Resctrl feature (Eg: mbm, mba.. etc)
 */
static void initialize_mem_bw_resctrl(const char *ctrlgrp, const char *mongrp,
				      int cpu_no, char *resctrl_val)
{
	int domain_id;

	if (get_domain_id("MB", cpu_no, &domain_id) < 0) {
		ksft_print_msg("Could not get domain ID\n");
		return;
	}

	if (!strncmp(resctrl_val, MBM_STR, sizeof(MBM_STR)))
		set_mbm_path(ctrlgrp, mongrp, domain_id);

	if (!strncmp(resctrl_val, MBA_STR, sizeof(MBA_STR))) {
		if (ctrlgrp)
			sprintf(mbm_total_path, CON_MBM_LOCAL_BYTES_PATH,
				RESCTRL_PATH, ctrlgrp, domain_id);
		else
			sprintf(mbm_total_path, MBM_LOCAL_BYTES_PATH,
				RESCTRL_PATH, domain_id);
	}
}

/*
 * Get MBM Local bytes as reported by resctrl FS
 * For MBM,
 * 1. If con_mon grp and mon grp are given, then read from con_mon grp's mon grp
 * 2. If only con_mon grp is given, then read from con_mon grp
 * 3. If both are not given, then read from root con_mon grp
 * For MBA,
 * 1. If con_mon grp is given, then read from it
 * 2. If con_mon grp is not given, then read from root con_mon grp
 */
static int get_mem_bw_resctrl(unsigned long *mbm_total)
{
	FILE *fp;

	fp = fopen(mbm_total_path, "r");
	if (!fp) {
		ksft_perror("Failed to open total bw file");

		return -1;
	}
	if (fscanf(fp, "%lu", mbm_total) <= 0) {
		ksft_perror("Could not get mbm local bytes");
		fclose(fp);

		return -1;
	}
	fclose(fp);

	return 0;
}

pid_t bm_pid, ppid;

void ctrlc_handler(int signum, siginfo_t *info, void *ptr)
{
	/* Only kill child after bm_pid is set after fork() */
	if (bm_pid)
		kill(bm_pid, SIGKILL);
	umount_resctrlfs();
	tests_cleanup();
	ksft_print_msg("Ending\n\n");

	exit(EXIT_SUCCESS);
}

/*
 * Register CTRL-C handler for parent, as it has to kill
 * child process before exiting.
 */
int signal_handler_register(void)
{
	struct sigaction sigact = {};
	int ret = 0;

	bm_pid = 0;

	sigact.sa_sigaction = ctrlc_handler;
	sigemptyset(&sigact.sa_mask);
	sigact.sa_flags = SA_SIGINFO;
	if (sigaction(SIGINT, &sigact, NULL) ||
	    sigaction(SIGTERM, &sigact, NULL) ||
	    sigaction(SIGHUP, &sigact, NULL)) {
		ksft_perror("sigaction");
		ret = -1;
	}
	return ret;
}

/*
 * Reset signal handler to SIG_DFL.
 * Non-Value return because the caller should keep
 * the error code of other path even if sigaction fails.
 */
void signal_handler_unregister(void)
{
	struct sigaction sigact = {};

	sigact.sa_handler = SIG_DFL;
	sigemptyset(&sigact.sa_mask);
	if (sigaction(SIGINT, &sigact, NULL) ||
	    sigaction(SIGTERM, &sigact, NULL) ||
	    sigaction(SIGHUP, &sigact, NULL)) {
		ksft_perror("sigaction");
	}
}

/*
 * print_results_bw:	the memory bandwidth results are stored in a file
 * @filename:		file that stores the results
 * @bm_pid:		child pid that runs benchmark
 * @bw_imc:		perf imc counter value
 * @bw_resc:		memory bandwidth value
 *
 * Return:		0 on success, < 0 on error.
 */
static int print_results_bw(char *filename,  int bm_pid, float bw_imc,
			    unsigned long bw_resc)
{
	unsigned long diff = fabs(bw_imc - bw_resc);
	FILE *fp;

	if (strcmp(filename, "stdio") == 0 || strcmp(filename, "stderr") == 0) {
		printf("Pid: %d \t Mem_BW_iMC: %f \t ", bm_pid, bw_imc);
		printf("Mem_BW_resc: %lu \t Difference: %lu\n", bw_resc, diff);
	} else {
		fp = fopen(filename, "a");
		if (!fp) {
			ksft_perror("Cannot open results file");

			return -1;
		}
		if (fprintf(fp, "Pid: %d \t Mem_BW_iMC: %f \t Mem_BW_resc: %lu \t Difference: %lu\n",
			    bm_pid, bw_imc, bw_resc, diff) <= 0) {
			ksft_print_msg("Could not log results\n");
			fclose(fp);

			return -1;
		}
		fclose(fp);
	}

	return 0;
}

static void set_cmt_path(const char *ctrlgrp, const char *mongrp, char sock_num)
{
	if (strlen(ctrlgrp) && strlen(mongrp))
		sprintf(llc_occup_path,	CON_MON_LCC_OCCUP_PATH,	RESCTRL_PATH,
			ctrlgrp, mongrp, sock_num);
	else if (!strlen(ctrlgrp) && strlen(mongrp))
		sprintf(llc_occup_path,	MON_LCC_OCCUP_PATH, RESCTRL_PATH,
			mongrp, sock_num);
	else if (strlen(ctrlgrp) && !strlen(mongrp))
		sprintf(llc_occup_path,	CON_LCC_OCCUP_PATH, RESCTRL_PATH,
			ctrlgrp, sock_num);
	else if (!strlen(ctrlgrp) && !strlen(mongrp))
		sprintf(llc_occup_path, LCC_OCCUP_PATH,	RESCTRL_PATH, sock_num);
}

/*
 * initialize_llc_occu_resctrl:	Appropriately populate "llc_occup_path"
 * @ctrlgrp:			Name of the control monitor group (con_mon grp)
 * @mongrp:			Name of the monitor group (mon grp)
 * @cpu_no:			CPU number that the benchmark PID is binded to
 * @resctrl_val:		Resctrl feature (Eg: cat, cmt.. etc)
 */
static void initialize_llc_occu_resctrl(const char *ctrlgrp, const char *mongrp,
					int cpu_no, char *resctrl_val)
{
	int domain_id;

	if (get_domain_id("L3", cpu_no, &domain_id) < 0) {
		ksft_print_msg("Could not get domain ID\n");
		return;
	}

	if (!strncmp(resctrl_val, CMT_STR, sizeof(CMT_STR)))
		set_cmt_path(ctrlgrp, mongrp, domain_id);
}

static int measure_vals(const struct user_params *uparams,
			struct resctrl_val_param *param,
			unsigned long *bw_resc_start)
{
	unsigned long bw_resc, bw_resc_end;
	float bw_imc;
	int ret;

	/*
	 * Measure memory bandwidth from resctrl and from
	 * another source which is perf imc value or could
	 * be something else if perf imc event is not available.
	 * Compare the two values to validate resctrl value.
	 * It takes 1sec to measure the data.
	 */
	ret = get_mem_bw_imc(uparams->cpu, param->bw_report, &bw_imc);
	if (ret < 0)
		return ret;

	ret = get_mem_bw_resctrl(&bw_resc_end);
	if (ret < 0)
		return ret;

	bw_resc = (bw_resc_end - *bw_resc_start) / MB;
	ret = print_results_bw(param->filename, bm_pid, bw_imc, bw_resc);
	if (ret)
		return ret;

	*bw_resc_start = bw_resc_end;

	return 0;
}

/*
 * run_benchmark - Run a specified benchmark or fill_buf (default benchmark)
 *		   in specified signal. Direct benchmark stdio to /dev/null.
 * @signum:	signal number
 * @info:	signal info
 * @ucontext:	user context in signal handling
 */
static void run_benchmark(int signum, siginfo_t *info, void *ucontext)
{
	int operation, ret, memflush;
	char **benchmark_cmd;
	size_t span;
	bool once;
	FILE *fp;

	benchmark_cmd = info->si_ptr;

	/*
	 * Direct stdio of child to /dev/null, so that only parent writes to
	 * stdio (console)
	 */
	fp = freopen("/dev/null", "w", stdout);
	if (!fp) {
		ksft_perror("Unable to direct benchmark status to /dev/null");
		PARENT_EXIT();
	}

	if (strcmp(benchmark_cmd[0], "fill_buf") == 0) {
		/* Execute default fill_buf benchmark */
		span = strtoul(benchmark_cmd[1], NULL, 10);
		memflush =  atoi(benchmark_cmd[2]);
		operation = atoi(benchmark_cmd[3]);
		if (!strcmp(benchmark_cmd[4], "true")) {
			once = true;
		} else if (!strcmp(benchmark_cmd[4], "false")) {
			once = false;
		} else {
			ksft_print_msg("Invalid once parameter\n");
			PARENT_EXIT();
		}

		if (run_fill_buf(span, memflush, operation, once))
			fprintf(stderr, "Error in running fill buffer\n");
	} else {
		/* Execute specified benchmark */
		ret = execvp(benchmark_cmd[0], benchmark_cmd);
		if (ret)
			ksft_perror("execvp");
	}

	fclose(stdout);
	ksft_print_msg("Unable to run specified benchmark\n");
	PARENT_EXIT();
}

/*
 * resctrl_val:	execute benchmark and measure memory bandwidth on
 *			the benchmark
 * @test:		test information structure
 * @uparams:		user supplied parameters
 * @benchmark_cmd:	benchmark command and its arguments
 * @param:		parameters passed to resctrl_val()
 *
 * Return:		0 when the test was run, < 0 on error.
 */
int resctrl_val(const struct resctrl_test *test,
		const struct user_params *uparams,
		const char * const *benchmark_cmd,
		struct resctrl_val_param *param)
{
	char *resctrl_val = param->resctrl_val;
	unsigned long bw_resc_start = 0;
	struct sigaction sigact;
	int ret = 0, pipefd[2];
	char pipe_message = 0;
	union sigval value;

	if (strcmp(param->filename, "") == 0)
		sprintf(param->filename, "stdio");

	if (!strncmp(resctrl_val, MBA_STR, sizeof(MBA_STR)) ||
	    !strncmp(resctrl_val, MBM_STR, sizeof(MBM_STR))) {
		ret = validate_bw_report_request(param->bw_report);
		if (ret)
			return ret;
	}

	/*
	 * If benchmark wasn't successfully started by child, then child should
	 * kill parent, so save parent's pid
	 */
	ppid = getpid();

	if (pipe(pipefd)) {
		ksft_perror("Unable to create pipe");

		return -1;
	}

	/*
	 * Fork to start benchmark, save child's pid so that it can be killed
	 * when needed
	 */
	fflush(stdout);
	bm_pid = fork();
	if (bm_pid == -1) {
		ksft_perror("Unable to fork");

		return -1;
	}

	if (bm_pid == 0) {
		/*
		 * Mask all signals except SIGUSR1, parent uses SIGUSR1 to
		 * start benchmark
		 */
		sigfillset(&sigact.sa_mask);
		sigdelset(&sigact.sa_mask, SIGUSR1);

		sigact.sa_sigaction = run_benchmark;
		sigact.sa_flags = SA_SIGINFO;

		/* Register for "SIGUSR1" signal from parent */
		if (sigaction(SIGUSR1, &sigact, NULL)) {
			ksft_perror("Can't register child for signal");
			PARENT_EXIT();
		}

		/* Tell parent that child is ready */
		close(pipefd[0]);
		pipe_message = 1;
		if (write(pipefd[1], &pipe_message, sizeof(pipe_message)) <
		    sizeof(pipe_message)) {
			ksft_perror("Failed signaling parent process");
			close(pipefd[1]);
			return -1;
		}
		close(pipefd[1]);

		/* Suspend child until delivery of "SIGUSR1" from parent */
		sigsuspend(&sigact.sa_mask);

		ksft_perror("Child is done");
		PARENT_EXIT();
	}

	ksft_print_msg("Benchmark PID: %d\n", bm_pid);

	/*
	 * The cast removes constness but nothing mutates benchmark_cmd within
	 * the context of this process. At the receiving process, it becomes
	 * argv, which is mutable, on exec() but that's after fork() so it
	 * doesn't matter for the process running the tests.
	 */
	value.sival_ptr = (void *)benchmark_cmd;

	/* Taskset benchmark to specified cpu */
	ret = taskset_benchmark(bm_pid, uparams->cpu, NULL);
	if (ret)
		goto out;

	/* Write benchmark to specified control&monitoring grp in resctrl FS */
	ret = write_bm_pid_to_resctrl(bm_pid, param->ctrlgrp, param->mongrp,
				      resctrl_val);
	if (ret)
		goto out;

	if (!strncmp(resctrl_val, MBM_STR, sizeof(MBM_STR)) ||
	    !strncmp(resctrl_val, MBA_STR, sizeof(MBA_STR))) {
		ret = initialize_mem_bw_imc();
		if (ret)
			goto out;

		initialize_mem_bw_resctrl(param->ctrlgrp, param->mongrp,
					  uparams->cpu, resctrl_val);
	} else if (!strncmp(resctrl_val, CMT_STR, sizeof(CMT_STR)))
		initialize_llc_occu_resctrl(param->ctrlgrp, param->mongrp,
					    uparams->cpu, resctrl_val);

	/* Parent waits for child to be ready. */
	close(pipefd[1]);
	while (pipe_message != 1) {
		if (read(pipefd[0], &pipe_message, sizeof(pipe_message)) <
		    sizeof(pipe_message)) {
			ksft_perror("Failed reading message from child process");
			close(pipefd[0]);
			goto out;
		}
	}
	close(pipefd[0]);

	/* Signal child to start benchmark */
	if (sigqueue(bm_pid, SIGUSR1, value) == -1) {
		ksft_perror("sigqueue SIGUSR1 to child");
		ret = -1;
		goto out;
	}

	/* Give benchmark enough time to fully run */
	sleep(1);

	/* Test runs until the callback setup() tells the test to stop. */
	while (1) {
		ret = param->setup(test, uparams, param);
		if (ret == END_OF_TESTS) {
			ret = 0;
			break;
		}
		if (ret < 0)
			break;

		if (!strncmp(resctrl_val, MBM_STR, sizeof(MBM_STR)) ||
		    !strncmp(resctrl_val, MBA_STR, sizeof(MBA_STR))) {
			ret = measure_vals(uparams, param, &bw_resc_start);
			if (ret)
				break;
		} else if (!strncmp(resctrl_val, CMT_STR, sizeof(CMT_STR))) {
			sleep(1);
			ret = measure_llc_resctrl(param->filename, bm_pid);
			if (ret)
				break;
		}
	}

out:
	kill(bm_pid, SIGKILL);

	return ret;
}