Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 | // SPDX-License-Identifier: GPL-2.0 /* * Memory bandwidth monitoring and allocation library * * Copyright (C) 2018 Intel Corporation * * Authors: * Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>, * Fenghua Yu <fenghua.yu@intel.com> */ #include "resctrl.h" #define UNCORE_IMC "uncore_imc" #define READ_FILE_NAME "events/cas_count_read" #define WRITE_FILE_NAME "events/cas_count_write" #define DYN_PMU_PATH "/sys/bus/event_source/devices" #define SCALE 0.00006103515625 #define MAX_IMCS 20 #define MAX_TOKENS 5 #define READ 0 #define WRITE 1 #define CON_MON_MBM_LOCAL_BYTES_PATH \ "%s/%s/mon_groups/%s/mon_data/mon_L3_%02d/mbm_local_bytes" #define CON_MBM_LOCAL_BYTES_PATH \ "%s/%s/mon_data/mon_L3_%02d/mbm_local_bytes" #define MON_MBM_LOCAL_BYTES_PATH \ "%s/mon_groups/%s/mon_data/mon_L3_%02d/mbm_local_bytes" #define MBM_LOCAL_BYTES_PATH \ "%s/mon_data/mon_L3_%02d/mbm_local_bytes" #define CON_MON_LCC_OCCUP_PATH \ "%s/%s/mon_groups/%s/mon_data/mon_L3_%02d/llc_occupancy" #define CON_LCC_OCCUP_PATH \ "%s/%s/mon_data/mon_L3_%02d/llc_occupancy" #define MON_LCC_OCCUP_PATH \ "%s/mon_groups/%s/mon_data/mon_L3_%02d/llc_occupancy" #define LCC_OCCUP_PATH \ "%s/mon_data/mon_L3_%02d/llc_occupancy" struct membw_read_format { __u64 value; /* The value of the event */ __u64 time_enabled; /* if PERF_FORMAT_TOTAL_TIME_ENABLED */ __u64 time_running; /* if PERF_FORMAT_TOTAL_TIME_RUNNING */ __u64 id; /* if PERF_FORMAT_ID */ }; struct imc_counter_config { __u32 type; __u64 event; __u64 umask; struct perf_event_attr pe; struct membw_read_format return_value; int fd; }; static char mbm_total_path[1024]; static int imcs; static struct imc_counter_config imc_counters_config[MAX_IMCS][2]; void membw_initialize_perf_event_attr(int i, int j) { memset(&imc_counters_config[i][j].pe, 0, sizeof(struct perf_event_attr)); imc_counters_config[i][j].pe.type = imc_counters_config[i][j].type; imc_counters_config[i][j].pe.size = sizeof(struct perf_event_attr); imc_counters_config[i][j].pe.disabled = 1; imc_counters_config[i][j].pe.inherit = 1; imc_counters_config[i][j].pe.exclude_guest = 0; imc_counters_config[i][j].pe.config = imc_counters_config[i][j].umask << 8 | imc_counters_config[i][j].event; imc_counters_config[i][j].pe.sample_type = PERF_SAMPLE_IDENTIFIER; imc_counters_config[i][j].pe.read_format = PERF_FORMAT_TOTAL_TIME_ENABLED | PERF_FORMAT_TOTAL_TIME_RUNNING; } void membw_ioctl_perf_event_ioc_reset_enable(int i, int j) { ioctl(imc_counters_config[i][j].fd, PERF_EVENT_IOC_RESET, 0); ioctl(imc_counters_config[i][j].fd, PERF_EVENT_IOC_ENABLE, 0); } void membw_ioctl_perf_event_ioc_disable(int i, int j) { ioctl(imc_counters_config[i][j].fd, PERF_EVENT_IOC_DISABLE, 0); } /* * get_event_and_umask: Parse config into event and umask * @cas_count_cfg: Config * @count: iMC number * @op: Operation (read/write) */ void get_event_and_umask(char *cas_count_cfg, int count, bool op) { char *token[MAX_TOKENS]; int i = 0; strcat(cas_count_cfg, ","); token[0] = strtok(cas_count_cfg, "=,"); for (i = 1; i < MAX_TOKENS; i++) token[i] = strtok(NULL, "=,"); for (i = 0; i < MAX_TOKENS; i++) { if (!token[i]) break; if (strcmp(token[i], "event") == 0) { if (op == READ) imc_counters_config[count][READ].event = strtol(token[i + 1], NULL, 16); else imc_counters_config[count][WRITE].event = strtol(token[i + 1], NULL, 16); } if (strcmp(token[i], "umask") == 0) { if (op == READ) imc_counters_config[count][READ].umask = strtol(token[i + 1], NULL, 16); else imc_counters_config[count][WRITE].umask = strtol(token[i + 1], NULL, 16); } } } static int open_perf_event(int i, int cpu_no, int j) { imc_counters_config[i][j].fd = perf_event_open(&imc_counters_config[i][j].pe, -1, cpu_no, -1, PERF_FLAG_FD_CLOEXEC); if (imc_counters_config[i][j].fd == -1) { fprintf(stderr, "Error opening leader %llx\n", imc_counters_config[i][j].pe.config); return -1; } return 0; } /* Get type and config (read and write) of an iMC counter */ static int read_from_imc_dir(char *imc_dir, int count) { char cas_count_cfg[1024], imc_counter_cfg[1024], imc_counter_type[1024]; FILE *fp; /* Get type of iMC counter */ sprintf(imc_counter_type, "%s%s", imc_dir, "type"); fp = fopen(imc_counter_type, "r"); if (!fp) { ksft_perror("Failed to open iMC counter type file"); return -1; } if (fscanf(fp, "%u", &imc_counters_config[count][READ].type) <= 0) { ksft_perror("Could not get iMC type"); fclose(fp); return -1; } fclose(fp); imc_counters_config[count][WRITE].type = imc_counters_config[count][READ].type; /* Get read config */ sprintf(imc_counter_cfg, "%s%s", imc_dir, READ_FILE_NAME); fp = fopen(imc_counter_cfg, "r"); if (!fp) { ksft_perror("Failed to open iMC config file"); return -1; } if (fscanf(fp, "%s", cas_count_cfg) <= 0) { ksft_perror("Could not get iMC cas count read"); fclose(fp); return -1; } fclose(fp); get_event_and_umask(cas_count_cfg, count, READ); /* Get write config */ sprintf(imc_counter_cfg, "%s%s", imc_dir, WRITE_FILE_NAME); fp = fopen(imc_counter_cfg, "r"); if (!fp) { ksft_perror("Failed to open iMC config file"); return -1; } if (fscanf(fp, "%s", cas_count_cfg) <= 0) { ksft_perror("Could not get iMC cas count write"); fclose(fp); return -1; } fclose(fp); get_event_and_umask(cas_count_cfg, count, WRITE); return 0; } /* * A system can have 'n' number of iMC (Integrated Memory Controller) * counters, get that 'n'. For each iMC counter get it's type and config. * Also, each counter has two configs, one for read and the other for write. * A config again has two parts, event and umask. * Enumerate all these details into an array of structures. * * Return: >= 0 on success. < 0 on failure. */ static int num_of_imcs(void) { char imc_dir[512], *temp; unsigned int count = 0; struct dirent *ep; int ret; DIR *dp; dp = opendir(DYN_PMU_PATH); if (dp) { while ((ep = readdir(dp))) { temp = strstr(ep->d_name, UNCORE_IMC); if (!temp) continue; /* * imc counters are named as "uncore_imc_<n>", hence * increment the pointer to point to <n>. Note that * sizeof(UNCORE_IMC) would count for null character as * well and hence the last underscore character in * uncore_imc'_' need not be counted. */ temp = temp + sizeof(UNCORE_IMC); /* * Some directories under "DYN_PMU_PATH" could have * names like "uncore_imc_free_running", hence, check if * first character is a numerical digit or not. */ if (temp[0] >= '0' && temp[0] <= '9') { sprintf(imc_dir, "%s/%s/", DYN_PMU_PATH, ep->d_name); ret = read_from_imc_dir(imc_dir, count); if (ret) { closedir(dp); return ret; } count++; } } closedir(dp); if (count == 0) { ksft_print_msg("Unable to find iMC counters\n"); return -1; } } else { ksft_perror("Unable to open PMU directory"); return -1; } return count; } static int initialize_mem_bw_imc(void) { int imc, j; imcs = num_of_imcs(); if (imcs <= 0) return imcs; /* Initialize perf_event_attr structures for all iMC's */ for (imc = 0; imc < imcs; imc++) { for (j = 0; j < 2; j++) membw_initialize_perf_event_attr(imc, j); } return 0; } /* * get_mem_bw_imc: Memory band width as reported by iMC counters * @cpu_no: CPU number that the benchmark PID is binded to * @bw_report: Bandwidth report type (reads, writes) * * Memory B/W utilized by a process on a socket can be calculated using * iMC counters. Perf events are used to read these counters. * * Return: = 0 on success. < 0 on failure. */ static int get_mem_bw_imc(int cpu_no, char *bw_report, float *bw_imc) { float reads, writes, of_mul_read, of_mul_write; int imc, j, ret; /* Start all iMC counters to log values (both read and write) */ reads = 0, writes = 0, of_mul_read = 1, of_mul_write = 1; for (imc = 0; imc < imcs; imc++) { for (j = 0; j < 2; j++) { ret = open_perf_event(imc, cpu_no, j); if (ret) return -1; } for (j = 0; j < 2; j++) membw_ioctl_perf_event_ioc_reset_enable(imc, j); } sleep(1); /* Stop counters after a second to get results (both read and write) */ for (imc = 0; imc < imcs; imc++) { for (j = 0; j < 2; j++) membw_ioctl_perf_event_ioc_disable(imc, j); } /* * Get results which are stored in struct type imc_counter_config * Take over flow into consideration before calculating total b/w */ for (imc = 0; imc < imcs; imc++) { struct imc_counter_config *r = &imc_counters_config[imc][READ]; struct imc_counter_config *w = &imc_counters_config[imc][WRITE]; if (read(r->fd, &r->return_value, sizeof(struct membw_read_format)) == -1) { ksft_perror("Couldn't get read b/w through iMC"); return -1; } if (read(w->fd, &w->return_value, sizeof(struct membw_read_format)) == -1) { ksft_perror("Couldn't get write bw through iMC"); return -1; } __u64 r_time_enabled = r->return_value.time_enabled; __u64 r_time_running = r->return_value.time_running; if (r_time_enabled != r_time_running) of_mul_read = (float)r_time_enabled / (float)r_time_running; __u64 w_time_enabled = w->return_value.time_enabled; __u64 w_time_running = w->return_value.time_running; if (w_time_enabled != w_time_running) of_mul_write = (float)w_time_enabled / (float)w_time_running; reads += r->return_value.value * of_mul_read * SCALE; writes += w->return_value.value * of_mul_write * SCALE; } for (imc = 0; imc < imcs; imc++) { close(imc_counters_config[imc][READ].fd); close(imc_counters_config[imc][WRITE].fd); } if (strcmp(bw_report, "reads") == 0) { *bw_imc = reads; return 0; } if (strcmp(bw_report, "writes") == 0) { *bw_imc = writes; return 0; } *bw_imc = reads + writes; return 0; } void set_mbm_path(const char *ctrlgrp, const char *mongrp, int domain_id) { if (ctrlgrp && mongrp) sprintf(mbm_total_path, CON_MON_MBM_LOCAL_BYTES_PATH, RESCTRL_PATH, ctrlgrp, mongrp, domain_id); else if (!ctrlgrp && mongrp) sprintf(mbm_total_path, MON_MBM_LOCAL_BYTES_PATH, RESCTRL_PATH, mongrp, domain_id); else if (ctrlgrp && !mongrp) sprintf(mbm_total_path, CON_MBM_LOCAL_BYTES_PATH, RESCTRL_PATH, ctrlgrp, domain_id); else if (!ctrlgrp && !mongrp) sprintf(mbm_total_path, MBM_LOCAL_BYTES_PATH, RESCTRL_PATH, domain_id); } /* * initialize_mem_bw_resctrl: Appropriately populate "mbm_total_path" * @ctrlgrp: Name of the control monitor group (con_mon grp) * @mongrp: Name of the monitor group (mon grp) * @cpu_no: CPU number that the benchmark PID is binded to * @resctrl_val: Resctrl feature (Eg: mbm, mba.. etc) */ static void initialize_mem_bw_resctrl(const char *ctrlgrp, const char *mongrp, int cpu_no, char *resctrl_val) { int domain_id; if (get_domain_id("MB", cpu_no, &domain_id) < 0) { ksft_print_msg("Could not get domain ID\n"); return; } if (!strncmp(resctrl_val, MBM_STR, sizeof(MBM_STR))) set_mbm_path(ctrlgrp, mongrp, domain_id); if (!strncmp(resctrl_val, MBA_STR, sizeof(MBA_STR))) { if (ctrlgrp) sprintf(mbm_total_path, CON_MBM_LOCAL_BYTES_PATH, RESCTRL_PATH, ctrlgrp, domain_id); else sprintf(mbm_total_path, MBM_LOCAL_BYTES_PATH, RESCTRL_PATH, domain_id); } } /* * Get MBM Local bytes as reported by resctrl FS * For MBM, * 1. If con_mon grp and mon grp are given, then read from con_mon grp's mon grp * 2. If only con_mon grp is given, then read from con_mon grp * 3. If both are not given, then read from root con_mon grp * For MBA, * 1. If con_mon grp is given, then read from it * 2. If con_mon grp is not given, then read from root con_mon grp */ static int get_mem_bw_resctrl(unsigned long *mbm_total) { FILE *fp; fp = fopen(mbm_total_path, "r"); if (!fp) { ksft_perror("Failed to open total bw file"); return -1; } if (fscanf(fp, "%lu", mbm_total) <= 0) { ksft_perror("Could not get mbm local bytes"); fclose(fp); return -1; } fclose(fp); return 0; } pid_t bm_pid, ppid; void ctrlc_handler(int signum, siginfo_t *info, void *ptr) { /* Only kill child after bm_pid is set after fork() */ if (bm_pid) kill(bm_pid, SIGKILL); umount_resctrlfs(); tests_cleanup(); ksft_print_msg("Ending\n\n"); exit(EXIT_SUCCESS); } /* * Register CTRL-C handler for parent, as it has to kill * child process before exiting. */ int signal_handler_register(void) { struct sigaction sigact = {}; int ret = 0; bm_pid = 0; sigact.sa_sigaction = ctrlc_handler; sigemptyset(&sigact.sa_mask); sigact.sa_flags = SA_SIGINFO; if (sigaction(SIGINT, &sigact, NULL) || sigaction(SIGTERM, &sigact, NULL) || sigaction(SIGHUP, &sigact, NULL)) { ksft_perror("sigaction"); ret = -1; } return ret; } /* * Reset signal handler to SIG_DFL. * Non-Value return because the caller should keep * the error code of other path even if sigaction fails. */ void signal_handler_unregister(void) { struct sigaction sigact = {}; sigact.sa_handler = SIG_DFL; sigemptyset(&sigact.sa_mask); if (sigaction(SIGINT, &sigact, NULL) || sigaction(SIGTERM, &sigact, NULL) || sigaction(SIGHUP, &sigact, NULL)) { ksft_perror("sigaction"); } } /* * print_results_bw: the memory bandwidth results are stored in a file * @filename: file that stores the results * @bm_pid: child pid that runs benchmark * @bw_imc: perf imc counter value * @bw_resc: memory bandwidth value * * Return: 0 on success, < 0 on error. */ static int print_results_bw(char *filename, int bm_pid, float bw_imc, unsigned long bw_resc) { unsigned long diff = fabs(bw_imc - bw_resc); FILE *fp; if (strcmp(filename, "stdio") == 0 || strcmp(filename, "stderr") == 0) { printf("Pid: %d \t Mem_BW_iMC: %f \t ", bm_pid, bw_imc); printf("Mem_BW_resc: %lu \t Difference: %lu\n", bw_resc, diff); } else { fp = fopen(filename, "a"); if (!fp) { ksft_perror("Cannot open results file"); return -1; } if (fprintf(fp, "Pid: %d \t Mem_BW_iMC: %f \t Mem_BW_resc: %lu \t Difference: %lu\n", bm_pid, bw_imc, bw_resc, diff) <= 0) { ksft_print_msg("Could not log results\n"); fclose(fp); return -1; } fclose(fp); } return 0; } static void set_cmt_path(const char *ctrlgrp, const char *mongrp, char sock_num) { if (strlen(ctrlgrp) && strlen(mongrp)) sprintf(llc_occup_path, CON_MON_LCC_OCCUP_PATH, RESCTRL_PATH, ctrlgrp, mongrp, sock_num); else if (!strlen(ctrlgrp) && strlen(mongrp)) sprintf(llc_occup_path, MON_LCC_OCCUP_PATH, RESCTRL_PATH, mongrp, sock_num); else if (strlen(ctrlgrp) && !strlen(mongrp)) sprintf(llc_occup_path, CON_LCC_OCCUP_PATH, RESCTRL_PATH, ctrlgrp, sock_num); else if (!strlen(ctrlgrp) && !strlen(mongrp)) sprintf(llc_occup_path, LCC_OCCUP_PATH, RESCTRL_PATH, sock_num); } /* * initialize_llc_occu_resctrl: Appropriately populate "llc_occup_path" * @ctrlgrp: Name of the control monitor group (con_mon grp) * @mongrp: Name of the monitor group (mon grp) * @cpu_no: CPU number that the benchmark PID is binded to * @resctrl_val: Resctrl feature (Eg: cat, cmt.. etc) */ static void initialize_llc_occu_resctrl(const char *ctrlgrp, const char *mongrp, int cpu_no, char *resctrl_val) { int domain_id; if (get_domain_id("L3", cpu_no, &domain_id) < 0) { ksft_print_msg("Could not get domain ID\n"); return; } if (!strncmp(resctrl_val, CMT_STR, sizeof(CMT_STR))) set_cmt_path(ctrlgrp, mongrp, domain_id); } static int measure_vals(const struct user_params *uparams, struct resctrl_val_param *param, unsigned long *bw_resc_start) { unsigned long bw_resc, bw_resc_end; float bw_imc; int ret; /* * Measure memory bandwidth from resctrl and from * another source which is perf imc value or could * be something else if perf imc event is not available. * Compare the two values to validate resctrl value. * It takes 1sec to measure the data. */ ret = get_mem_bw_imc(uparams->cpu, param->bw_report, &bw_imc); if (ret < 0) return ret; ret = get_mem_bw_resctrl(&bw_resc_end); if (ret < 0) return ret; bw_resc = (bw_resc_end - *bw_resc_start) / MB; ret = print_results_bw(param->filename, bm_pid, bw_imc, bw_resc); if (ret) return ret; *bw_resc_start = bw_resc_end; return 0; } /* * run_benchmark - Run a specified benchmark or fill_buf (default benchmark) * in specified signal. Direct benchmark stdio to /dev/null. * @signum: signal number * @info: signal info * @ucontext: user context in signal handling */ static void run_benchmark(int signum, siginfo_t *info, void *ucontext) { int operation, ret, memflush; char **benchmark_cmd; size_t span; bool once; FILE *fp; benchmark_cmd = info->si_ptr; /* * Direct stdio of child to /dev/null, so that only parent writes to * stdio (console) */ fp = freopen("/dev/null", "w", stdout); if (!fp) { ksft_perror("Unable to direct benchmark status to /dev/null"); PARENT_EXIT(); } if (strcmp(benchmark_cmd[0], "fill_buf") == 0) { /* Execute default fill_buf benchmark */ span = strtoul(benchmark_cmd[1], NULL, 10); memflush = atoi(benchmark_cmd[2]); operation = atoi(benchmark_cmd[3]); if (!strcmp(benchmark_cmd[4], "true")) { once = true; } else if (!strcmp(benchmark_cmd[4], "false")) { once = false; } else { ksft_print_msg("Invalid once parameter\n"); PARENT_EXIT(); } if (run_fill_buf(span, memflush, operation, once)) fprintf(stderr, "Error in running fill buffer\n"); } else { /* Execute specified benchmark */ ret = execvp(benchmark_cmd[0], benchmark_cmd); if (ret) ksft_perror("execvp"); } fclose(stdout); ksft_print_msg("Unable to run specified benchmark\n"); PARENT_EXIT(); } /* * resctrl_val: execute benchmark and measure memory bandwidth on * the benchmark * @test: test information structure * @uparams: user supplied parameters * @benchmark_cmd: benchmark command and its arguments * @param: parameters passed to resctrl_val() * * Return: 0 when the test was run, < 0 on error. */ int resctrl_val(const struct resctrl_test *test, const struct user_params *uparams, const char * const *benchmark_cmd, struct resctrl_val_param *param) { char *resctrl_val = param->resctrl_val; unsigned long bw_resc_start = 0; struct sigaction sigact; int ret = 0, pipefd[2]; char pipe_message = 0; union sigval value; if (strcmp(param->filename, "") == 0) sprintf(param->filename, "stdio"); if (!strncmp(resctrl_val, MBA_STR, sizeof(MBA_STR)) || !strncmp(resctrl_val, MBM_STR, sizeof(MBM_STR))) { ret = validate_bw_report_request(param->bw_report); if (ret) return ret; } /* * If benchmark wasn't successfully started by child, then child should * kill parent, so save parent's pid */ ppid = getpid(); if (pipe(pipefd)) { ksft_perror("Unable to create pipe"); return -1; } /* * Fork to start benchmark, save child's pid so that it can be killed * when needed */ fflush(stdout); bm_pid = fork(); if (bm_pid == -1) { ksft_perror("Unable to fork"); return -1; } if (bm_pid == 0) { /* * Mask all signals except SIGUSR1, parent uses SIGUSR1 to * start benchmark */ sigfillset(&sigact.sa_mask); sigdelset(&sigact.sa_mask, SIGUSR1); sigact.sa_sigaction = run_benchmark; sigact.sa_flags = SA_SIGINFO; /* Register for "SIGUSR1" signal from parent */ if (sigaction(SIGUSR1, &sigact, NULL)) { ksft_perror("Can't register child for signal"); PARENT_EXIT(); } /* Tell parent that child is ready */ close(pipefd[0]); pipe_message = 1; if (write(pipefd[1], &pipe_message, sizeof(pipe_message)) < sizeof(pipe_message)) { ksft_perror("Failed signaling parent process"); close(pipefd[1]); return -1; } close(pipefd[1]); /* Suspend child until delivery of "SIGUSR1" from parent */ sigsuspend(&sigact.sa_mask); ksft_perror("Child is done"); PARENT_EXIT(); } ksft_print_msg("Benchmark PID: %d\n", bm_pid); /* * The cast removes constness but nothing mutates benchmark_cmd within * the context of this process. At the receiving process, it becomes * argv, which is mutable, on exec() but that's after fork() so it * doesn't matter for the process running the tests. */ value.sival_ptr = (void *)benchmark_cmd; /* Taskset benchmark to specified cpu */ ret = taskset_benchmark(bm_pid, uparams->cpu, NULL); if (ret) goto out; /* Write benchmark to specified control&monitoring grp in resctrl FS */ ret = write_bm_pid_to_resctrl(bm_pid, param->ctrlgrp, param->mongrp, resctrl_val); if (ret) goto out; if (!strncmp(resctrl_val, MBM_STR, sizeof(MBM_STR)) || !strncmp(resctrl_val, MBA_STR, sizeof(MBA_STR))) { ret = initialize_mem_bw_imc(); if (ret) goto out; initialize_mem_bw_resctrl(param->ctrlgrp, param->mongrp, uparams->cpu, resctrl_val); } else if (!strncmp(resctrl_val, CMT_STR, sizeof(CMT_STR))) initialize_llc_occu_resctrl(param->ctrlgrp, param->mongrp, uparams->cpu, resctrl_val); /* Parent waits for child to be ready. */ close(pipefd[1]); while (pipe_message != 1) { if (read(pipefd[0], &pipe_message, sizeof(pipe_message)) < sizeof(pipe_message)) { ksft_perror("Failed reading message from child process"); close(pipefd[0]); goto out; } } close(pipefd[0]); /* Signal child to start benchmark */ if (sigqueue(bm_pid, SIGUSR1, value) == -1) { ksft_perror("sigqueue SIGUSR1 to child"); ret = -1; goto out; } /* Give benchmark enough time to fully run */ sleep(1); /* Test runs until the callback setup() tells the test to stop. */ while (1) { ret = param->setup(test, uparams, param); if (ret == END_OF_TESTS) { ret = 0; break; } if (ret < 0) break; if (!strncmp(resctrl_val, MBM_STR, sizeof(MBM_STR)) || !strncmp(resctrl_val, MBA_STR, sizeof(MBA_STR))) { ret = measure_vals(uparams, param, &bw_resc_start); if (ret) break; } else if (!strncmp(resctrl_val, CMT_STR, sizeof(CMT_STR))) { sleep(1); ret = measure_llc_resctrl(param->filename, bm_pid); if (ret) break; } } out: kill(bm_pid, SIGKILL); return ret; } |