Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
// SPDX-License-Identifier: GPL-2.0
/*
 * TTY driver for MIPS EJTAG Fast Debug Channels.
 *
 * Copyright (C) 2007-2015 Imagination Technologies Ltd
 */

#include <linux/atomic.h>
#include <linux/bitops.h>
#include <linux/completion.h>
#include <linux/console.h>
#include <linux/delay.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kgdb.h>
#include <linux/kthread.h>
#include <linux/sched.h>
#include <linux/serial.h>
#include <linux/serial_core.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/tty.h>
#include <linux/tty_driver.h>
#include <linux/tty_flip.h>
#include <linux/uaccess.h>

#include <asm/cdmm.h>
#include <asm/irq.h>

/* Register offsets */
#define REG_FDACSR	0x00	/* FDC Access Control and Status Register */
#define REG_FDCFG	0x08	/* FDC Configuration Register */
#define REG_FDSTAT	0x10	/* FDC Status Register */
#define REG_FDRX	0x18	/* FDC Receive Register */
#define REG_FDTX(N)	(0x20+0x8*(N))	/* FDC Transmit Register n (0..15) */

/* Register fields */

#define REG_FDCFG_TXINTTHRES_SHIFT	18
#define REG_FDCFG_TXINTTHRES		(0x3 << REG_FDCFG_TXINTTHRES_SHIFT)
#define REG_FDCFG_TXINTTHRES_DISABLED	(0x0 << REG_FDCFG_TXINTTHRES_SHIFT)
#define REG_FDCFG_TXINTTHRES_EMPTY	(0x1 << REG_FDCFG_TXINTTHRES_SHIFT)
#define REG_FDCFG_TXINTTHRES_NOTFULL	(0x2 << REG_FDCFG_TXINTTHRES_SHIFT)
#define REG_FDCFG_TXINTTHRES_NEAREMPTY	(0x3 << REG_FDCFG_TXINTTHRES_SHIFT)
#define REG_FDCFG_RXINTTHRES_SHIFT	16
#define REG_FDCFG_RXINTTHRES		(0x3 << REG_FDCFG_RXINTTHRES_SHIFT)
#define REG_FDCFG_RXINTTHRES_DISABLED	(0x0 << REG_FDCFG_RXINTTHRES_SHIFT)
#define REG_FDCFG_RXINTTHRES_FULL	(0x1 << REG_FDCFG_RXINTTHRES_SHIFT)
#define REG_FDCFG_RXINTTHRES_NOTEMPTY	(0x2 << REG_FDCFG_RXINTTHRES_SHIFT)
#define REG_FDCFG_RXINTTHRES_NEARFULL	(0x3 << REG_FDCFG_RXINTTHRES_SHIFT)
#define REG_FDCFG_TXFIFOSIZE_SHIFT	8
#define REG_FDCFG_TXFIFOSIZE		(0xff << REG_FDCFG_TXFIFOSIZE_SHIFT)
#define REG_FDCFG_RXFIFOSIZE_SHIFT	0
#define REG_FDCFG_RXFIFOSIZE		(0xff << REG_FDCFG_RXFIFOSIZE_SHIFT)

#define REG_FDSTAT_TXCOUNT_SHIFT	24
#define REG_FDSTAT_TXCOUNT		(0xff << REG_FDSTAT_TXCOUNT_SHIFT)
#define REG_FDSTAT_RXCOUNT_SHIFT	16
#define REG_FDSTAT_RXCOUNT		(0xff << REG_FDSTAT_RXCOUNT_SHIFT)
#define REG_FDSTAT_RXCHAN_SHIFT		4
#define REG_FDSTAT_RXCHAN		(0xf << REG_FDSTAT_RXCHAN_SHIFT)
#define REG_FDSTAT_RXE			BIT(3)	/* Rx Empty */
#define REG_FDSTAT_RXF			BIT(2)	/* Rx Full */
#define REG_FDSTAT_TXE			BIT(1)	/* Tx Empty */
#define REG_FDSTAT_TXF			BIT(0)	/* Tx Full */

/* Default channel for the early console */
#define CONSOLE_CHANNEL      1

#define NUM_TTY_CHANNELS     16

#define RX_BUF_SIZE 1024

/*
 * When the IRQ is unavailable, the FDC state must be polled for incoming data
 * and space becoming available in TX FIFO.
 */
#define FDC_TTY_POLL (HZ / 50)

struct mips_ejtag_fdc_tty;

/**
 * struct mips_ejtag_fdc_tty_port - Wrapper struct for FDC tty_port.
 * @port:		TTY port data
 * @driver:		TTY driver.
 * @rx_lock:		Lock for rx_buf.
 *			This protects between the hard interrupt and user
 *			context. It's also held during read SWITCH operations.
 * @rx_buf:		Read buffer.
 * @xmit_lock:		Lock for xmit_*, and port.xmit_buf.
 *			This protects between user context and kernel thread.
 *			It is used from chars_in_buffer()/write_room() TTY
 *			callbacks which are used during wait operations, so a
 *			mutex is unsuitable.
 * @xmit_cnt:		Size of xmit buffer contents.
 * @xmit_head:		Head of xmit buffer where data is written.
 * @xmit_tail:		Tail of xmit buffer where data is read.
 * @xmit_empty:		Completion for xmit buffer being empty.
 */
struct mips_ejtag_fdc_tty_port {
	struct tty_port			 port;
	struct mips_ejtag_fdc_tty	*driver;
	raw_spinlock_t			 rx_lock;
	void				*rx_buf;
	spinlock_t			 xmit_lock;
	unsigned int			 xmit_cnt;
	unsigned int			 xmit_head;
	unsigned int			 xmit_tail;
	struct completion		 xmit_empty;
};

/**
 * struct mips_ejtag_fdc_tty - Driver data for FDC as a whole.
 * @dev:		FDC device (for dev_*() logging).
 * @driver:		TTY driver.
 * @cpu:		CPU number for this FDC.
 * @fdc_name:		FDC name (not for base of channel names).
 * @driver_name:	Base of driver name.
 * @ports:		Per-channel data.
 * @waitqueue:		Wait queue for waiting for TX data, or for space in TX
 *			FIFO.
 * @lock:		Lock to protect FDCFG (interrupt enable).
 * @thread:		KThread for writing out data to FDC.
 * @reg:		FDC registers.
 * @tx_fifo:		TX FIFO size.
 * @xmit_size:		Size of each port's xmit buffer.
 * @xmit_total:		Total number of bytes (from all ports) to transmit.
 * @xmit_next:		Next port number to transmit from (round robin).
 * @xmit_full:		Indicates TX FIFO is full, we're waiting for space.
 * @irq:		IRQ number (negative if no IRQ).
 * @removing:		Indicates the device is being removed and @poll_timer
 *			should not be restarted.
 * @poll_timer:		Timer for polling for interrupt events when @irq < 0.
 * @sysrq_pressed:	Whether the magic sysrq key combination has been
 *			detected. See mips_ejtag_fdc_handle().
 */
struct mips_ejtag_fdc_tty {
	struct device			*dev;
	struct tty_driver		*driver;
	unsigned int			 cpu;
	char				 fdc_name[16];
	char				 driver_name[16];
	struct mips_ejtag_fdc_tty_port	 ports[NUM_TTY_CHANNELS];
	wait_queue_head_t		 waitqueue;
	raw_spinlock_t			 lock;
	struct task_struct		*thread;

	void __iomem			*reg;
	u8				 tx_fifo;

	unsigned int			 xmit_size;
	atomic_t			 xmit_total;
	unsigned int			 xmit_next;
	bool				 xmit_full;

	int				 irq;
	bool				 removing;
	struct timer_list		 poll_timer;

#ifdef CONFIG_MAGIC_SYSRQ
	bool				 sysrq_pressed;
#endif
};

/* Hardware access */

static inline void mips_ejtag_fdc_write(struct mips_ejtag_fdc_tty *priv,
					unsigned int offs, unsigned int data)
{
	__raw_writel(data, priv->reg + offs);
}

static inline unsigned int mips_ejtag_fdc_read(struct mips_ejtag_fdc_tty *priv,
					       unsigned int offs)
{
	return __raw_readl(priv->reg + offs);
}

/* Encoding of byte stream in FDC words */

/**
 * struct fdc_word - FDC word encoding some number of bytes of data.
 * @word:		Raw FDC word.
 * @bytes:		Number of bytes encoded by @word.
 */
struct fdc_word {
	u32		word;
	unsigned int	bytes;
};

/*
 * This is a compact encoding which allows every 1 byte, 2 byte, and 3 byte
 * sequence to be encoded in a single word, while allowing the majority of 4
 * byte sequences (including all ASCII and common binary data) to be encoded in
 * a single word too.
 *    _______________________ _____________
 *   |       FDC Word        |             |
 *   |31-24|23-16|15-8 | 7-0 |    Bytes    |
 *   |_____|_____|_____|_____|_____________|
 *   |     |     |     |     |             |
 *   |0x80 |0x80 |0x80 |  WW | WW          |
 *   |0x81 |0x81 |  XX |  WW | WW XX       |
 *   |0x82 |  YY |  XX |  WW | WW XX YY    |
 *   |  ZZ |  YY |  XX |  WW | WW XX YY ZZ |
 *   |_____|_____|_____|_____|_____________|
 *
 * Note that the 4-byte encoding can only be used where none of the other 3
 * encodings match, otherwise it must fall back to the 3 byte encoding.
 */

/* ranges >= 1 && sizes[0] >= 1 */
static struct fdc_word mips_ejtag_fdc_encode(const u8 **ptrs,
					     unsigned int *sizes,
					     unsigned int ranges)
{
	struct fdc_word word = { 0, 0 };
	const u8 **ptrs_end = ptrs + ranges;

	for (; ptrs < ptrs_end; ++ptrs) {
		const u8 *ptr = *(ptrs++);
		const u8 *end = ptr + *(sizes++);

		for (; ptr < end; ++ptr) {
			word.word |= (u8)*ptr << (8*word.bytes);
			++word.bytes;
			if (word.bytes == 4)
				goto done;
		}
	}
done:
	/* Choose the appropriate encoding */
	switch (word.bytes) {
	case 4:
		/* 4 byte encoding, but don't match the 1-3 byte encodings */
		if ((word.word >> 8) != 0x808080 &&
		    (word.word >> 16) != 0x8181 &&
		    (word.word >> 24) != 0x82)
			break;
		/* Fall back to a 3 byte encoding */
		word.bytes = 3;
		word.word &= 0x00ffffff;
		fallthrough;
	case 3:
		/* 3 byte encoding */
		word.word |= 0x82000000;
		break;
	case 2:
		/* 2 byte encoding */
		word.word |= 0x81810000;
		break;
	case 1:
		/* 1 byte encoding */
		word.word |= 0x80808000;
		break;
	}
	return word;
}

static unsigned int mips_ejtag_fdc_decode(u32 word, char *buf)
{
	buf[0] = (u8)word;
	word >>= 8;
	if (word == 0x808080)
		return 1;
	buf[1] = (u8)word;
	word >>= 8;
	if (word == 0x8181)
		return 2;
	buf[2] = (u8)word;
	word >>= 8;
	if (word == 0x82)
		return 3;
	buf[3] = (u8)word;
	return 4;
}

/* Console operations */

/**
 * struct mips_ejtag_fdc_console - Wrapper struct for FDC consoles.
 * @cons:		Console object.
 * @tty_drv:		TTY driver associated with this console.
 * @lock:		Lock to protect concurrent access to other fields.
 *			This is raw because it may be used very early.
 * @initialised:	Whether the console is initialised.
 * @regs:		Registers base address for each CPU.
 */
struct mips_ejtag_fdc_console {
	struct console		 cons;
	struct tty_driver	*tty_drv;
	raw_spinlock_t		 lock;
	bool			 initialised;
	void __iomem		*regs[NR_CPUS];
};

/* Low level console write shared by early console and normal console */
static void mips_ejtag_fdc_console_write(struct console *c, const char *s,
					 unsigned int count)
{
	struct mips_ejtag_fdc_console *cons =
		container_of(c, struct mips_ejtag_fdc_console, cons);
	void __iomem *regs;
	struct fdc_word word;
	unsigned long flags;
	unsigned int i, buf_len, cpu;
	bool done_cr = false;
	char buf[4];
	const u8 *buf_ptr = buf;
	/* Number of bytes of input data encoded up to each byte in buf */
	u8 inc[4];

	local_irq_save(flags);
	cpu = smp_processor_id();
	regs = cons->regs[cpu];
	/* First console output on this CPU? */
	if (!regs) {
		regs = mips_cdmm_early_probe(0xfd);
		cons->regs[cpu] = regs;
	}
	/* Already tried and failed to find FDC on this CPU? */
	if (IS_ERR(regs))
		goto out;
	while (count) {
		/*
		 * Copy the next few characters to a buffer so we can inject
		 * carriage returns before newlines.
		 */
		for (buf_len = 0, i = 0; buf_len < 4 && i < count; ++buf_len) {
			if (s[i] == '\n' && !done_cr) {
				buf[buf_len] = '\r';
				done_cr = true;
			} else {
				buf[buf_len] = s[i];
				done_cr = false;
				++i;
			}
			inc[buf_len] = i;
		}
		word = mips_ejtag_fdc_encode(&buf_ptr, &buf_len, 1);
		count -= inc[word.bytes - 1];
		s += inc[word.bytes - 1];

		/* Busy wait until there's space in fifo */
		while (__raw_readl(regs + REG_FDSTAT) & REG_FDSTAT_TXF)
			;
		__raw_writel(word.word, regs + REG_FDTX(c->index));
	}
out:
	local_irq_restore(flags);
}

static struct tty_driver *mips_ejtag_fdc_console_device(struct console *c,
							int *index)
{
	struct mips_ejtag_fdc_console *cons =
		container_of(c, struct mips_ejtag_fdc_console, cons);

	*index = c->index;
	return cons->tty_drv;
}

/* Initialise an FDC console (early or normal */
static int __init mips_ejtag_fdc_console_init(struct mips_ejtag_fdc_console *c)
{
	void __iomem *regs;
	unsigned long flags;
	int ret = 0;

	raw_spin_lock_irqsave(&c->lock, flags);
	/* Don't init twice */
	if (c->initialised)
		goto out;
	/* Look for the FDC device */
	regs = mips_cdmm_early_probe(0xfd);
	if (IS_ERR(regs)) {
		ret = PTR_ERR(regs);
		goto out;
	}

	c->initialised = true;
	c->regs[smp_processor_id()] = regs;
	register_console(&c->cons);
out:
	raw_spin_unlock_irqrestore(&c->lock, flags);
	return ret;
}

static struct mips_ejtag_fdc_console mips_ejtag_fdc_con = {
	.cons	= {
		.name	= "fdc",
		.write	= mips_ejtag_fdc_console_write,
		.device	= mips_ejtag_fdc_console_device,
		.flags	= CON_PRINTBUFFER,
		.index	= -1,
	},
	.lock	= __RAW_SPIN_LOCK_UNLOCKED(mips_ejtag_fdc_con.lock),
};

/* TTY RX/TX operations */

/**
 * mips_ejtag_fdc_put_chan() - Write out a block of channel data.
 * @priv:	Pointer to driver private data.
 * @chan:	Channel number.
 *
 * Write a single block of data out to the debug adapter. If the circular buffer
 * is wrapped then only the first block is written.
 *
 * Returns:	The number of bytes that were written.
 */
static unsigned int mips_ejtag_fdc_put_chan(struct mips_ejtag_fdc_tty *priv,
					    unsigned int chan)
{
	struct mips_ejtag_fdc_tty_port *dport;
	struct tty_struct *tty;
	const u8 *ptrs[2];
	unsigned int sizes[2] = { 0 };
	struct fdc_word word = { .bytes = 0 };
	unsigned long flags;

	dport = &priv->ports[chan];
	spin_lock(&dport->xmit_lock);
	if (dport->xmit_cnt) {
		ptrs[0] = dport->port.xmit_buf + dport->xmit_tail;
		sizes[0] = min_t(unsigned int,
				 priv->xmit_size - dport->xmit_tail,
				 dport->xmit_cnt);
		ptrs[1] = dport->port.xmit_buf;
		sizes[1] = dport->xmit_cnt - sizes[0];
		word = mips_ejtag_fdc_encode(ptrs, sizes, 1 + !!sizes[1]);

		dev_dbg(priv->dev, "%s%u: out %08x: \"%*pE%*pE\"\n",
			priv->driver_name, chan, word.word,
			min_t(int, word.bytes, sizes[0]), ptrs[0],
			max_t(int, 0, word.bytes - sizes[0]), ptrs[1]);

		local_irq_save(flags);
		/* Maybe we raced with the console and TX FIFO is full */
		if (mips_ejtag_fdc_read(priv, REG_FDSTAT) & REG_FDSTAT_TXF)
			word.bytes = 0;
		else
			mips_ejtag_fdc_write(priv, REG_FDTX(chan), word.word);
		local_irq_restore(flags);

		dport->xmit_cnt -= word.bytes;
		if (!dport->xmit_cnt) {
			/* Reset pointers to avoid wraps */
			dport->xmit_head = 0;
			dport->xmit_tail = 0;
			complete(&dport->xmit_empty);
		} else {
			dport->xmit_tail += word.bytes;
			if (dport->xmit_tail >= priv->xmit_size)
				dport->xmit_tail -= priv->xmit_size;
		}
		atomic_sub(word.bytes, &priv->xmit_total);
	}
	spin_unlock(&dport->xmit_lock);

	/* If we've made more data available, wake up tty */
	if (sizes[0] && word.bytes) {
		tty = tty_port_tty_get(&dport->port);
		if (tty) {
			tty_wakeup(tty);
			tty_kref_put(tty);
		}
	}

	return word.bytes;
}

/**
 * mips_ejtag_fdc_put() - Kernel thread to write out channel data to FDC.
 * @arg:	Driver pointer.
 *
 * This kernel thread runs while @priv->xmit_total != 0, and round robins the
 * channels writing out blocks of buffered data to the FDC TX FIFO.
 */
static int mips_ejtag_fdc_put(void *arg)
{
	struct mips_ejtag_fdc_tty *priv = arg;
	struct mips_ejtag_fdc_tty_port *dport;
	unsigned int ret;
	u32 cfg;

	__set_current_state(TASK_RUNNING);
	while (!kthread_should_stop()) {
		/* Wait for data to actually write */
		wait_event_interruptible(priv->waitqueue,
					 atomic_read(&priv->xmit_total) ||
					 kthread_should_stop());
		if (kthread_should_stop())
			break;

		/* Wait for TX FIFO space to write data */
		raw_spin_lock_irq(&priv->lock);
		if (mips_ejtag_fdc_read(priv, REG_FDSTAT) & REG_FDSTAT_TXF) {
			priv->xmit_full = true;
			if (priv->irq >= 0) {
				/* Enable TX interrupt */
				cfg = mips_ejtag_fdc_read(priv, REG_FDCFG);
				cfg &= ~REG_FDCFG_TXINTTHRES;
				cfg |= REG_FDCFG_TXINTTHRES_NOTFULL;
				mips_ejtag_fdc_write(priv, REG_FDCFG, cfg);
			}
		}
		raw_spin_unlock_irq(&priv->lock);
		wait_event_interruptible(priv->waitqueue,
					 !(mips_ejtag_fdc_read(priv, REG_FDSTAT)
					   & REG_FDSTAT_TXF) ||
					 kthread_should_stop());
		if (kthread_should_stop())
			break;

		/* Find next channel with data to output */
		for (;;) {
			dport = &priv->ports[priv->xmit_next];
			spin_lock(&dport->xmit_lock);
			ret = dport->xmit_cnt;
			spin_unlock(&dport->xmit_lock);
			if (ret)
				break;
			/* Round robin */
			++priv->xmit_next;
			if (priv->xmit_next >= NUM_TTY_CHANNELS)
				priv->xmit_next = 0;
		}

		/* Try writing data to the chosen channel */
		ret = mips_ejtag_fdc_put_chan(priv, priv->xmit_next);

		/*
		 * If anything was output, move on to the next channel so as not
		 * to starve other channels.
		 */
		if (ret) {
			++priv->xmit_next;
			if (priv->xmit_next >= NUM_TTY_CHANNELS)
				priv->xmit_next = 0;
		}
	}

	return 0;
}

/**
 * mips_ejtag_fdc_handle() - Handle FDC events.
 * @priv:	Pointer to driver private data.
 *
 * Handle FDC events, such as new incoming data which needs draining out of the
 * RX FIFO and feeding into the appropriate TTY ports, and space becoming
 * available in the TX FIFO which would allow more data to be written out.
 */
static void mips_ejtag_fdc_handle(struct mips_ejtag_fdc_tty *priv)
{
	struct mips_ejtag_fdc_tty_port *dport;
	unsigned int stat, channel, data, cfg, i, flipped;
	int len;
	char buf[4];

	for (;;) {
		/* Find which channel the next FDC word is destined for */
		stat = mips_ejtag_fdc_read(priv, REG_FDSTAT);
		if (stat & REG_FDSTAT_RXE)
			break;
		channel = (stat & REG_FDSTAT_RXCHAN) >> REG_FDSTAT_RXCHAN_SHIFT;
		dport = &priv->ports[channel];

		/* Read out the FDC word, decode it, and pass to tty layer */
		raw_spin_lock(&dport->rx_lock);
		data = mips_ejtag_fdc_read(priv, REG_FDRX);

		len = mips_ejtag_fdc_decode(data, buf);
		dev_dbg(priv->dev, "%s%u: in  %08x: \"%*pE\"\n",
			priv->driver_name, channel, data, len, buf);

		flipped = 0;
		for (i = 0; i < len; ++i) {
#ifdef CONFIG_MAGIC_SYSRQ
#ifdef CONFIG_MIPS_EJTAG_FDC_KGDB
			/* Support just Ctrl+C with KGDB channel */
			if (channel == CONFIG_MIPS_EJTAG_FDC_KGDB_CHAN) {
				if (buf[i] == '\x03') { /* ^C */
					handle_sysrq('g');
					continue;
				}
			}
#endif
			/* Support Ctrl+O for console channel */
			if (channel == mips_ejtag_fdc_con.cons.index) {
				if (buf[i] == '\x0f') {	/* ^O */
					priv->sysrq_pressed =
						!priv->sysrq_pressed;
					if (priv->sysrq_pressed)
						continue;
				} else if (priv->sysrq_pressed) {
					handle_sysrq(buf[i]);
					priv->sysrq_pressed = false;
					continue;
				}
			}
#endif /* CONFIG_MAGIC_SYSRQ */

			/* Check the port isn't being shut down */
			if (!dport->rx_buf)
				continue;

			flipped += tty_insert_flip_char(&dport->port, buf[i],
							TTY_NORMAL);
		}
		if (flipped)
			tty_flip_buffer_push(&dport->port);

		raw_spin_unlock(&dport->rx_lock);
	}

	/* If TX FIFO no longer full we may be able to write more data */
	raw_spin_lock(&priv->lock);
	if (priv->xmit_full && !(stat & REG_FDSTAT_TXF)) {
		priv->xmit_full = false;

		/* Disable TX interrupt */
		cfg = mips_ejtag_fdc_read(priv, REG_FDCFG);
		cfg &= ~REG_FDCFG_TXINTTHRES;
		cfg |= REG_FDCFG_TXINTTHRES_DISABLED;
		mips_ejtag_fdc_write(priv, REG_FDCFG, cfg);

		/* Wait the kthread so it can try writing more data */
		wake_up_interruptible(&priv->waitqueue);
	}
	raw_spin_unlock(&priv->lock);
}

/**
 * mips_ejtag_fdc_isr() - Interrupt handler.
 * @irq:	IRQ number.
 * @dev_id:	Pointer to driver private data.
 *
 * This is the interrupt handler, used when interrupts are enabled.
 *
 * It simply triggers the common FDC handler code.
 *
 * Returns:	IRQ_HANDLED if an FDC interrupt was pending.
 *		IRQ_NONE otherwise.
 */
static irqreturn_t mips_ejtag_fdc_isr(int irq, void *dev_id)
{
	struct mips_ejtag_fdc_tty *priv = dev_id;

	/*
	 * We're not using proper per-cpu IRQs, so we must be careful not to
	 * handle IRQs on CPUs we're not interested in.
	 *
	 * Ideally proper per-cpu IRQ handlers could be used, but that doesn't
	 * fit well with the whole sharing of the main CPU IRQ lines. When we
	 * have something with a GIC that routes the FDC IRQs (i.e. no sharing
	 * between handlers) then support could be added more easily.
	 */
	if (smp_processor_id() != priv->cpu)
		return IRQ_NONE;

	/* If no FDC interrupt pending, it wasn't for us */
	if (!(read_c0_cause() & CAUSEF_FDCI))
		return IRQ_NONE;

	mips_ejtag_fdc_handle(priv);
	return IRQ_HANDLED;
}

/**
 * mips_ejtag_fdc_tty_timer() - Poll FDC for incoming data.
 * @opaque:	Pointer to driver private data.
 *
 * This is the timer handler for when interrupts are disabled and polling the
 * FDC state is required.
 *
 * It simply triggers the common FDC handler code and arranges for further
 * polling.
 */
static void mips_ejtag_fdc_tty_timer(struct timer_list *t)
{
	struct mips_ejtag_fdc_tty *priv = from_timer(priv, t, poll_timer);

	mips_ejtag_fdc_handle(priv);
	if (!priv->removing)
		mod_timer(&priv->poll_timer, jiffies + FDC_TTY_POLL);
}

/* TTY Port operations */

static int mips_ejtag_fdc_tty_port_activate(struct tty_port *port,
					    struct tty_struct *tty)
{
	struct mips_ejtag_fdc_tty_port *dport =
		container_of(port, struct mips_ejtag_fdc_tty_port, port);
	void *rx_buf;

	/* Allocate the buffer we use for writing data */
	if (tty_port_alloc_xmit_buf(port) < 0)
		goto err;

	/* Allocate the buffer we use for reading data */
	rx_buf = kzalloc(RX_BUF_SIZE, GFP_KERNEL);
	if (!rx_buf)
		goto err_free_xmit;

	raw_spin_lock_irq(&dport->rx_lock);
	dport->rx_buf = rx_buf;
	raw_spin_unlock_irq(&dport->rx_lock);

	return 0;
err_free_xmit:
	tty_port_free_xmit_buf(port);
err:
	return -ENOMEM;
}

static void mips_ejtag_fdc_tty_port_shutdown(struct tty_port *port)
{
	struct mips_ejtag_fdc_tty_port *dport =
		container_of(port, struct mips_ejtag_fdc_tty_port, port);
	struct mips_ejtag_fdc_tty *priv = dport->driver;
	void *rx_buf;
	unsigned int count;

	spin_lock(&dport->xmit_lock);
	count = dport->xmit_cnt;
	spin_unlock(&dport->xmit_lock);
	if (count) {
		/*
		 * There's still data to write out, so wake and wait for the
		 * writer thread to drain the buffer.
		 */
		wake_up_interruptible(&priv->waitqueue);
		wait_for_completion(&dport->xmit_empty);
	}

	/* Null the read buffer (timer could still be running!) */
	raw_spin_lock_irq(&dport->rx_lock);
	rx_buf = dport->rx_buf;
	dport->rx_buf = NULL;
	raw_spin_unlock_irq(&dport->rx_lock);
	/* Free the read buffer */
	kfree(rx_buf);

	/* Free the write buffer */
	tty_port_free_xmit_buf(port);
}

static const struct tty_port_operations mips_ejtag_fdc_tty_port_ops = {
	.activate	= mips_ejtag_fdc_tty_port_activate,
	.shutdown	= mips_ejtag_fdc_tty_port_shutdown,
};

/* TTY operations */

static int mips_ejtag_fdc_tty_install(struct tty_driver *driver,
				      struct tty_struct *tty)
{
	struct mips_ejtag_fdc_tty *priv = driver->driver_state;

	tty->driver_data = &priv->ports[tty->index];
	return tty_port_install(&priv->ports[tty->index].port, driver, tty);
}

static int mips_ejtag_fdc_tty_open(struct tty_struct *tty, struct file *filp)
{
	return tty_port_open(tty->port, tty, filp);
}

static void mips_ejtag_fdc_tty_close(struct tty_struct *tty, struct file *filp)
{
	return tty_port_close(tty->port, tty, filp);
}

static void mips_ejtag_fdc_tty_hangup(struct tty_struct *tty)
{
	struct mips_ejtag_fdc_tty_port *dport = tty->driver_data;
	struct mips_ejtag_fdc_tty *priv = dport->driver;

	/* Drop any data in the xmit buffer */
	spin_lock(&dport->xmit_lock);
	if (dport->xmit_cnt) {
		atomic_sub(dport->xmit_cnt, &priv->xmit_total);
		dport->xmit_cnt = 0;
		dport->xmit_head = 0;
		dport->xmit_tail = 0;
		complete(&dport->xmit_empty);
	}
	spin_unlock(&dport->xmit_lock);

	tty_port_hangup(tty->port);
}

static ssize_t mips_ejtag_fdc_tty_write(struct tty_struct *tty, const u8 *buf,
					size_t total)
{
	int count, block;
	struct mips_ejtag_fdc_tty_port *dport = tty->driver_data;
	struct mips_ejtag_fdc_tty *priv = dport->driver;

	/*
	 * Write to output buffer.
	 *
	 * The reason that we asynchronously write the buffer is because if we
	 * were to write the buffer synchronously then because the channels are
	 * per-CPU the buffer would be written to the channel of whatever CPU
	 * we're running on.
	 *
	 * What we actually want to happen is have all input and output done on
	 * one CPU.
	 */
	spin_lock(&dport->xmit_lock);
	/* Work out how many bytes we can write to the xmit buffer */
	total = min_t(size_t, total, priv->xmit_size - dport->xmit_cnt);
	atomic_add(total, &priv->xmit_total);
	dport->xmit_cnt += total;
	/* Write the actual bytes (may need splitting if it wraps) */
	for (count = total; count; count -= block) {
		block = min(count, (int)(priv->xmit_size - dport->xmit_head));
		memcpy(dport->port.xmit_buf + dport->xmit_head, buf, block);
		dport->xmit_head += block;
		if (dport->xmit_head >= priv->xmit_size)
			dport->xmit_head -= priv->xmit_size;
		buf += block;
	}
	count = dport->xmit_cnt;
	/* Xmit buffer no longer empty? */
	if (count)
		reinit_completion(&dport->xmit_empty);
	spin_unlock(&dport->xmit_lock);

	/* Wake up the kthread */
	if (total)
		wake_up_interruptible(&priv->waitqueue);
	return total;
}

static unsigned int mips_ejtag_fdc_tty_write_room(struct tty_struct *tty)
{
	struct mips_ejtag_fdc_tty_port *dport = tty->driver_data;
	struct mips_ejtag_fdc_tty *priv = dport->driver;
	unsigned int room;

	/* Report the space in the xmit buffer */
	spin_lock(&dport->xmit_lock);
	room = priv->xmit_size - dport->xmit_cnt;
	spin_unlock(&dport->xmit_lock);

	return room;
}

static unsigned int mips_ejtag_fdc_tty_chars_in_buffer(struct tty_struct *tty)
{
	struct mips_ejtag_fdc_tty_port *dport = tty->driver_data;
	unsigned int chars;

	/* Report the number of bytes in the xmit buffer */
	spin_lock(&dport->xmit_lock);
	chars = dport->xmit_cnt;
	spin_unlock(&dport->xmit_lock);

	return chars;
}

static const struct tty_operations mips_ejtag_fdc_tty_ops = {
	.install		= mips_ejtag_fdc_tty_install,
	.open			= mips_ejtag_fdc_tty_open,
	.close			= mips_ejtag_fdc_tty_close,
	.hangup			= mips_ejtag_fdc_tty_hangup,
	.write			= mips_ejtag_fdc_tty_write,
	.write_room		= mips_ejtag_fdc_tty_write_room,
	.chars_in_buffer	= mips_ejtag_fdc_tty_chars_in_buffer,
};

int __weak get_c0_fdc_int(void)
{
	return -1;
}

static int mips_ejtag_fdc_tty_probe(struct mips_cdmm_device *dev)
{
	int ret, nport;
	struct mips_ejtag_fdc_tty_port *dport;
	struct mips_ejtag_fdc_tty *priv;
	struct tty_driver *driver;
	unsigned int cfg, tx_fifo;

	priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL);
	if (!priv)
		return -ENOMEM;
	priv->cpu = dev->cpu;
	priv->dev = &dev->dev;
	mips_cdmm_set_drvdata(dev, priv);
	atomic_set(&priv->xmit_total, 0);
	raw_spin_lock_init(&priv->lock);

	priv->reg = devm_ioremap(priv->dev, dev->res.start,
					 resource_size(&dev->res));
	if (!priv->reg) {
		dev_err(priv->dev, "ioremap failed for resource %pR\n",
			&dev->res);
		return -ENOMEM;
	}

	cfg = mips_ejtag_fdc_read(priv, REG_FDCFG);
	tx_fifo = (cfg & REG_FDCFG_TXFIFOSIZE) >> REG_FDCFG_TXFIFOSIZE_SHIFT;
	/* Disable interrupts */
	cfg &= ~(REG_FDCFG_TXINTTHRES | REG_FDCFG_RXINTTHRES);
	cfg |= REG_FDCFG_TXINTTHRES_DISABLED;
	cfg |= REG_FDCFG_RXINTTHRES_DISABLED;
	mips_ejtag_fdc_write(priv, REG_FDCFG, cfg);

	/* Make each port's xmit FIFO big enough to fill FDC TX FIFO */
	priv->xmit_size = min(tx_fifo * 4, (unsigned int)UART_XMIT_SIZE);

	driver = tty_alloc_driver(NUM_TTY_CHANNELS, TTY_DRIVER_REAL_RAW);
	if (IS_ERR(driver))
		return PTR_ERR(driver);
	priv->driver = driver;

	driver->driver_name = "ejtag_fdc";
	snprintf(priv->fdc_name, sizeof(priv->fdc_name), "ttyFDC%u", dev->cpu);
	snprintf(priv->driver_name, sizeof(priv->driver_name), "%sc",
		 priv->fdc_name);
	driver->name = priv->driver_name;
	driver->major = 0; /* Auto-allocate */
	driver->minor_start = 0;
	driver->type = TTY_DRIVER_TYPE_SERIAL;
	driver->subtype = SERIAL_TYPE_NORMAL;
	driver->init_termios = tty_std_termios;
	driver->init_termios.c_cflag |= CLOCAL;
	driver->driver_state = priv;

	tty_set_operations(driver, &mips_ejtag_fdc_tty_ops);
	for (nport = 0; nport < NUM_TTY_CHANNELS; nport++) {
		dport = &priv->ports[nport];
		dport->driver = priv;
		tty_port_init(&dport->port);
		dport->port.ops = &mips_ejtag_fdc_tty_port_ops;
		raw_spin_lock_init(&dport->rx_lock);
		spin_lock_init(&dport->xmit_lock);
		/* The xmit buffer starts empty, i.e. completely written */
		init_completion(&dport->xmit_empty);
		complete(&dport->xmit_empty);
	}

	/* Set up the console */
	mips_ejtag_fdc_con.regs[dev->cpu] = priv->reg;
	if (dev->cpu == 0)
		mips_ejtag_fdc_con.tty_drv = driver;

	init_waitqueue_head(&priv->waitqueue);
	/*
	 * Bind the writer thread to the right CPU so it can't migrate.
	 * The channels are per-CPU and we want all channel I/O to be on a
	 * single predictable CPU.
	 */
	priv->thread = kthread_run_on_cpu(mips_ejtag_fdc_put, priv,
					  dev->cpu, "ttyFDC/%u");
	if (IS_ERR(priv->thread)) {
		ret = PTR_ERR(priv->thread);
		dev_err(priv->dev, "Couldn't create kthread (%d)\n", ret);
		goto err_destroy_ports;
	}

	/* Look for an FDC IRQ */
	priv->irq = get_c0_fdc_int();

	/* Try requesting the IRQ */
	if (priv->irq >= 0) {
		/*
		 * IRQF_SHARED, IRQF_COND_SUSPEND: The FDC IRQ may be shared with
		 * other local interrupts such as the timer which sets
		 * IRQF_TIMER (including IRQF_NO_SUSPEND).
		 *
		 * IRQF_NO_THREAD: The FDC IRQ isn't individually maskable so it
		 * cannot be deferred and handled by a thread on RT kernels. For
		 * this reason any spinlocks used from the ISR are raw.
		 */
		ret = devm_request_irq(priv->dev, priv->irq, mips_ejtag_fdc_isr,
				       IRQF_PERCPU | IRQF_SHARED |
				       IRQF_NO_THREAD | IRQF_COND_SUSPEND,
				       priv->fdc_name, priv);
		if (ret)
			priv->irq = -1;
	}
	if (priv->irq >= 0) {
		/* IRQ is usable, enable RX interrupt */
		raw_spin_lock_irq(&priv->lock);
		cfg = mips_ejtag_fdc_read(priv, REG_FDCFG);
		cfg &= ~REG_FDCFG_RXINTTHRES;
		cfg |= REG_FDCFG_RXINTTHRES_NOTEMPTY;
		mips_ejtag_fdc_write(priv, REG_FDCFG, cfg);
		raw_spin_unlock_irq(&priv->lock);
	} else {
		/* If we didn't get an usable IRQ, poll instead */
		timer_setup(&priv->poll_timer, mips_ejtag_fdc_tty_timer,
			    TIMER_PINNED);
		priv->poll_timer.expires = jiffies + FDC_TTY_POLL;
		/*
		 * Always attach the timer to the right CPU. The channels are
		 * per-CPU so all polling should be from a single CPU.
		 */
		add_timer_on(&priv->poll_timer, dev->cpu);

		dev_info(priv->dev, "No usable IRQ, polling enabled\n");
	}

	ret = tty_register_driver(driver);
	if (ret < 0) {
		dev_err(priv->dev, "Couldn't install tty driver (%d)\n", ret);
		goto err_stop_irq;
	}

	return 0;

err_stop_irq:
	if (priv->irq >= 0) {
		raw_spin_lock_irq(&priv->lock);
		cfg = mips_ejtag_fdc_read(priv, REG_FDCFG);
		/* Disable interrupts */
		cfg &= ~(REG_FDCFG_TXINTTHRES | REG_FDCFG_RXINTTHRES);
		cfg |= REG_FDCFG_TXINTTHRES_DISABLED;
		cfg |= REG_FDCFG_RXINTTHRES_DISABLED;
		mips_ejtag_fdc_write(priv, REG_FDCFG, cfg);
		raw_spin_unlock_irq(&priv->lock);
	} else {
		priv->removing = true;
		del_timer_sync(&priv->poll_timer);
	}
	kthread_stop(priv->thread);
err_destroy_ports:
	if (dev->cpu == 0)
		mips_ejtag_fdc_con.tty_drv = NULL;
	for (nport = 0; nport < NUM_TTY_CHANNELS; nport++) {
		dport = &priv->ports[nport];
		tty_port_destroy(&dport->port);
	}
	tty_driver_kref_put(priv->driver);
	return ret;
}

static int mips_ejtag_fdc_tty_cpu_down(struct mips_cdmm_device *dev)
{
	struct mips_ejtag_fdc_tty *priv = mips_cdmm_get_drvdata(dev);
	unsigned int cfg;

	if (priv->irq >= 0) {
		raw_spin_lock_irq(&priv->lock);
		cfg = mips_ejtag_fdc_read(priv, REG_FDCFG);
		/* Disable interrupts */
		cfg &= ~(REG_FDCFG_TXINTTHRES | REG_FDCFG_RXINTTHRES);
		cfg |= REG_FDCFG_TXINTTHRES_DISABLED;
		cfg |= REG_FDCFG_RXINTTHRES_DISABLED;
		mips_ejtag_fdc_write(priv, REG_FDCFG, cfg);
		raw_spin_unlock_irq(&priv->lock);
	} else {
		priv->removing = true;
		del_timer_sync(&priv->poll_timer);
	}
	kthread_stop(priv->thread);

	return 0;
}

static int mips_ejtag_fdc_tty_cpu_up(struct mips_cdmm_device *dev)
{
	struct mips_ejtag_fdc_tty *priv = mips_cdmm_get_drvdata(dev);
	unsigned int cfg;
	int ret = 0;

	if (priv->irq >= 0) {
		/*
		 * IRQ is usable, enable RX interrupt
		 * This must be before kthread is restarted, as kthread may
		 * enable TX interrupt.
		 */
		raw_spin_lock_irq(&priv->lock);
		cfg = mips_ejtag_fdc_read(priv, REG_FDCFG);
		cfg &= ~(REG_FDCFG_TXINTTHRES | REG_FDCFG_RXINTTHRES);
		cfg |= REG_FDCFG_TXINTTHRES_DISABLED;
		cfg |= REG_FDCFG_RXINTTHRES_NOTEMPTY;
		mips_ejtag_fdc_write(priv, REG_FDCFG, cfg);
		raw_spin_unlock_irq(&priv->lock);
	} else {
		/* Restart poll timer */
		priv->removing = false;
		add_timer_on(&priv->poll_timer, dev->cpu);
	}

	/* Restart the kthread */
	/* Bind it back to the right CPU and set it off */
	priv->thread = kthread_run_on_cpu(mips_ejtag_fdc_put, priv,
					  dev->cpu, "ttyFDC/%u");
	if (IS_ERR(priv->thread)) {
		ret = PTR_ERR(priv->thread);
		dev_err(priv->dev, "Couldn't re-create kthread (%d)\n", ret);
		goto out;
	}
out:
	return ret;
}

static const struct mips_cdmm_device_id mips_ejtag_fdc_tty_ids[] = {
	{ .type = 0xfd },
	{ }
};

static struct mips_cdmm_driver mips_ejtag_fdc_tty_driver = {
	.drv		= {
		.name	= "mips_ejtag_fdc",
	},
	.probe		= mips_ejtag_fdc_tty_probe,
	.cpu_down	= mips_ejtag_fdc_tty_cpu_down,
	.cpu_up		= mips_ejtag_fdc_tty_cpu_up,
	.id_table	= mips_ejtag_fdc_tty_ids,
};
builtin_mips_cdmm_driver(mips_ejtag_fdc_tty_driver);

static int __init mips_ejtag_fdc_init_console(void)
{
	return mips_ejtag_fdc_console_init(&mips_ejtag_fdc_con);
}
console_initcall(mips_ejtag_fdc_init_console);

#ifdef CONFIG_MIPS_EJTAG_FDC_EARLYCON
static struct mips_ejtag_fdc_console mips_ejtag_fdc_earlycon = {
	.cons	= {
		.name	= "early_fdc",
		.write	= mips_ejtag_fdc_console_write,
		.flags	= CON_PRINTBUFFER | CON_BOOT,
		.index	= CONSOLE_CHANNEL,
	},
	.lock	= __RAW_SPIN_LOCK_UNLOCKED(mips_ejtag_fdc_earlycon.lock),
};

int __init setup_early_fdc_console(void)
{
	return mips_ejtag_fdc_console_init(&mips_ejtag_fdc_earlycon);
}
#endif

#ifdef CONFIG_MIPS_EJTAG_FDC_KGDB

/* read buffer to allow decompaction */
static unsigned int kgdbfdc_rbuflen;
static unsigned int kgdbfdc_rpos;
static char kgdbfdc_rbuf[4];

/* write buffer to allow compaction */
static unsigned int kgdbfdc_wbuflen;
static char kgdbfdc_wbuf[4];

static void __iomem *kgdbfdc_setup(void)
{
	void __iomem *regs;
	unsigned int cpu;

	/* Find address, piggy backing off console percpu regs */
	cpu = smp_processor_id();
	regs = mips_ejtag_fdc_con.regs[cpu];
	/* First console output on this CPU? */
	if (!regs) {
		regs = mips_cdmm_early_probe(0xfd);
		mips_ejtag_fdc_con.regs[cpu] = regs;
	}
	/* Already tried and failed to find FDC on this CPU? */
	if (IS_ERR(regs))
		return regs;

	return regs;
}

/* read a character from the read buffer, filling from FDC RX FIFO */
static int kgdbfdc_read_char(void)
{
	unsigned int stat, channel, data;
	void __iomem *regs;

	/* No more data, try and read another FDC word from RX FIFO */
	if (kgdbfdc_rpos >= kgdbfdc_rbuflen) {
		kgdbfdc_rpos = 0;
		kgdbfdc_rbuflen = 0;

		regs = kgdbfdc_setup();
		if (IS_ERR(regs))
			return NO_POLL_CHAR;

		/* Read next word from KGDB channel */
		do {
			stat = __raw_readl(regs + REG_FDSTAT);

			/* No data waiting? */
			if (stat & REG_FDSTAT_RXE)
				return NO_POLL_CHAR;

			/* Read next word */
			channel = (stat & REG_FDSTAT_RXCHAN) >>
					REG_FDSTAT_RXCHAN_SHIFT;
			data = __raw_readl(regs + REG_FDRX);
		} while (channel != CONFIG_MIPS_EJTAG_FDC_KGDB_CHAN);

		/* Decode into rbuf */
		kgdbfdc_rbuflen = mips_ejtag_fdc_decode(data, kgdbfdc_rbuf);
	}
	pr_devel("kgdbfdc r %c\n", kgdbfdc_rbuf[kgdbfdc_rpos]);
	return kgdbfdc_rbuf[kgdbfdc_rpos++];
}

/* push an FDC word from write buffer to TX FIFO */
static void kgdbfdc_push_one(void)
{
	const char *bufs[1] = { kgdbfdc_wbuf };
	struct fdc_word word;
	void __iomem *regs;
	unsigned int i;

	/* Construct a word from any data in buffer */
	word = mips_ejtag_fdc_encode(bufs, &kgdbfdc_wbuflen, 1);
	/* Relocate any remaining data to beginning of buffer */
	kgdbfdc_wbuflen -= word.bytes;
	for (i = 0; i < kgdbfdc_wbuflen; ++i)
		kgdbfdc_wbuf[i] = kgdbfdc_wbuf[i + word.bytes];

	regs = kgdbfdc_setup();
	if (IS_ERR(regs))
		return;

	/* Busy wait until there's space in fifo */
	while (__raw_readl(regs + REG_FDSTAT) & REG_FDSTAT_TXF)
		;
	__raw_writel(word.word,
		     regs + REG_FDTX(CONFIG_MIPS_EJTAG_FDC_KGDB_CHAN));
}

/* flush the whole write buffer to the TX FIFO */
static void kgdbfdc_flush(void)
{
	while (kgdbfdc_wbuflen)
		kgdbfdc_push_one();
}

/* write a character into the write buffer, writing out if full */
static void kgdbfdc_write_char(u8 chr)
{
	pr_devel("kgdbfdc w %c\n", chr);
	kgdbfdc_wbuf[kgdbfdc_wbuflen++] = chr;
	if (kgdbfdc_wbuflen >= sizeof(kgdbfdc_wbuf))
		kgdbfdc_push_one();
}

static struct kgdb_io kgdbfdc_io_ops = {
	.name		= "kgdbfdc",
	.read_char	= kgdbfdc_read_char,
	.write_char	= kgdbfdc_write_char,
	.flush		= kgdbfdc_flush,
};

static int __init kgdbfdc_init(void)
{
	kgdb_register_io_module(&kgdbfdc_io_ops);
	return 0;
}
early_initcall(kgdbfdc_init);
#endif