Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 | // SPDX-License-Identifier: GPL-2.0 /* * Support for Macronix external hardware ECC engine for NAND devices, also * called DPE for Data Processing Engine. * * Copyright © 2019 Macronix * Author: Miquel Raynal <miquel.raynal@bootlin.com> */ #include <linux/dma-mapping.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mtd/mtd.h> #include <linux/mtd/nand.h> #include <linux/mtd/nand-ecc-mxic.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/slab.h> /* DPE Configuration */ #define DP_CONFIG 0x00 #define ECC_EN BIT(0) #define ECC_TYP(idx) (((idx) << 3) & GENMASK(6, 3)) /* DPE Interrupt Status */ #define INTRPT_STS 0x04 #define TRANS_CMPLT BIT(0) #define SDMA_MAIN BIT(1) #define SDMA_SPARE BIT(2) #define ECC_ERR BIT(3) #define TO_SPARE BIT(4) #define TO_MAIN BIT(5) /* DPE Interrupt Status Enable */ #define INTRPT_STS_EN 0x08 /* DPE Interrupt Signal Enable */ #define INTRPT_SIG_EN 0x0C /* Host Controller Configuration */ #define HC_CONFIG 0x10 #define DEV2MEM 0 /* TRANS_TYP_DMA in the spec */ #define MEM2MEM BIT(4) /* TRANS_TYP_IO in the spec */ #define MAPPING BIT(5) /* TRANS_TYP_MAPPING in the spec */ #define ECC_PACKED 0 /* LAYOUT_TYP_INTEGRATED in the spec */ #define ECC_INTERLEAVED BIT(2) /* LAYOUT_TYP_DISTRIBUTED in the spec */ #define BURST_TYP_FIXED 0 #define BURST_TYP_INCREASING BIT(0) /* Host Controller Slave Address */ #define HC_SLV_ADDR 0x14 /* ECC Chunk Size */ #define CHUNK_SIZE 0x20 /* Main Data Size */ #define MAIN_SIZE 0x24 /* Spare Data Size */ #define SPARE_SIZE 0x28 #define META_SZ(reg) ((reg) & GENMASK(7, 0)) #define PARITY_SZ(reg) (((reg) & GENMASK(15, 8)) >> 8) #define RSV_SZ(reg) (((reg) & GENMASK(23, 16)) >> 16) #define SPARE_SZ(reg) ((reg) >> 24) /* ECC Chunk Count */ #define CHUNK_CNT 0x30 /* SDMA Control */ #define SDMA_CTRL 0x40 #define WRITE_NAND 0 #define READ_NAND BIT(1) #define CONT_NAND BIT(29) #define CONT_SYSM BIT(30) /* Continue System Memory? */ #define SDMA_STRT BIT(31) /* SDMA Address of Main Data */ #define SDMA_MAIN_ADDR 0x44 /* SDMA Address of Spare Data */ #define SDMA_SPARE_ADDR 0x48 /* DPE Version Number */ #define DP_VER 0xD0 #define DP_VER_OFFSET 16 /* Status bytes between each chunk of spare data */ #define STAT_BYTES 4 #define NO_ERR 0x00 #define MAX_CORR_ERR 0x28 #define UNCORR_ERR 0xFE #define ERASED_CHUNK 0xFF struct mxic_ecc_engine { struct device *dev; void __iomem *regs; int irq; struct completion complete; struct nand_ecc_engine external_engine; struct nand_ecc_engine pipelined_engine; struct mutex lock; }; struct mxic_ecc_ctx { /* ECC machinery */ unsigned int data_step_sz; unsigned int oob_step_sz; unsigned int parity_sz; unsigned int meta_sz; u8 *status; int steps; /* DMA boilerplate */ struct nand_ecc_req_tweak_ctx req_ctx; u8 *oobwithstat; struct scatterlist sg[2]; struct nand_page_io_req *req; unsigned int pageoffs; }; static struct mxic_ecc_engine *ext_ecc_eng_to_mxic(struct nand_ecc_engine *eng) { return container_of(eng, struct mxic_ecc_engine, external_engine); } static struct mxic_ecc_engine *pip_ecc_eng_to_mxic(struct nand_ecc_engine *eng) { return container_of(eng, struct mxic_ecc_engine, pipelined_engine); } static struct mxic_ecc_engine *nand_to_mxic(struct nand_device *nand) { struct nand_ecc_engine *eng = nand->ecc.engine; if (eng->integration == NAND_ECC_ENGINE_INTEGRATION_EXTERNAL) return ext_ecc_eng_to_mxic(eng); else return pip_ecc_eng_to_mxic(eng); } static int mxic_ecc_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_device *nand = mtd_to_nanddev(mtd); struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand); if (section < 0 || section >= ctx->steps) return -ERANGE; oobregion->offset = (section * ctx->oob_step_sz) + ctx->meta_sz; oobregion->length = ctx->parity_sz; return 0; } static int mxic_ecc_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_device *nand = mtd_to_nanddev(mtd); struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand); if (section < 0 || section >= ctx->steps) return -ERANGE; if (!section) { oobregion->offset = 2; oobregion->length = ctx->meta_sz - 2; } else { oobregion->offset = section * ctx->oob_step_sz; oobregion->length = ctx->meta_sz; } return 0; } static const struct mtd_ooblayout_ops mxic_ecc_ooblayout_ops = { .ecc = mxic_ecc_ooblayout_ecc, .free = mxic_ecc_ooblayout_free, }; static void mxic_ecc_disable_engine(struct mxic_ecc_engine *mxic) { u32 reg; reg = readl(mxic->regs + DP_CONFIG); reg &= ~ECC_EN; writel(reg, mxic->regs + DP_CONFIG); } static void mxic_ecc_enable_engine(struct mxic_ecc_engine *mxic) { u32 reg; reg = readl(mxic->regs + DP_CONFIG); reg |= ECC_EN; writel(reg, mxic->regs + DP_CONFIG); } static void mxic_ecc_disable_int(struct mxic_ecc_engine *mxic) { writel(0, mxic->regs + INTRPT_SIG_EN); } static void mxic_ecc_enable_int(struct mxic_ecc_engine *mxic) { writel(TRANS_CMPLT, mxic->regs + INTRPT_SIG_EN); } static irqreturn_t mxic_ecc_isr(int irq, void *dev_id) { struct mxic_ecc_engine *mxic = dev_id; u32 sts; sts = readl(mxic->regs + INTRPT_STS); if (!sts) return IRQ_NONE; if (sts & TRANS_CMPLT) complete(&mxic->complete); writel(sts, mxic->regs + INTRPT_STS); return IRQ_HANDLED; } static int mxic_ecc_init_ctx(struct nand_device *nand, struct device *dev) { struct mxic_ecc_engine *mxic = nand_to_mxic(nand); struct nand_ecc_props *conf = &nand->ecc.ctx.conf; struct nand_ecc_props *reqs = &nand->ecc.requirements; struct nand_ecc_props *user = &nand->ecc.user_conf; struct mtd_info *mtd = nanddev_to_mtd(nand); int step_size = 0, strength = 0, desired_correction = 0, steps, idx; static const int possible_strength[] = {4, 8, 40, 48}; static const int spare_size[] = {32, 32, 96, 96}; struct mxic_ecc_ctx *ctx; u32 spare_reg; int ret; ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; nand->ecc.ctx.priv = ctx; /* Only large page NAND chips may use BCH */ if (mtd->oobsize < 64) { pr_err("BCH cannot be used with small page NAND chips\n"); return -EINVAL; } mtd_set_ooblayout(mtd, &mxic_ecc_ooblayout_ops); /* Enable all status bits */ writel(TRANS_CMPLT | SDMA_MAIN | SDMA_SPARE | ECC_ERR | TO_SPARE | TO_MAIN, mxic->regs + INTRPT_STS_EN); /* Configure the correction depending on the NAND device topology */ if (user->step_size && user->strength) { step_size = user->step_size; strength = user->strength; } else if (reqs->step_size && reqs->strength) { step_size = reqs->step_size; strength = reqs->strength; } if (step_size && strength) { steps = mtd->writesize / step_size; desired_correction = steps * strength; } /* Step size is fixed to 1kiB, strength may vary (4 possible values) */ conf->step_size = SZ_1K; steps = mtd->writesize / conf->step_size; ctx->status = devm_kzalloc(dev, steps * sizeof(u8), GFP_KERNEL); if (!ctx->status) return -ENOMEM; if (desired_correction) { strength = desired_correction / steps; for (idx = 0; idx < ARRAY_SIZE(possible_strength); idx++) if (possible_strength[idx] >= strength) break; idx = min_t(unsigned int, idx, ARRAY_SIZE(possible_strength) - 1); } else { /* Missing data, maximize the correction */ idx = ARRAY_SIZE(possible_strength) - 1; } /* Tune the selected strength until it fits in the OOB area */ for (; idx >= 0; idx--) { if (spare_size[idx] * steps <= mtd->oobsize) break; } /* This engine cannot be used with this NAND device */ if (idx < 0) return -EINVAL; /* Configure the engine for the desired strength */ writel(ECC_TYP(idx), mxic->regs + DP_CONFIG); conf->strength = possible_strength[idx]; spare_reg = readl(mxic->regs + SPARE_SIZE); ctx->steps = steps; ctx->data_step_sz = mtd->writesize / steps; ctx->oob_step_sz = mtd->oobsize / steps; ctx->parity_sz = PARITY_SZ(spare_reg); ctx->meta_sz = META_SZ(spare_reg); /* Ensure buffers will contain enough bytes to store the STAT_BYTES */ ctx->req_ctx.oob_buffer_size = nanddev_per_page_oobsize(nand) + (ctx->steps * STAT_BYTES); ret = nand_ecc_init_req_tweaking(&ctx->req_ctx, nand); if (ret) return ret; ctx->oobwithstat = kmalloc(mtd->oobsize + (ctx->steps * STAT_BYTES), GFP_KERNEL); if (!ctx->oobwithstat) { ret = -ENOMEM; goto cleanup_req_tweak; } sg_init_table(ctx->sg, 2); /* Configuration dump and sanity checks */ dev_err(dev, "DPE version number: %d\n", readl(mxic->regs + DP_VER) >> DP_VER_OFFSET); dev_err(dev, "Chunk size: %d\n", readl(mxic->regs + CHUNK_SIZE)); dev_err(dev, "Main size: %d\n", readl(mxic->regs + MAIN_SIZE)); dev_err(dev, "Spare size: %d\n", SPARE_SZ(spare_reg)); dev_err(dev, "Rsv size: %ld\n", RSV_SZ(spare_reg)); dev_err(dev, "Parity size: %d\n", ctx->parity_sz); dev_err(dev, "Meta size: %d\n", ctx->meta_sz); if ((ctx->meta_sz + ctx->parity_sz + RSV_SZ(spare_reg)) != SPARE_SZ(spare_reg)) { dev_err(dev, "Wrong OOB configuration: %d + %d + %ld != %d\n", ctx->meta_sz, ctx->parity_sz, RSV_SZ(spare_reg), SPARE_SZ(spare_reg)); ret = -EINVAL; goto free_oobwithstat; } if (ctx->oob_step_sz != SPARE_SZ(spare_reg)) { dev_err(dev, "Wrong OOB configuration: %d != %d\n", ctx->oob_step_sz, SPARE_SZ(spare_reg)); ret = -EINVAL; goto free_oobwithstat; } return 0; free_oobwithstat: kfree(ctx->oobwithstat); cleanup_req_tweak: nand_ecc_cleanup_req_tweaking(&ctx->req_ctx); return ret; } static int mxic_ecc_init_ctx_external(struct nand_device *nand) { struct mxic_ecc_engine *mxic = nand_to_mxic(nand); struct device *dev = nand->ecc.engine->dev; int ret; dev_info(dev, "Macronix ECC engine in external mode\n"); ret = mxic_ecc_init_ctx(nand, dev); if (ret) return ret; /* Trigger each step manually */ writel(1, mxic->regs + CHUNK_CNT); writel(BURST_TYP_INCREASING | ECC_PACKED | MEM2MEM, mxic->regs + HC_CONFIG); return 0; } static int mxic_ecc_init_ctx_pipelined(struct nand_device *nand) { struct mxic_ecc_engine *mxic = nand_to_mxic(nand); struct mxic_ecc_ctx *ctx; struct device *dev; int ret; dev = nand_ecc_get_engine_dev(nand->ecc.engine->dev); if (!dev) return -EINVAL; dev_info(dev, "Macronix ECC engine in pipelined/mapping mode\n"); ret = mxic_ecc_init_ctx(nand, dev); if (ret) return ret; ctx = nand_to_ecc_ctx(nand); /* All steps should be handled in one go directly by the internal DMA */ writel(ctx->steps, mxic->regs + CHUNK_CNT); /* * Interleaved ECC scheme cannot be used otherwise factory bad block * markers would be lost. A packed layout is mandatory. */ writel(BURST_TYP_INCREASING | ECC_PACKED | MAPPING, mxic->regs + HC_CONFIG); return 0; } static void mxic_ecc_cleanup_ctx(struct nand_device *nand) { struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand); if (ctx) { nand_ecc_cleanup_req_tweaking(&ctx->req_ctx); kfree(ctx->oobwithstat); } } static int mxic_ecc_data_xfer_wait_for_completion(struct mxic_ecc_engine *mxic) { u32 val; int ret; if (mxic->irq) { reinit_completion(&mxic->complete); mxic_ecc_enable_int(mxic); ret = wait_for_completion_timeout(&mxic->complete, msecs_to_jiffies(1000)); ret = ret ? 0 : -ETIMEDOUT; mxic_ecc_disable_int(mxic); } else { ret = readl_poll_timeout(mxic->regs + INTRPT_STS, val, val & TRANS_CMPLT, 10, USEC_PER_SEC); writel(val, mxic->regs + INTRPT_STS); } if (ret) { dev_err(mxic->dev, "Timeout on data xfer completion\n"); return -ETIMEDOUT; } return 0; } static int mxic_ecc_process_data(struct mxic_ecc_engine *mxic, unsigned int direction) { unsigned int dir = (direction == NAND_PAGE_READ) ? READ_NAND : WRITE_NAND; int ret; mxic_ecc_enable_engine(mxic); /* Trigger processing */ writel(SDMA_STRT | dir, mxic->regs + SDMA_CTRL); /* Wait for completion */ ret = mxic_ecc_data_xfer_wait_for_completion(mxic); mxic_ecc_disable_engine(mxic); return ret; } int mxic_ecc_process_data_pipelined(struct nand_ecc_engine *eng, unsigned int direction, dma_addr_t dirmap) { struct mxic_ecc_engine *mxic = pip_ecc_eng_to_mxic(eng); if (dirmap) writel(dirmap, mxic->regs + HC_SLV_ADDR); return mxic_ecc_process_data(mxic, direction); } EXPORT_SYMBOL_GPL(mxic_ecc_process_data_pipelined); static void mxic_ecc_extract_status_bytes(struct mxic_ecc_ctx *ctx) { u8 *buf = ctx->oobwithstat; int next_stat_pos; int step; /* Extract the ECC status */ for (step = 0; step < ctx->steps; step++) { next_stat_pos = ctx->oob_step_sz + ((STAT_BYTES + ctx->oob_step_sz) * step); ctx->status[step] = buf[next_stat_pos]; } } static void mxic_ecc_reconstruct_oobbuf(struct mxic_ecc_ctx *ctx, u8 *dst, const u8 *src) { int step; /* Reconstruct the OOB buffer linearly (without the ECC status bytes) */ for (step = 0; step < ctx->steps; step++) memcpy(dst + (step * ctx->oob_step_sz), src + (step * (ctx->oob_step_sz + STAT_BYTES)), ctx->oob_step_sz); } static void mxic_ecc_add_room_in_oobbuf(struct mxic_ecc_ctx *ctx, u8 *dst, const u8 *src) { int step; /* Add some space in the OOB buffer for the status bytes */ for (step = 0; step < ctx->steps; step++) memcpy(dst + (step * (ctx->oob_step_sz + STAT_BYTES)), src + (step * ctx->oob_step_sz), ctx->oob_step_sz); } static int mxic_ecc_count_biterrs(struct mxic_ecc_engine *mxic, struct nand_device *nand) { struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand); struct mtd_info *mtd = nanddev_to_mtd(nand); struct device *dev = mxic->dev; unsigned int max_bf = 0; bool failure = false; int step; for (step = 0; step < ctx->steps; step++) { u8 stat = ctx->status[step]; if (stat == NO_ERR) { dev_dbg(dev, "ECC step %d: no error\n", step); } else if (stat == ERASED_CHUNK) { dev_dbg(dev, "ECC step %d: erased\n", step); } else if (stat == UNCORR_ERR || stat > MAX_CORR_ERR) { dev_dbg(dev, "ECC step %d: uncorrectable\n", step); mtd->ecc_stats.failed++; failure = true; } else { dev_dbg(dev, "ECC step %d: %d bits corrected\n", step, stat); max_bf = max_t(unsigned int, max_bf, stat); mtd->ecc_stats.corrected += stat; } } return failure ? -EBADMSG : max_bf; } /* External ECC engine helpers */ static int mxic_ecc_prepare_io_req_external(struct nand_device *nand, struct nand_page_io_req *req) { struct mxic_ecc_engine *mxic = nand_to_mxic(nand); struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand); struct mtd_info *mtd = nanddev_to_mtd(nand); int offset, nents, step, ret; if (req->mode == MTD_OPS_RAW) return 0; nand_ecc_tweak_req(&ctx->req_ctx, req); ctx->req = req; if (req->type == NAND_PAGE_READ) return 0; mxic_ecc_add_room_in_oobbuf(ctx, ctx->oobwithstat, ctx->req->oobbuf.out); sg_set_buf(&ctx->sg[0], req->databuf.out, req->datalen); sg_set_buf(&ctx->sg[1], ctx->oobwithstat, req->ooblen + (ctx->steps * STAT_BYTES)); nents = dma_map_sg(mxic->dev, ctx->sg, 2, DMA_BIDIRECTIONAL); if (!nents) return -EINVAL; mutex_lock(&mxic->lock); for (step = 0; step < ctx->steps; step++) { writel(sg_dma_address(&ctx->sg[0]) + (step * ctx->data_step_sz), mxic->regs + SDMA_MAIN_ADDR); writel(sg_dma_address(&ctx->sg[1]) + (step * (ctx->oob_step_sz + STAT_BYTES)), mxic->regs + SDMA_SPARE_ADDR); ret = mxic_ecc_process_data(mxic, ctx->req->type); if (ret) break; } mutex_unlock(&mxic->lock); dma_unmap_sg(mxic->dev, ctx->sg, 2, DMA_BIDIRECTIONAL); if (ret) return ret; /* Retrieve the calculated ECC bytes */ for (step = 0; step < ctx->steps; step++) { offset = ctx->meta_sz + (step * ctx->oob_step_sz); mtd_ooblayout_get_eccbytes(mtd, (u8 *)ctx->req->oobbuf.out + offset, ctx->oobwithstat + (step * STAT_BYTES), step * ctx->parity_sz, ctx->parity_sz); } return 0; } static int mxic_ecc_finish_io_req_external(struct nand_device *nand, struct nand_page_io_req *req) { struct mxic_ecc_engine *mxic = nand_to_mxic(nand); struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand); int nents, step, ret; if (req->mode == MTD_OPS_RAW) return 0; if (req->type == NAND_PAGE_WRITE) { nand_ecc_restore_req(&ctx->req_ctx, req); return 0; } /* Copy the OOB buffer and add room for the ECC engine status bytes */ mxic_ecc_add_room_in_oobbuf(ctx, ctx->oobwithstat, ctx->req->oobbuf.in); sg_set_buf(&ctx->sg[0], req->databuf.in, req->datalen); sg_set_buf(&ctx->sg[1], ctx->oobwithstat, req->ooblen + (ctx->steps * STAT_BYTES)); nents = dma_map_sg(mxic->dev, ctx->sg, 2, DMA_BIDIRECTIONAL); if (!nents) return -EINVAL; mutex_lock(&mxic->lock); for (step = 0; step < ctx->steps; step++) { writel(sg_dma_address(&ctx->sg[0]) + (step * ctx->data_step_sz), mxic->regs + SDMA_MAIN_ADDR); writel(sg_dma_address(&ctx->sg[1]) + (step * (ctx->oob_step_sz + STAT_BYTES)), mxic->regs + SDMA_SPARE_ADDR); ret = mxic_ecc_process_data(mxic, ctx->req->type); if (ret) break; } mutex_unlock(&mxic->lock); dma_unmap_sg(mxic->dev, ctx->sg, 2, DMA_BIDIRECTIONAL); if (ret) { nand_ecc_restore_req(&ctx->req_ctx, req); return ret; } /* Extract the status bytes and reconstruct the buffer */ mxic_ecc_extract_status_bytes(ctx); mxic_ecc_reconstruct_oobbuf(ctx, ctx->req->oobbuf.in, ctx->oobwithstat); nand_ecc_restore_req(&ctx->req_ctx, req); return mxic_ecc_count_biterrs(mxic, nand); } /* Pipelined ECC engine helpers */ static int mxic_ecc_prepare_io_req_pipelined(struct nand_device *nand, struct nand_page_io_req *req) { struct mxic_ecc_engine *mxic = nand_to_mxic(nand); struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand); int nents; if (req->mode == MTD_OPS_RAW) return 0; nand_ecc_tweak_req(&ctx->req_ctx, req); ctx->req = req; /* Copy the OOB buffer and add room for the ECC engine status bytes */ mxic_ecc_add_room_in_oobbuf(ctx, ctx->oobwithstat, ctx->req->oobbuf.in); sg_set_buf(&ctx->sg[0], req->databuf.in, req->datalen); sg_set_buf(&ctx->sg[1], ctx->oobwithstat, req->ooblen + (ctx->steps * STAT_BYTES)); nents = dma_map_sg(mxic->dev, ctx->sg, 2, DMA_BIDIRECTIONAL); if (!nents) return -EINVAL; mutex_lock(&mxic->lock); writel(sg_dma_address(&ctx->sg[0]), mxic->regs + SDMA_MAIN_ADDR); writel(sg_dma_address(&ctx->sg[1]), mxic->regs + SDMA_SPARE_ADDR); return 0; } static int mxic_ecc_finish_io_req_pipelined(struct nand_device *nand, struct nand_page_io_req *req) { struct mxic_ecc_engine *mxic = nand_to_mxic(nand); struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand); int ret = 0; if (req->mode == MTD_OPS_RAW) return 0; mutex_unlock(&mxic->lock); dma_unmap_sg(mxic->dev, ctx->sg, 2, DMA_BIDIRECTIONAL); if (req->type == NAND_PAGE_READ) { mxic_ecc_extract_status_bytes(ctx); mxic_ecc_reconstruct_oobbuf(ctx, ctx->req->oobbuf.in, ctx->oobwithstat); ret = mxic_ecc_count_biterrs(mxic, nand); } nand_ecc_restore_req(&ctx->req_ctx, req); return ret; } static struct nand_ecc_engine_ops mxic_ecc_engine_external_ops = { .init_ctx = mxic_ecc_init_ctx_external, .cleanup_ctx = mxic_ecc_cleanup_ctx, .prepare_io_req = mxic_ecc_prepare_io_req_external, .finish_io_req = mxic_ecc_finish_io_req_external, }; static struct nand_ecc_engine_ops mxic_ecc_engine_pipelined_ops = { .init_ctx = mxic_ecc_init_ctx_pipelined, .cleanup_ctx = mxic_ecc_cleanup_ctx, .prepare_io_req = mxic_ecc_prepare_io_req_pipelined, .finish_io_req = mxic_ecc_finish_io_req_pipelined, }; struct nand_ecc_engine_ops *mxic_ecc_get_pipelined_ops(void) { return &mxic_ecc_engine_pipelined_ops; } EXPORT_SYMBOL_GPL(mxic_ecc_get_pipelined_ops); static struct platform_device * mxic_ecc_get_pdev(struct platform_device *spi_pdev) { struct platform_device *eng_pdev; struct device_node *np; /* Retrieve the nand-ecc-engine phandle */ np = of_parse_phandle(spi_pdev->dev.of_node, "nand-ecc-engine", 0); if (!np) return NULL; /* Jump to the engine's device node */ eng_pdev = of_find_device_by_node(np); of_node_put(np); return eng_pdev; } void mxic_ecc_put_pipelined_engine(struct nand_ecc_engine *eng) { struct mxic_ecc_engine *mxic = pip_ecc_eng_to_mxic(eng); platform_device_put(to_platform_device(mxic->dev)); } EXPORT_SYMBOL_GPL(mxic_ecc_put_pipelined_engine); struct nand_ecc_engine * mxic_ecc_get_pipelined_engine(struct platform_device *spi_pdev) { struct platform_device *eng_pdev; struct mxic_ecc_engine *mxic; eng_pdev = mxic_ecc_get_pdev(spi_pdev); if (!eng_pdev) return ERR_PTR(-ENODEV); mxic = platform_get_drvdata(eng_pdev); if (!mxic) { platform_device_put(eng_pdev); return ERR_PTR(-EPROBE_DEFER); } return &mxic->pipelined_engine; } EXPORT_SYMBOL_GPL(mxic_ecc_get_pipelined_engine); /* * Only the external ECC engine is exported as the pipelined is SoC specific, so * it is registered directly by the drivers that wrap it. */ static int mxic_ecc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct mxic_ecc_engine *mxic; int ret; mxic = devm_kzalloc(&pdev->dev, sizeof(*mxic), GFP_KERNEL); if (!mxic) return -ENOMEM; mxic->dev = &pdev->dev; /* * Both memory regions for the ECC engine itself and the AXI slave * address are mandatory. */ mxic->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(mxic->regs)) { dev_err(&pdev->dev, "Missing memory region\n"); return PTR_ERR(mxic->regs); } mxic_ecc_disable_engine(mxic); mxic_ecc_disable_int(mxic); /* IRQ is optional yet much more efficient */ mxic->irq = platform_get_irq_byname_optional(pdev, "ecc-engine"); if (mxic->irq > 0) { ret = devm_request_irq(&pdev->dev, mxic->irq, mxic_ecc_isr, 0, "mxic-ecc", mxic); if (ret) return ret; } else { dev_info(dev, "Invalid or missing IRQ, fallback to polling\n"); mxic->irq = 0; } mutex_init(&mxic->lock); /* * In external mode, the device is the ECC engine. In pipelined mode, * the device is the host controller. The device is used to match the * right ECC engine based on the DT properties. */ mxic->external_engine.dev = &pdev->dev; mxic->external_engine.integration = NAND_ECC_ENGINE_INTEGRATION_EXTERNAL; mxic->external_engine.ops = &mxic_ecc_engine_external_ops; nand_ecc_register_on_host_hw_engine(&mxic->external_engine); platform_set_drvdata(pdev, mxic); return 0; } static void mxic_ecc_remove(struct platform_device *pdev) { struct mxic_ecc_engine *mxic = platform_get_drvdata(pdev); nand_ecc_unregister_on_host_hw_engine(&mxic->external_engine); } static const struct of_device_id mxic_ecc_of_ids[] = { { .compatible = "mxicy,nand-ecc-engine-rev3", }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, mxic_ecc_of_ids); static struct platform_driver mxic_ecc_driver = { .driver = { .name = "mxic-nand-ecc-engine", .of_match_table = mxic_ecc_of_ids, }, .probe = mxic_ecc_probe, .remove_new = mxic_ecc_remove, }; module_platform_driver(mxic_ecc_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>"); MODULE_DESCRIPTION("Macronix NAND hardware ECC controller"); |