Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 | // SPDX-License-Identifier: GPL-2.0-or-later /* * raid1.c : Multiple Devices driver for Linux * * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat * * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman * * RAID-1 management functions. * * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 * * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> * * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support * bitmapped intelligence in resync: * * - bitmap marked during normal i/o * - bitmap used to skip nondirty blocks during sync * * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: * - persistent bitmap code */ #include <linux/slab.h> #include <linux/delay.h> #include <linux/blkdev.h> #include <linux/module.h> #include <linux/seq_file.h> #include <linux/ratelimit.h> #include <linux/interval_tree_generic.h> #include <trace/events/block.h> #include "md.h" #include "raid1.h" #include "md-bitmap.h" #define UNSUPPORTED_MDDEV_FLAGS \ ((1L << MD_HAS_JOURNAL) | \ (1L << MD_JOURNAL_CLEAN) | \ (1L << MD_HAS_PPL) | \ (1L << MD_HAS_MULTIPLE_PPLS)) static void allow_barrier(struct r1conf *conf, sector_t sector_nr); static void lower_barrier(struct r1conf *conf, sector_t sector_nr); #define RAID_1_10_NAME "raid1" #include "raid1-10.c" #define START(node) ((node)->start) #define LAST(node) ((node)->last) INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last, START, LAST, static inline, raid1_rb); static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio, struct serial_info *si, int idx) { unsigned long flags; int ret = 0; sector_t lo = r1_bio->sector; sector_t hi = lo + r1_bio->sectors; struct serial_in_rdev *serial = &rdev->serial[idx]; spin_lock_irqsave(&serial->serial_lock, flags); /* collision happened */ if (raid1_rb_iter_first(&serial->serial_rb, lo, hi)) ret = -EBUSY; else { si->start = lo; si->last = hi; raid1_rb_insert(si, &serial->serial_rb); } spin_unlock_irqrestore(&serial->serial_lock, flags); return ret; } static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio) { struct mddev *mddev = rdev->mddev; struct serial_info *si; int idx = sector_to_idx(r1_bio->sector); struct serial_in_rdev *serial = &rdev->serial[idx]; if (WARN_ON(!mddev->serial_info_pool)) return; si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO); wait_event(serial->serial_io_wait, check_and_add_serial(rdev, r1_bio, si, idx) == 0); } static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi) { struct serial_info *si; unsigned long flags; int found = 0; struct mddev *mddev = rdev->mddev; int idx = sector_to_idx(lo); struct serial_in_rdev *serial = &rdev->serial[idx]; spin_lock_irqsave(&serial->serial_lock, flags); for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi); si; si = raid1_rb_iter_next(si, lo, hi)) { if (si->start == lo && si->last == hi) { raid1_rb_remove(si, &serial->serial_rb); mempool_free(si, mddev->serial_info_pool); found = 1; break; } } if (!found) WARN(1, "The write IO is not recorded for serialization\n"); spin_unlock_irqrestore(&serial->serial_lock, flags); wake_up(&serial->serial_io_wait); } /* * for resync bio, r1bio pointer can be retrieved from the per-bio * 'struct resync_pages'. */ static inline struct r1bio *get_resync_r1bio(struct bio *bio) { return get_resync_pages(bio)->raid_bio; } static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) { struct pool_info *pi = data; int size = offsetof(struct r1bio, bios[pi->raid_disks]); /* allocate a r1bio with room for raid_disks entries in the bios array */ return kzalloc(size, gfp_flags); } #define RESYNC_DEPTH 32 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) { struct pool_info *pi = data; struct r1bio *r1_bio; struct bio *bio; int need_pages; int j; struct resync_pages *rps; r1_bio = r1bio_pool_alloc(gfp_flags, pi); if (!r1_bio) return NULL; rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages), gfp_flags); if (!rps) goto out_free_r1bio; /* * Allocate bios : 1 for reading, n-1 for writing */ for (j = pi->raid_disks ; j-- ; ) { bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); if (!bio) goto out_free_bio; bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); r1_bio->bios[j] = bio; } /* * Allocate RESYNC_PAGES data pages and attach them to * the first bio. * If this is a user-requested check/repair, allocate * RESYNC_PAGES for each bio. */ if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) need_pages = pi->raid_disks; else need_pages = 1; for (j = 0; j < pi->raid_disks; j++) { struct resync_pages *rp = &rps[j]; bio = r1_bio->bios[j]; if (j < need_pages) { if (resync_alloc_pages(rp, gfp_flags)) goto out_free_pages; } else { memcpy(rp, &rps[0], sizeof(*rp)); resync_get_all_pages(rp); } rp->raid_bio = r1_bio; bio->bi_private = rp; } r1_bio->master_bio = NULL; return r1_bio; out_free_pages: while (--j >= 0) resync_free_pages(&rps[j]); out_free_bio: while (++j < pi->raid_disks) { bio_uninit(r1_bio->bios[j]); kfree(r1_bio->bios[j]); } kfree(rps); out_free_r1bio: rbio_pool_free(r1_bio, data); return NULL; } static void r1buf_pool_free(void *__r1_bio, void *data) { struct pool_info *pi = data; int i; struct r1bio *r1bio = __r1_bio; struct resync_pages *rp = NULL; for (i = pi->raid_disks; i--; ) { rp = get_resync_pages(r1bio->bios[i]); resync_free_pages(rp); bio_uninit(r1bio->bios[i]); kfree(r1bio->bios[i]); } /* resync pages array stored in the 1st bio's .bi_private */ kfree(rp); rbio_pool_free(r1bio, data); } static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) { int i; for (i = 0; i < conf->raid_disks * 2; i++) { struct bio **bio = r1_bio->bios + i; if (!BIO_SPECIAL(*bio)) bio_put(*bio); *bio = NULL; } } static void free_r1bio(struct r1bio *r1_bio) { struct r1conf *conf = r1_bio->mddev->private; put_all_bios(conf, r1_bio); mempool_free(r1_bio, &conf->r1bio_pool); } static void put_buf(struct r1bio *r1_bio) { struct r1conf *conf = r1_bio->mddev->private; sector_t sect = r1_bio->sector; int i; for (i = 0; i < conf->raid_disks * 2; i++) { struct bio *bio = r1_bio->bios[i]; if (bio->bi_end_io) rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); } mempool_free(r1_bio, &conf->r1buf_pool); lower_barrier(conf, sect); } static void reschedule_retry(struct r1bio *r1_bio) { unsigned long flags; struct mddev *mddev = r1_bio->mddev; struct r1conf *conf = mddev->private; int idx; idx = sector_to_idx(r1_bio->sector); spin_lock_irqsave(&conf->device_lock, flags); list_add(&r1_bio->retry_list, &conf->retry_list); atomic_inc(&conf->nr_queued[idx]); spin_unlock_irqrestore(&conf->device_lock, flags); wake_up(&conf->wait_barrier); md_wakeup_thread(mddev->thread); } /* * raid_end_bio_io() is called when we have finished servicing a mirrored * operation and are ready to return a success/failure code to the buffer * cache layer. */ static void call_bio_endio(struct r1bio *r1_bio) { struct bio *bio = r1_bio->master_bio; if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) bio->bi_status = BLK_STS_IOERR; bio_endio(bio); } static void raid_end_bio_io(struct r1bio *r1_bio) { struct bio *bio = r1_bio->master_bio; struct r1conf *conf = r1_bio->mddev->private; sector_t sector = r1_bio->sector; /* if nobody has done the final endio yet, do it now */ if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { pr_debug("raid1: sync end %s on sectors %llu-%llu\n", (bio_data_dir(bio) == WRITE) ? "write" : "read", (unsigned long long) bio->bi_iter.bi_sector, (unsigned long long) bio_end_sector(bio) - 1); call_bio_endio(r1_bio); } free_r1bio(r1_bio); /* * Wake up any possible resync thread that waits for the device * to go idle. All I/Os, even write-behind writes, are done. */ allow_barrier(conf, sector); } /* * Update disk head position estimator based on IRQ completion info. */ static inline void update_head_pos(int disk, struct r1bio *r1_bio) { struct r1conf *conf = r1_bio->mddev->private; conf->mirrors[disk].head_position = r1_bio->sector + (r1_bio->sectors); } /* * Find the disk number which triggered given bio */ static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) { int mirror; struct r1conf *conf = r1_bio->mddev->private; int raid_disks = conf->raid_disks; for (mirror = 0; mirror < raid_disks * 2; mirror++) if (r1_bio->bios[mirror] == bio) break; BUG_ON(mirror == raid_disks * 2); update_head_pos(mirror, r1_bio); return mirror; } static void raid1_end_read_request(struct bio *bio) { int uptodate = !bio->bi_status; struct r1bio *r1_bio = bio->bi_private; struct r1conf *conf = r1_bio->mddev->private; struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; /* * this branch is our 'one mirror IO has finished' event handler: */ update_head_pos(r1_bio->read_disk, r1_bio); if (uptodate) set_bit(R1BIO_Uptodate, &r1_bio->state); else if (test_bit(FailFast, &rdev->flags) && test_bit(R1BIO_FailFast, &r1_bio->state)) /* This was a fail-fast read so we definitely * want to retry */ ; else { /* If all other devices have failed, we want to return * the error upwards rather than fail the last device. * Here we redefine "uptodate" to mean "Don't want to retry" */ unsigned long flags; spin_lock_irqsave(&conf->device_lock, flags); if (r1_bio->mddev->degraded == conf->raid_disks || (r1_bio->mddev->degraded == conf->raid_disks-1 && test_bit(In_sync, &rdev->flags))) uptodate = 1; spin_unlock_irqrestore(&conf->device_lock, flags); } if (uptodate) { raid_end_bio_io(r1_bio); rdev_dec_pending(rdev, conf->mddev); } else { /* * oops, read error: */ pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n", mdname(conf->mddev), rdev->bdev, (unsigned long long)r1_bio->sector); set_bit(R1BIO_ReadError, &r1_bio->state); reschedule_retry(r1_bio); /* don't drop the reference on read_disk yet */ } } static void close_write(struct r1bio *r1_bio) { /* it really is the end of this request */ if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { bio_free_pages(r1_bio->behind_master_bio); bio_put(r1_bio->behind_master_bio); r1_bio->behind_master_bio = NULL; } /* clear the bitmap if all writes complete successfully */ md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, r1_bio->sectors, !test_bit(R1BIO_Degraded, &r1_bio->state), test_bit(R1BIO_BehindIO, &r1_bio->state)); md_write_end(r1_bio->mddev); } static void r1_bio_write_done(struct r1bio *r1_bio) { if (!atomic_dec_and_test(&r1_bio->remaining)) return; if (test_bit(R1BIO_WriteError, &r1_bio->state)) reschedule_retry(r1_bio); else { close_write(r1_bio); if (test_bit(R1BIO_MadeGood, &r1_bio->state)) reschedule_retry(r1_bio); else raid_end_bio_io(r1_bio); } } static void raid1_end_write_request(struct bio *bio) { struct r1bio *r1_bio = bio->bi_private; int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); struct r1conf *conf = r1_bio->mddev->private; struct bio *to_put = NULL; int mirror = find_bio_disk(r1_bio, bio); struct md_rdev *rdev = conf->mirrors[mirror].rdev; bool discard_error; sector_t lo = r1_bio->sector; sector_t hi = r1_bio->sector + r1_bio->sectors; discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; /* * 'one mirror IO has finished' event handler: */ if (bio->bi_status && !discard_error) { set_bit(WriteErrorSeen, &rdev->flags); if (!test_and_set_bit(WantReplacement, &rdev->flags)) set_bit(MD_RECOVERY_NEEDED, & conf->mddev->recovery); if (test_bit(FailFast, &rdev->flags) && (bio->bi_opf & MD_FAILFAST) && /* We never try FailFast to WriteMostly devices */ !test_bit(WriteMostly, &rdev->flags)) { md_error(r1_bio->mddev, rdev); } /* * When the device is faulty, it is not necessary to * handle write error. */ if (!test_bit(Faulty, &rdev->flags)) set_bit(R1BIO_WriteError, &r1_bio->state); else { /* Fail the request */ set_bit(R1BIO_Degraded, &r1_bio->state); /* Finished with this branch */ r1_bio->bios[mirror] = NULL; to_put = bio; } } else { /* * Set R1BIO_Uptodate in our master bio, so that we * will return a good error code for to the higher * levels even if IO on some other mirrored buffer * fails. * * The 'master' represents the composite IO operation * to user-side. So if something waits for IO, then it * will wait for the 'master' bio. */ r1_bio->bios[mirror] = NULL; to_put = bio; /* * Do not set R1BIO_Uptodate if the current device is * rebuilding or Faulty. This is because we cannot use * such device for properly reading the data back (we could * potentially use it, if the current write would have felt * before rdev->recovery_offset, but for simplicity we don't * check this here. */ if (test_bit(In_sync, &rdev->flags) && !test_bit(Faulty, &rdev->flags)) set_bit(R1BIO_Uptodate, &r1_bio->state); /* Maybe we can clear some bad blocks. */ if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) && !discard_error) { r1_bio->bios[mirror] = IO_MADE_GOOD; set_bit(R1BIO_MadeGood, &r1_bio->state); } } if (behind) { if (test_bit(CollisionCheck, &rdev->flags)) remove_serial(rdev, lo, hi); if (test_bit(WriteMostly, &rdev->flags)) atomic_dec(&r1_bio->behind_remaining); /* * In behind mode, we ACK the master bio once the I/O * has safely reached all non-writemostly * disks. Setting the Returned bit ensures that this * gets done only once -- we don't ever want to return * -EIO here, instead we'll wait */ if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && test_bit(R1BIO_Uptodate, &r1_bio->state)) { /* Maybe we can return now */ if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { struct bio *mbio = r1_bio->master_bio; pr_debug("raid1: behind end write sectors" " %llu-%llu\n", (unsigned long long) mbio->bi_iter.bi_sector, (unsigned long long) bio_end_sector(mbio) - 1); call_bio_endio(r1_bio); } } } else if (rdev->mddev->serialize_policy) remove_serial(rdev, lo, hi); if (r1_bio->bios[mirror] == NULL) rdev_dec_pending(rdev, conf->mddev); /* * Let's see if all mirrored write operations have finished * already. */ r1_bio_write_done(r1_bio); if (to_put) bio_put(to_put); } static sector_t align_to_barrier_unit_end(sector_t start_sector, sector_t sectors) { sector_t len; WARN_ON(sectors == 0); /* * len is the number of sectors from start_sector to end of the * barrier unit which start_sector belongs to. */ len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - start_sector; if (len > sectors) len = sectors; return len; } static void update_read_sectors(struct r1conf *conf, int disk, sector_t this_sector, int len) { struct raid1_info *info = &conf->mirrors[disk]; atomic_inc(&info->rdev->nr_pending); if (info->next_seq_sect != this_sector) info->seq_start = this_sector; info->next_seq_sect = this_sector + len; } static int choose_first_rdev(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) { sector_t this_sector = r1_bio->sector; int len = r1_bio->sectors; int disk; for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { struct md_rdev *rdev; int read_len; if (r1_bio->bios[disk] == IO_BLOCKED) continue; rdev = conf->mirrors[disk].rdev; if (!rdev || test_bit(Faulty, &rdev->flags)) continue; /* choose the first disk even if it has some bad blocks. */ read_len = raid1_check_read_range(rdev, this_sector, &len); if (read_len > 0) { update_read_sectors(conf, disk, this_sector, read_len); *max_sectors = read_len; return disk; } } return -1; } static int choose_bb_rdev(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) { sector_t this_sector = r1_bio->sector; int best_disk = -1; int best_len = 0; int disk; for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { struct md_rdev *rdev; int len; int read_len; if (r1_bio->bios[disk] == IO_BLOCKED) continue; rdev = conf->mirrors[disk].rdev; if (!rdev || test_bit(Faulty, &rdev->flags) || test_bit(WriteMostly, &rdev->flags)) continue; /* keep track of the disk with the most readable sectors. */ len = r1_bio->sectors; read_len = raid1_check_read_range(rdev, this_sector, &len); if (read_len > best_len) { best_disk = disk; best_len = read_len; } } if (best_disk != -1) { *max_sectors = best_len; update_read_sectors(conf, best_disk, this_sector, best_len); } return best_disk; } static int choose_slow_rdev(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) { sector_t this_sector = r1_bio->sector; int bb_disk = -1; int bb_read_len = 0; int disk; for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { struct md_rdev *rdev; int len; int read_len; if (r1_bio->bios[disk] == IO_BLOCKED) continue; rdev = conf->mirrors[disk].rdev; if (!rdev || test_bit(Faulty, &rdev->flags) || !test_bit(WriteMostly, &rdev->flags)) continue; /* there are no bad blocks, we can use this disk */ len = r1_bio->sectors; read_len = raid1_check_read_range(rdev, this_sector, &len); if (read_len == r1_bio->sectors) { update_read_sectors(conf, disk, this_sector, read_len); return disk; } /* * there are partial bad blocks, choose the rdev with largest * read length. */ if (read_len > bb_read_len) { bb_disk = disk; bb_read_len = read_len; } } if (bb_disk != -1) { *max_sectors = bb_read_len; update_read_sectors(conf, bb_disk, this_sector, bb_read_len); } return bb_disk; } static bool is_sequential(struct r1conf *conf, int disk, struct r1bio *r1_bio) { /* TODO: address issues with this check and concurrency. */ return conf->mirrors[disk].next_seq_sect == r1_bio->sector || conf->mirrors[disk].head_position == r1_bio->sector; } /* * If buffered sequential IO size exceeds optimal iosize, check if there is idle * disk. If yes, choose the idle disk. */ static bool should_choose_next(struct r1conf *conf, int disk) { struct raid1_info *mirror = &conf->mirrors[disk]; int opt_iosize; if (!test_bit(Nonrot, &mirror->rdev->flags)) return false; opt_iosize = bdev_io_opt(mirror->rdev->bdev) >> 9; return opt_iosize > 0 && mirror->seq_start != MaxSector && mirror->next_seq_sect > opt_iosize && mirror->next_seq_sect - opt_iosize >= mirror->seq_start; } static bool rdev_readable(struct md_rdev *rdev, struct r1bio *r1_bio) { if (!rdev || test_bit(Faulty, &rdev->flags)) return false; /* still in recovery */ if (!test_bit(In_sync, &rdev->flags) && rdev->recovery_offset < r1_bio->sector + r1_bio->sectors) return false; /* don't read from slow disk unless have to */ if (test_bit(WriteMostly, &rdev->flags)) return false; /* don't split IO for bad blocks unless have to */ if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors)) return false; return true; } struct read_balance_ctl { sector_t closest_dist; int closest_dist_disk; int min_pending; int min_pending_disk; int sequential_disk; int readable_disks; }; static int choose_best_rdev(struct r1conf *conf, struct r1bio *r1_bio) { int disk; struct read_balance_ctl ctl = { .closest_dist_disk = -1, .closest_dist = MaxSector, .min_pending_disk = -1, .min_pending = UINT_MAX, .sequential_disk = -1, }; for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { struct md_rdev *rdev; sector_t dist; unsigned int pending; if (r1_bio->bios[disk] == IO_BLOCKED) continue; rdev = conf->mirrors[disk].rdev; if (!rdev_readable(rdev, r1_bio)) continue; /* At least two disks to choose from so failfast is OK */ if (ctl.readable_disks++ == 1) set_bit(R1BIO_FailFast, &r1_bio->state); pending = atomic_read(&rdev->nr_pending); dist = abs(r1_bio->sector - conf->mirrors[disk].head_position); /* Don't change to another disk for sequential reads */ if (is_sequential(conf, disk, r1_bio)) { if (!should_choose_next(conf, disk)) return disk; /* * Add 'pending' to avoid choosing this disk if * there is other idle disk. */ pending++; /* * If there is no other idle disk, this disk * will be chosen. */ ctl.sequential_disk = disk; } if (ctl.min_pending > pending) { ctl.min_pending = pending; ctl.min_pending_disk = disk; } if (ctl.closest_dist > dist) { ctl.closest_dist = dist; ctl.closest_dist_disk = disk; } } /* * sequential IO size exceeds optimal iosize, however, there is no other * idle disk, so choose the sequential disk. */ if (ctl.sequential_disk != -1 && ctl.min_pending != 0) return ctl.sequential_disk; /* * If all disks are rotational, choose the closest disk. If any disk is * non-rotational, choose the disk with less pending request even the * disk is rotational, which might/might not be optimal for raids with * mixed ratation/non-rotational disks depending on workload. */ if (ctl.min_pending_disk != -1 && (READ_ONCE(conf->nonrot_disks) || ctl.min_pending == 0)) return ctl.min_pending_disk; else return ctl.closest_dist_disk; } /* * This routine returns the disk from which the requested read should be done. * * 1) If resync is in progress, find the first usable disk and use it even if it * has some bad blocks. * * 2) Now that there is no resync, loop through all disks and skipping slow * disks and disks with bad blocks for now. Only pay attention to key disk * choice. * * 3) If we've made it this far, now look for disks with bad blocks and choose * the one with most number of sectors. * * 4) If we are all the way at the end, we have no choice but to use a disk even * if it is write mostly. * * The rdev for the device selected will have nr_pending incremented. */ static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) { int disk; clear_bit(R1BIO_FailFast, &r1_bio->state); if (raid1_should_read_first(conf->mddev, r1_bio->sector, r1_bio->sectors)) return choose_first_rdev(conf, r1_bio, max_sectors); disk = choose_best_rdev(conf, r1_bio); if (disk >= 0) { *max_sectors = r1_bio->sectors; update_read_sectors(conf, disk, r1_bio->sector, r1_bio->sectors); return disk; } /* * If we are here it means we didn't find a perfectly good disk so * now spend a bit more time trying to find one with the most good * sectors. */ disk = choose_bb_rdev(conf, r1_bio, max_sectors); if (disk >= 0) return disk; return choose_slow_rdev(conf, r1_bio, max_sectors); } static void wake_up_barrier(struct r1conf *conf) { if (wq_has_sleeper(&conf->wait_barrier)) wake_up(&conf->wait_barrier); } static void flush_bio_list(struct r1conf *conf, struct bio *bio) { /* flush any pending bitmap writes to disk before proceeding w/ I/O */ raid1_prepare_flush_writes(conf->mddev->bitmap); wake_up_barrier(conf); while (bio) { /* submit pending writes */ struct bio *next = bio->bi_next; raid1_submit_write(bio); bio = next; cond_resched(); } } static void flush_pending_writes(struct r1conf *conf) { /* Any writes that have been queued but are awaiting * bitmap updates get flushed here. */ spin_lock_irq(&conf->device_lock); if (conf->pending_bio_list.head) { struct blk_plug plug; struct bio *bio; bio = bio_list_get(&conf->pending_bio_list); spin_unlock_irq(&conf->device_lock); /* * As this is called in a wait_event() loop (see freeze_array), * current->state might be TASK_UNINTERRUPTIBLE which will * cause a warning when we prepare to wait again. As it is * rare that this path is taken, it is perfectly safe to force * us to go around the wait_event() loop again, so the warning * is a false-positive. Silence the warning by resetting * thread state */ __set_current_state(TASK_RUNNING); blk_start_plug(&plug); flush_bio_list(conf, bio); blk_finish_plug(&plug); } else spin_unlock_irq(&conf->device_lock); } /* Barriers.... * Sometimes we need to suspend IO while we do something else, * either some resync/recovery, or reconfigure the array. * To do this we raise a 'barrier'. * The 'barrier' is a counter that can be raised multiple times * to count how many activities are happening which preclude * normal IO. * We can only raise the barrier if there is no pending IO. * i.e. if nr_pending == 0. * We choose only to raise the barrier if no-one is waiting for the * barrier to go down. This means that as soon as an IO request * is ready, no other operations which require a barrier will start * until the IO request has had a chance. * * So: regular IO calls 'wait_barrier'. When that returns there * is no backgroup IO happening, It must arrange to call * allow_barrier when it has finished its IO. * backgroup IO calls must call raise_barrier. Once that returns * there is no normal IO happeing. It must arrange to call * lower_barrier when the particular background IO completes. * * If resync/recovery is interrupted, returns -EINTR; * Otherwise, returns 0. */ static int raise_barrier(struct r1conf *conf, sector_t sector_nr) { int idx = sector_to_idx(sector_nr); spin_lock_irq(&conf->resync_lock); /* Wait until no block IO is waiting */ wait_event_lock_irq(conf->wait_barrier, !atomic_read(&conf->nr_waiting[idx]), conf->resync_lock); /* block any new IO from starting */ atomic_inc(&conf->barrier[idx]); /* * In raise_barrier() we firstly increase conf->barrier[idx] then * check conf->nr_pending[idx]. In _wait_barrier() we firstly * increase conf->nr_pending[idx] then check conf->barrier[idx]. * A memory barrier here to make sure conf->nr_pending[idx] won't * be fetched before conf->barrier[idx] is increased. Otherwise * there will be a race between raise_barrier() and _wait_barrier(). */ smp_mb__after_atomic(); /* For these conditions we must wait: * A: while the array is in frozen state * B: while conf->nr_pending[idx] is not 0, meaning regular I/O * existing in corresponding I/O barrier bucket. * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches * max resync count which allowed on current I/O barrier bucket. */ wait_event_lock_irq(conf->wait_barrier, (!conf->array_frozen && !atomic_read(&conf->nr_pending[idx]) && atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) || test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery), conf->resync_lock); if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { atomic_dec(&conf->barrier[idx]); spin_unlock_irq(&conf->resync_lock); wake_up(&conf->wait_barrier); return -EINTR; } atomic_inc(&conf->nr_sync_pending); spin_unlock_irq(&conf->resync_lock); return 0; } static void lower_barrier(struct r1conf *conf, sector_t sector_nr) { int idx = sector_to_idx(sector_nr); BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); atomic_dec(&conf->barrier[idx]); atomic_dec(&conf->nr_sync_pending); wake_up(&conf->wait_barrier); } static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait) { bool ret = true; /* * We need to increase conf->nr_pending[idx] very early here, * then raise_barrier() can be blocked when it waits for * conf->nr_pending[idx] to be 0. Then we can avoid holding * conf->resync_lock when there is no barrier raised in same * barrier unit bucket. Also if the array is frozen, I/O * should be blocked until array is unfrozen. */ atomic_inc(&conf->nr_pending[idx]); /* * In _wait_barrier() we firstly increase conf->nr_pending[idx], then * check conf->barrier[idx]. In raise_barrier() we firstly increase * conf->barrier[idx], then check conf->nr_pending[idx]. A memory * barrier is necessary here to make sure conf->barrier[idx] won't be * fetched before conf->nr_pending[idx] is increased. Otherwise there * will be a race between _wait_barrier() and raise_barrier(). */ smp_mb__after_atomic(); /* * Don't worry about checking two atomic_t variables at same time * here. If during we check conf->barrier[idx], the array is * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is * 0, it is safe to return and make the I/O continue. Because the * array is frozen, all I/O returned here will eventually complete * or be queued, no race will happen. See code comment in * frozen_array(). */ if (!READ_ONCE(conf->array_frozen) && !atomic_read(&conf->barrier[idx])) return ret; /* * After holding conf->resync_lock, conf->nr_pending[idx] * should be decreased before waiting for barrier to drop. * Otherwise, we may encounter a race condition because * raise_barrer() might be waiting for conf->nr_pending[idx] * to be 0 at same time. */ spin_lock_irq(&conf->resync_lock); atomic_inc(&conf->nr_waiting[idx]); atomic_dec(&conf->nr_pending[idx]); /* * In case freeze_array() is waiting for * get_unqueued_pending() == extra */ wake_up_barrier(conf); /* Wait for the barrier in same barrier unit bucket to drop. */ /* Return false when nowait flag is set */ if (nowait) { ret = false; } else { wait_event_lock_irq(conf->wait_barrier, !conf->array_frozen && !atomic_read(&conf->barrier[idx]), conf->resync_lock); atomic_inc(&conf->nr_pending[idx]); } atomic_dec(&conf->nr_waiting[idx]); spin_unlock_irq(&conf->resync_lock); return ret; } static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) { int idx = sector_to_idx(sector_nr); bool ret = true; /* * Very similar to _wait_barrier(). The difference is, for read * I/O we don't need wait for sync I/O, but if the whole array * is frozen, the read I/O still has to wait until the array is * unfrozen. Since there is no ordering requirement with * conf->barrier[idx] here, memory barrier is unnecessary as well. */ atomic_inc(&conf->nr_pending[idx]); if (!READ_ONCE(conf->array_frozen)) return ret; spin_lock_irq(&conf->resync_lock); atomic_inc(&conf->nr_waiting[idx]); atomic_dec(&conf->nr_pending[idx]); /* * In case freeze_array() is waiting for * get_unqueued_pending() == extra */ wake_up_barrier(conf); /* Wait for array to be unfrozen */ /* Return false when nowait flag is set */ if (nowait) { /* Return false when nowait flag is set */ ret = false; } else { wait_event_lock_irq(conf->wait_barrier, !conf->array_frozen, conf->resync_lock); atomic_inc(&conf->nr_pending[idx]); } atomic_dec(&conf->nr_waiting[idx]); spin_unlock_irq(&conf->resync_lock); return ret; } static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) { int idx = sector_to_idx(sector_nr); return _wait_barrier(conf, idx, nowait); } static void _allow_barrier(struct r1conf *conf, int idx) { atomic_dec(&conf->nr_pending[idx]); wake_up_barrier(conf); } static void allow_barrier(struct r1conf *conf, sector_t sector_nr) { int idx = sector_to_idx(sector_nr); _allow_barrier(conf, idx); } /* conf->resync_lock should be held */ static int get_unqueued_pending(struct r1conf *conf) { int idx, ret; ret = atomic_read(&conf->nr_sync_pending); for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) ret += atomic_read(&conf->nr_pending[idx]) - atomic_read(&conf->nr_queued[idx]); return ret; } static void freeze_array(struct r1conf *conf, int extra) { /* Stop sync I/O and normal I/O and wait for everything to * go quiet. * This is called in two situations: * 1) management command handlers (reshape, remove disk, quiesce). * 2) one normal I/O request failed. * After array_frozen is set to 1, new sync IO will be blocked at * raise_barrier(), and new normal I/O will blocked at _wait_barrier() * or wait_read_barrier(). The flying I/Os will either complete or be * queued. When everything goes quite, there are only queued I/Os left. * Every flying I/O contributes to a conf->nr_pending[idx], idx is the * barrier bucket index which this I/O request hits. When all sync and * normal I/O are queued, sum of all conf->nr_pending[] will match sum * of all conf->nr_queued[]. But normal I/O failure is an exception, * in handle_read_error(), we may call freeze_array() before trying to * fix the read error. In this case, the error read I/O is not queued, * so get_unqueued_pending() == 1. * * Therefore before this function returns, we need to wait until * get_unqueued_pendings(conf) gets equal to extra. For * normal I/O context, extra is 1, in rested situations extra is 0. */ spin_lock_irq(&conf->resync_lock); conf->array_frozen = 1; mddev_add_trace_msg(conf->mddev, "raid1 wait freeze"); wait_event_lock_irq_cmd( conf->wait_barrier, get_unqueued_pending(conf) == extra, conf->resync_lock, flush_pending_writes(conf)); spin_unlock_irq(&conf->resync_lock); } static void unfreeze_array(struct r1conf *conf) { /* reverse the effect of the freeze */ spin_lock_irq(&conf->resync_lock); conf->array_frozen = 0; spin_unlock_irq(&conf->resync_lock); wake_up(&conf->wait_barrier); } static void alloc_behind_master_bio(struct r1bio *r1_bio, struct bio *bio) { int size = bio->bi_iter.bi_size; unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; int i = 0; struct bio *behind_bio = NULL; behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO, &r1_bio->mddev->bio_set); /* discard op, we don't support writezero/writesame yet */ if (!bio_has_data(bio)) { behind_bio->bi_iter.bi_size = size; goto skip_copy; } while (i < vcnt && size) { struct page *page; int len = min_t(int, PAGE_SIZE, size); page = alloc_page(GFP_NOIO); if (unlikely(!page)) goto free_pages; if (!bio_add_page(behind_bio, page, len, 0)) { put_page(page); goto free_pages; } size -= len; i++; } bio_copy_data(behind_bio, bio); skip_copy: r1_bio->behind_master_bio = behind_bio; set_bit(R1BIO_BehindIO, &r1_bio->state); return; free_pages: pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_iter.bi_size); bio_free_pages(behind_bio); bio_put(behind_bio); } static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) { struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb); struct mddev *mddev = plug->cb.data; struct r1conf *conf = mddev->private; struct bio *bio; if (from_schedule) { spin_lock_irq(&conf->device_lock); bio_list_merge(&conf->pending_bio_list, &plug->pending); spin_unlock_irq(&conf->device_lock); wake_up_barrier(conf); md_wakeup_thread(mddev->thread); kfree(plug); return; } /* we aren't scheduling, so we can do the write-out directly. */ bio = bio_list_get(&plug->pending); flush_bio_list(conf, bio); kfree(plug); } static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) { r1_bio->master_bio = bio; r1_bio->sectors = bio_sectors(bio); r1_bio->state = 0; r1_bio->mddev = mddev; r1_bio->sector = bio->bi_iter.bi_sector; } static inline struct r1bio * alloc_r1bio(struct mddev *mddev, struct bio *bio) { struct r1conf *conf = mddev->private; struct r1bio *r1_bio; r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO); /* Ensure no bio records IO_BLOCKED */ memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0])); init_r1bio(r1_bio, mddev, bio); return r1_bio; } static void raid1_read_request(struct mddev *mddev, struct bio *bio, int max_read_sectors, struct r1bio *r1_bio) { struct r1conf *conf = mddev->private; struct raid1_info *mirror; struct bio *read_bio; struct bitmap *bitmap = mddev->bitmap; const enum req_op op = bio_op(bio); const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC; int max_sectors; int rdisk; bool r1bio_existed = !!r1_bio; char b[BDEVNAME_SIZE]; /* * If r1_bio is set, we are blocking the raid1d thread * so there is a tiny risk of deadlock. So ask for * emergency memory if needed. */ gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; if (r1bio_existed) { /* Need to get the block device name carefully */ struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; if (rdev) snprintf(b, sizeof(b), "%pg", rdev->bdev); else strcpy(b, "???"); } /* * Still need barrier for READ in case that whole * array is frozen. */ if (!wait_read_barrier(conf, bio->bi_iter.bi_sector, bio->bi_opf & REQ_NOWAIT)) { bio_wouldblock_error(bio); return; } if (!r1_bio) r1_bio = alloc_r1bio(mddev, bio); else init_r1bio(r1_bio, mddev, bio); r1_bio->sectors = max_read_sectors; /* * make_request() can abort the operation when read-ahead is being * used and no empty request is available. */ rdisk = read_balance(conf, r1_bio, &max_sectors); if (rdisk < 0) { /* couldn't find anywhere to read from */ if (r1bio_existed) { pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", mdname(mddev), b, (unsigned long long)r1_bio->sector); } raid_end_bio_io(r1_bio); return; } mirror = conf->mirrors + rdisk; if (r1bio_existed) pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n", mdname(mddev), (unsigned long long)r1_bio->sector, mirror->rdev->bdev); if (test_bit(WriteMostly, &mirror->rdev->flags) && bitmap) { /* * Reading from a write-mostly device must take care not to * over-take any writes that are 'behind' */ mddev_add_trace_msg(mddev, "raid1 wait behind writes"); wait_event(bitmap->behind_wait, atomic_read(&bitmap->behind_writes) == 0); } if (max_sectors < bio_sectors(bio)) { struct bio *split = bio_split(bio, max_sectors, gfp, &conf->bio_split); bio_chain(split, bio); submit_bio_noacct(bio); bio = split; r1_bio->master_bio = bio; r1_bio->sectors = max_sectors; } r1_bio->read_disk = rdisk; if (!r1bio_existed) { md_account_bio(mddev, &bio); r1_bio->master_bio = bio; } read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp, &mddev->bio_set); r1_bio->bios[rdisk] = read_bio; read_bio->bi_iter.bi_sector = r1_bio->sector + mirror->rdev->data_offset; read_bio->bi_end_io = raid1_end_read_request; read_bio->bi_opf = op | do_sync; if (test_bit(FailFast, &mirror->rdev->flags) && test_bit(R1BIO_FailFast, &r1_bio->state)) read_bio->bi_opf |= MD_FAILFAST; read_bio->bi_private = r1_bio; mddev_trace_remap(mddev, read_bio, r1_bio->sector); submit_bio_noacct(read_bio); } static void raid1_write_request(struct mddev *mddev, struct bio *bio, int max_write_sectors) { struct r1conf *conf = mddev->private; struct r1bio *r1_bio; int i, disks; struct bitmap *bitmap = mddev->bitmap; unsigned long flags; struct md_rdev *blocked_rdev; int first_clone; int max_sectors; bool write_behind = false; bool is_discard = (bio_op(bio) == REQ_OP_DISCARD); if (mddev_is_clustered(mddev) && md_cluster_ops->area_resyncing(mddev, WRITE, bio->bi_iter.bi_sector, bio_end_sector(bio))) { DEFINE_WAIT(w); if (bio->bi_opf & REQ_NOWAIT) { bio_wouldblock_error(bio); return; } for (;;) { prepare_to_wait(&conf->wait_barrier, &w, TASK_IDLE); if (!md_cluster_ops->area_resyncing(mddev, WRITE, bio->bi_iter.bi_sector, bio_end_sector(bio))) break; schedule(); } finish_wait(&conf->wait_barrier, &w); } /* * Register the new request and wait if the reconstruction * thread has put up a bar for new requests. * Continue immediately if no resync is active currently. */ if (!wait_barrier(conf, bio->bi_iter.bi_sector, bio->bi_opf & REQ_NOWAIT)) { bio_wouldblock_error(bio); return; } retry_write: r1_bio = alloc_r1bio(mddev, bio); r1_bio->sectors = max_write_sectors; /* first select target devices under rcu_lock and * inc refcount on their rdev. Record them by setting * bios[x] to bio * If there are known/acknowledged bad blocks on any device on * which we have seen a write error, we want to avoid writing those * blocks. * This potentially requires several writes to write around * the bad blocks. Each set of writes gets it's own r1bio * with a set of bios attached. */ disks = conf->raid_disks * 2; blocked_rdev = NULL; max_sectors = r1_bio->sectors; for (i = 0; i < disks; i++) { struct md_rdev *rdev = conf->mirrors[i].rdev; /* * The write-behind io is only attempted on drives marked as * write-mostly, which means we could allocate write behind * bio later. */ if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags)) write_behind = true; if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { atomic_inc(&rdev->nr_pending); blocked_rdev = rdev; break; } r1_bio->bios[i] = NULL; if (!rdev || test_bit(Faulty, &rdev->flags)) { if (i < conf->raid_disks) set_bit(R1BIO_Degraded, &r1_bio->state); continue; } atomic_inc(&rdev->nr_pending); if (test_bit(WriteErrorSeen, &rdev->flags)) { sector_t first_bad; int bad_sectors; int is_bad; is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, &first_bad, &bad_sectors); if (is_bad < 0) { /* mustn't write here until the bad block is * acknowledged*/ set_bit(BlockedBadBlocks, &rdev->flags); blocked_rdev = rdev; break; } if (is_bad && first_bad <= r1_bio->sector) { /* Cannot write here at all */ bad_sectors -= (r1_bio->sector - first_bad); if (bad_sectors < max_sectors) /* mustn't write more than bad_sectors * to other devices yet */ max_sectors = bad_sectors; rdev_dec_pending(rdev, mddev); /* We don't set R1BIO_Degraded as that * only applies if the disk is * missing, so it might be re-added, * and we want to know to recover this * chunk. * In this case the device is here, * and the fact that this chunk is not * in-sync is recorded in the bad * block log */ continue; } if (is_bad) { int good_sectors = first_bad - r1_bio->sector; if (good_sectors < max_sectors) max_sectors = good_sectors; } } r1_bio->bios[i] = bio; } if (unlikely(blocked_rdev)) { /* Wait for this device to become unblocked */ int j; for (j = 0; j < i; j++) if (r1_bio->bios[j]) rdev_dec_pending(conf->mirrors[j].rdev, mddev); free_r1bio(r1_bio); allow_barrier(conf, bio->bi_iter.bi_sector); if (bio->bi_opf & REQ_NOWAIT) { bio_wouldblock_error(bio); return; } mddev_add_trace_msg(mddev, "raid1 wait rdev %d blocked", blocked_rdev->raid_disk); md_wait_for_blocked_rdev(blocked_rdev, mddev); wait_barrier(conf, bio->bi_iter.bi_sector, false); goto retry_write; } /* * When using a bitmap, we may call alloc_behind_master_bio below. * alloc_behind_master_bio allocates a copy of the data payload a page * at a time and thus needs a new bio that can fit the whole payload * this bio in page sized chunks. */ if (write_behind && bitmap) max_sectors = min_t(int, max_sectors, BIO_MAX_VECS * (PAGE_SIZE >> 9)); if (max_sectors < bio_sectors(bio)) { struct bio *split = bio_split(bio, max_sectors, GFP_NOIO, &conf->bio_split); bio_chain(split, bio); submit_bio_noacct(bio); bio = split; r1_bio->master_bio = bio; r1_bio->sectors = max_sectors; } md_account_bio(mddev, &bio); r1_bio->master_bio = bio; atomic_set(&r1_bio->remaining, 1); atomic_set(&r1_bio->behind_remaining, 0); first_clone = 1; for (i = 0; i < disks; i++) { struct bio *mbio = NULL; struct md_rdev *rdev = conf->mirrors[i].rdev; if (!r1_bio->bios[i]) continue; if (first_clone) { /* do behind I/O ? * Not if there are too many, or cannot * allocate memory, or a reader on WriteMostly * is waiting for behind writes to flush */ if (bitmap && write_behind && (atomic_read(&bitmap->behind_writes) < mddev->bitmap_info.max_write_behind) && !waitqueue_active(&bitmap->behind_wait)) { alloc_behind_master_bio(r1_bio, bio); } md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors, test_bit(R1BIO_BehindIO, &r1_bio->state)); first_clone = 0; } if (r1_bio->behind_master_bio) { mbio = bio_alloc_clone(rdev->bdev, r1_bio->behind_master_bio, GFP_NOIO, &mddev->bio_set); if (test_bit(CollisionCheck, &rdev->flags)) wait_for_serialization(rdev, r1_bio); if (test_bit(WriteMostly, &rdev->flags)) atomic_inc(&r1_bio->behind_remaining); } else { mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set); if (mddev->serialize_policy) wait_for_serialization(rdev, r1_bio); } r1_bio->bios[i] = mbio; mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset); mbio->bi_end_io = raid1_end_write_request; mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA)); if (test_bit(FailFast, &rdev->flags) && !test_bit(WriteMostly, &rdev->flags) && conf->raid_disks - mddev->degraded > 1) mbio->bi_opf |= MD_FAILFAST; mbio->bi_private = r1_bio; atomic_inc(&r1_bio->remaining); mddev_trace_remap(mddev, mbio, r1_bio->sector); /* flush_pending_writes() needs access to the rdev so...*/ mbio->bi_bdev = (void *)rdev; if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) { spin_lock_irqsave(&conf->device_lock, flags); bio_list_add(&conf->pending_bio_list, mbio); spin_unlock_irqrestore(&conf->device_lock, flags); md_wakeup_thread(mddev->thread); } } r1_bio_write_done(r1_bio); /* In case raid1d snuck in to freeze_array */ wake_up_barrier(conf); } static bool raid1_make_request(struct mddev *mddev, struct bio *bio) { sector_t sectors; if (unlikely(bio->bi_opf & REQ_PREFLUSH) && md_flush_request(mddev, bio)) return true; /* * There is a limit to the maximum size, but * the read/write handler might find a lower limit * due to bad blocks. To avoid multiple splits, * we pass the maximum number of sectors down * and let the lower level perform the split. */ sectors = align_to_barrier_unit_end( bio->bi_iter.bi_sector, bio_sectors(bio)); if (bio_data_dir(bio) == READ) raid1_read_request(mddev, bio, sectors, NULL); else { if (!md_write_start(mddev,bio)) return false; raid1_write_request(mddev, bio, sectors); } return true; } static void raid1_status(struct seq_file *seq, struct mddev *mddev) { struct r1conf *conf = mddev->private; int i; lockdep_assert_held(&mddev->lock); seq_printf(seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); for (i = 0; i < conf->raid_disks; i++) { struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev); seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); } seq_printf(seq, "]"); } /** * raid1_error() - RAID1 error handler. * @mddev: affected md device. * @rdev: member device to fail. * * The routine acknowledges &rdev failure and determines new @mddev state. * If it failed, then: * - &MD_BROKEN flag is set in &mddev->flags. * - recovery is disabled. * Otherwise, it must be degraded: * - recovery is interrupted. * - &mddev->degraded is bumped. * * @rdev is marked as &Faulty excluding case when array is failed and * &mddev->fail_last_dev is off. */ static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) { struct r1conf *conf = mddev->private; unsigned long flags; spin_lock_irqsave(&conf->device_lock, flags); if (test_bit(In_sync, &rdev->flags) && (conf->raid_disks - mddev->degraded) == 1) { set_bit(MD_BROKEN, &mddev->flags); if (!mddev->fail_last_dev) { conf->recovery_disabled = mddev->recovery_disabled; spin_unlock_irqrestore(&conf->device_lock, flags); return; } } set_bit(Blocked, &rdev->flags); if (test_and_clear_bit(In_sync, &rdev->flags)) mddev->degraded++; set_bit(Faulty, &rdev->flags); spin_unlock_irqrestore(&conf->device_lock, flags); /* * if recovery is running, make sure it aborts. */ set_bit(MD_RECOVERY_INTR, &mddev->recovery); set_mask_bits(&mddev->sb_flags, 0, BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n" "md/raid1:%s: Operation continuing on %d devices.\n", mdname(mddev), rdev->bdev, mdname(mddev), conf->raid_disks - mddev->degraded); } static void print_conf(struct r1conf *conf) { int i; pr_debug("RAID1 conf printout:\n"); if (!conf) { pr_debug("(!conf)\n"); return; } pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, conf->raid_disks); lockdep_assert_held(&conf->mddev->reconfig_mutex); for (i = 0; i < conf->raid_disks; i++) { struct md_rdev *rdev = conf->mirrors[i].rdev; if (rdev) pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n", i, !test_bit(In_sync, &rdev->flags), !test_bit(Faulty, &rdev->flags), rdev->bdev); } } static void close_sync(struct r1conf *conf) { int idx; for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) { _wait_barrier(conf, idx, false); _allow_barrier(conf, idx); } mempool_exit(&conf->r1buf_pool); } static int raid1_spare_active(struct mddev *mddev) { int i; struct r1conf *conf = mddev->private; int count = 0; unsigned long flags; /* * Find all failed disks within the RAID1 configuration * and mark them readable. * Called under mddev lock, so rcu protection not needed. * device_lock used to avoid races with raid1_end_read_request * which expects 'In_sync' flags and ->degraded to be consistent. */ spin_lock_irqsave(&conf->device_lock, flags); for (i = 0; i < conf->raid_disks; i++) { struct md_rdev *rdev = conf->mirrors[i].rdev; struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; if (repl && !test_bit(Candidate, &repl->flags) && repl->recovery_offset == MaxSector && !test_bit(Faulty, &repl->flags) && !test_and_set_bit(In_sync, &repl->flags)) { /* replacement has just become active */ if (!rdev || !test_and_clear_bit(In_sync, &rdev->flags)) count++; if (rdev) { /* Replaced device not technically * faulty, but we need to be sure * it gets removed and never re-added */ set_bit(Faulty, &rdev->flags); sysfs_notify_dirent_safe( rdev->sysfs_state); } } if (rdev && rdev->recovery_offset == MaxSector && !test_bit(Faulty, &rdev->flags) && !test_and_set_bit(In_sync, &rdev->flags)) { count++; sysfs_notify_dirent_safe(rdev->sysfs_state); } } mddev->degraded -= count; spin_unlock_irqrestore(&conf->device_lock, flags); print_conf(conf); return count; } static bool raid1_add_conf(struct r1conf *conf, struct md_rdev *rdev, int disk, bool replacement) { struct raid1_info *info = conf->mirrors + disk; if (replacement) info += conf->raid_disks; if (info->rdev) return false; if (bdev_nonrot(rdev->bdev)) { set_bit(Nonrot, &rdev->flags); WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks + 1); } rdev->raid_disk = disk; info->head_position = 0; info->seq_start = MaxSector; WRITE_ONCE(info->rdev, rdev); return true; } static bool raid1_remove_conf(struct r1conf *conf, int disk) { struct raid1_info *info = conf->mirrors + disk; struct md_rdev *rdev = info->rdev; if (!rdev || test_bit(In_sync, &rdev->flags) || atomic_read(&rdev->nr_pending)) return false; /* Only remove non-faulty devices if recovery is not possible. */ if (!test_bit(Faulty, &rdev->flags) && rdev->mddev->recovery_disabled != conf->recovery_disabled && rdev->mddev->degraded < conf->raid_disks) return false; if (test_and_clear_bit(Nonrot, &rdev->flags)) WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks - 1); WRITE_ONCE(info->rdev, NULL); return true; } static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) { struct r1conf *conf = mddev->private; int err = -EEXIST; int mirror = 0, repl_slot = -1; struct raid1_info *p; int first = 0; int last = conf->raid_disks - 1; if (mddev->recovery_disabled == conf->recovery_disabled) return -EBUSY; if (md_integrity_add_rdev(rdev, mddev)) return -ENXIO; if (rdev->raid_disk >= 0) first = last = rdev->raid_disk; /* * find the disk ... but prefer rdev->saved_raid_disk * if possible. */ if (rdev->saved_raid_disk >= 0 && rdev->saved_raid_disk >= first && rdev->saved_raid_disk < conf->raid_disks && conf->mirrors[rdev->saved_raid_disk].rdev == NULL) first = last = rdev->saved_raid_disk; for (mirror = first; mirror <= last; mirror++) { p = conf->mirrors + mirror; if (!p->rdev) { err = mddev_stack_new_rdev(mddev, rdev); if (err) return err; raid1_add_conf(conf, rdev, mirror, false); /* As all devices are equivalent, we don't need a full recovery * if this was recently any drive of the array */ if (rdev->saved_raid_disk < 0) conf->fullsync = 1; break; } if (test_bit(WantReplacement, &p->rdev->flags) && p[conf->raid_disks].rdev == NULL && repl_slot < 0) repl_slot = mirror; } if (err && repl_slot >= 0) { /* Add this device as a replacement */ clear_bit(In_sync, &rdev->flags); set_bit(Replacement, &rdev->flags); raid1_add_conf(conf, rdev, repl_slot, true); err = 0; conf->fullsync = 1; } print_conf(conf); return err; } static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) { struct r1conf *conf = mddev->private; int err = 0; int number = rdev->raid_disk; struct raid1_info *p = conf->mirrors + number; if (unlikely(number >= conf->raid_disks)) goto abort; if (rdev != p->rdev) { number += conf->raid_disks; p = conf->mirrors + number; } print_conf(conf); if (rdev == p->rdev) { if (!raid1_remove_conf(conf, number)) { err = -EBUSY; goto abort; } if (number < conf->raid_disks && conf->mirrors[conf->raid_disks + number].rdev) { /* We just removed a device that is being replaced. * Move down the replacement. We drain all IO before * doing this to avoid confusion. */ struct md_rdev *repl = conf->mirrors[conf->raid_disks + number].rdev; freeze_array(conf, 0); if (atomic_read(&repl->nr_pending)) { /* It means that some queued IO of retry_list * hold repl. Thus, we cannot set replacement * as NULL, avoiding rdev NULL pointer * dereference in sync_request_write and * handle_write_finished. */ err = -EBUSY; unfreeze_array(conf); goto abort; } clear_bit(Replacement, &repl->flags); WRITE_ONCE(p->rdev, repl); conf->mirrors[conf->raid_disks + number].rdev = NULL; unfreeze_array(conf); } clear_bit(WantReplacement, &rdev->flags); err = md_integrity_register(mddev); } abort: print_conf(conf); return err; } static void end_sync_read(struct bio *bio) { struct r1bio *r1_bio = get_resync_r1bio(bio); update_head_pos(r1_bio->read_disk, r1_bio); /* * we have read a block, now it needs to be re-written, * or re-read if the read failed. * We don't do much here, just schedule handling by raid1d */ if (!bio->bi_status) set_bit(R1BIO_Uptodate, &r1_bio->state); if (atomic_dec_and_test(&r1_bio->remaining)) reschedule_retry(r1_bio); } static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio) { sector_t sync_blocks = 0; sector_t s = r1_bio->sector; long sectors_to_go = r1_bio->sectors; /* make sure these bits don't get cleared. */ do { md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1); s += sync_blocks; sectors_to_go -= sync_blocks; } while (sectors_to_go > 0); } static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate) { if (atomic_dec_and_test(&r1_bio->remaining)) { struct mddev *mddev = r1_bio->mddev; int s = r1_bio->sectors; if (test_bit(R1BIO_MadeGood, &r1_bio->state) || test_bit(R1BIO_WriteError, &r1_bio->state)) reschedule_retry(r1_bio); else { put_buf(r1_bio); md_done_sync(mddev, s, uptodate); } } } static void end_sync_write(struct bio *bio) { int uptodate = !bio->bi_status; struct r1bio *r1_bio = get_resync_r1bio(bio); struct mddev *mddev = r1_bio->mddev; struct r1conf *conf = mddev->private; struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; if (!uptodate) { abort_sync_write(mddev, r1_bio); set_bit(WriteErrorSeen, &rdev->flags); if (!test_and_set_bit(WantReplacement, &rdev->flags)) set_bit(MD_RECOVERY_NEEDED, & mddev->recovery); set_bit(R1BIO_WriteError, &r1_bio->state); } else if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) && !rdev_has_badblock(conf->mirrors[r1_bio->read_disk].rdev, r1_bio->sector, r1_bio->sectors)) { set_bit(R1BIO_MadeGood, &r1_bio->state); } put_sync_write_buf(r1_bio, uptodate); } static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, int sectors, struct page *page, blk_opf_t rw) { if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) /* success */ return 1; if (rw == REQ_OP_WRITE) { set_bit(WriteErrorSeen, &rdev->flags); if (!test_and_set_bit(WantReplacement, &rdev->flags)) set_bit(MD_RECOVERY_NEEDED, & rdev->mddev->recovery); } /* need to record an error - either for the block or the device */ if (!rdev_set_badblocks(rdev, sector, sectors, 0)) md_error(rdev->mddev, rdev); return 0; } static int fix_sync_read_error(struct r1bio *r1_bio) { /* Try some synchronous reads of other devices to get * good data, much like with normal read errors. Only * read into the pages we already have so we don't * need to re-issue the read request. * We don't need to freeze the array, because being in an * active sync request, there is no normal IO, and * no overlapping syncs. * We don't need to check is_badblock() again as we * made sure that anything with a bad block in range * will have bi_end_io clear. */ struct mddev *mddev = r1_bio->mddev; struct r1conf *conf = mddev->private; struct bio *bio = r1_bio->bios[r1_bio->read_disk]; struct page **pages = get_resync_pages(bio)->pages; sector_t sect = r1_bio->sector; int sectors = r1_bio->sectors; int idx = 0; struct md_rdev *rdev; rdev = conf->mirrors[r1_bio->read_disk].rdev; if (test_bit(FailFast, &rdev->flags)) { /* Don't try recovering from here - just fail it * ... unless it is the last working device of course */ md_error(mddev, rdev); if (test_bit(Faulty, &rdev->flags)) /* Don't try to read from here, but make sure * put_buf does it's thing */ bio->bi_end_io = end_sync_write; } while(sectors) { int s = sectors; int d = r1_bio->read_disk; int success = 0; int start; if (s > (PAGE_SIZE>>9)) s = PAGE_SIZE >> 9; do { if (r1_bio->bios[d]->bi_end_io == end_sync_read) { /* No rcu protection needed here devices * can only be removed when no resync is * active, and resync is currently active */ rdev = conf->mirrors[d].rdev; if (sync_page_io(rdev, sect, s<<9, pages[idx], REQ_OP_READ, false)) { success = 1; break; } } d++; if (d == conf->raid_disks * 2) d = 0; } while (!success && d != r1_bio->read_disk); if (!success) { int abort = 0; /* Cannot read from anywhere, this block is lost. * Record a bad block on each device. If that doesn't * work just disable and interrupt the recovery. * Don't fail devices as that won't really help. */ pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n", mdname(mddev), bio->bi_bdev, (unsigned long long)r1_bio->sector); for (d = 0; d < conf->raid_disks * 2; d++) { rdev = conf->mirrors[d].rdev; if (!rdev || test_bit(Faulty, &rdev->flags)) continue; if (!rdev_set_badblocks(rdev, sect, s, 0)) abort = 1; } if (abort) { conf->recovery_disabled = mddev->recovery_disabled; set_bit(MD_RECOVERY_INTR, &mddev->recovery); md_done_sync(mddev, r1_bio->sectors, 0); put_buf(r1_bio); return 0; } /* Try next page */ sectors -= s; sect += s; idx++; continue; } start = d; /* write it back and re-read */ while (d != r1_bio->read_disk) { if (d == 0) d = conf->raid_disks * 2; d--; if (r1_bio->bios[d]->bi_end_io != end_sync_read) continue; rdev = conf->mirrors[d].rdev; if (r1_sync_page_io(rdev, sect, s, pages[idx], REQ_OP_WRITE) == 0) { r1_bio->bios[d]->bi_end_io = NULL; rdev_dec_pending(rdev, mddev); } } d = start; while (d != r1_bio->read_disk) { if (d == 0) d = conf->raid_disks * 2; d--; if (r1_bio->bios[d]->bi_end_io != end_sync_read) continue; rdev = conf->mirrors[d].rdev; if (r1_sync_page_io(rdev, sect, s, pages[idx], REQ_OP_READ) != 0) atomic_add(s, &rdev->corrected_errors); } sectors -= s; sect += s; idx ++; } set_bit(R1BIO_Uptodate, &r1_bio->state); bio->bi_status = 0; return 1; } static void process_checks(struct r1bio *r1_bio) { /* We have read all readable devices. If we haven't * got the block, then there is no hope left. * If we have, then we want to do a comparison * and skip the write if everything is the same. * If any blocks failed to read, then we need to * attempt an over-write */ struct mddev *mddev = r1_bio->mddev; struct r1conf *conf = mddev->private; int primary; int i; int vcnt; /* Fix variable parts of all bios */ vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); for (i = 0; i < conf->raid_disks * 2; i++) { blk_status_t status; struct bio *b = r1_bio->bios[i]; struct resync_pages *rp = get_resync_pages(b); if (b->bi_end_io != end_sync_read) continue; /* fixup the bio for reuse, but preserve errno */ status = b->bi_status; bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ); b->bi_status = status; b->bi_iter.bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset; b->bi_end_io = end_sync_read; rp->raid_bio = r1_bio; b->bi_private = rp; /* initialize bvec table again */ md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); } for (primary = 0; primary < conf->raid_disks * 2; primary++) if (r1_bio->bios[primary]->bi_end_io == end_sync_read && !r1_bio->bios[primary]->bi_status) { r1_bio->bios[primary]->bi_end_io = NULL; rdev_dec_pending(conf->mirrors[primary].rdev, mddev); break; } r1_bio->read_disk = primary; for (i = 0; i < conf->raid_disks * 2; i++) { int j = 0; struct bio *pbio = r1_bio->bios[primary]; struct bio *sbio = r1_bio->bios[i]; blk_status_t status = sbio->bi_status; struct page **ppages = get_resync_pages(pbio)->pages; struct page **spages = get_resync_pages(sbio)->pages; struct bio_vec *bi; int page_len[RESYNC_PAGES] = { 0 }; struct bvec_iter_all iter_all; if (sbio->bi_end_io != end_sync_read) continue; /* Now we can 'fixup' the error value */ sbio->bi_status = 0; bio_for_each_segment_all(bi, sbio, iter_all) page_len[j++] = bi->bv_len; if (!status) { for (j = vcnt; j-- ; ) { if (memcmp(page_address(ppages[j]), page_address(spages[j]), page_len[j])) break; } } else j = 0; if (j >= 0) atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && !status)) { /* No need to write to this device. */ sbio->bi_end_io = NULL; rdev_dec_pending(conf->mirrors[i].rdev, mddev); continue; } bio_copy_data(sbio, pbio); } } static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) { struct r1conf *conf = mddev->private; int i; int disks = conf->raid_disks * 2; struct bio *wbio; if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) /* ouch - failed to read all of that. */ if (!fix_sync_read_error(r1_bio)) return; if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) process_checks(r1_bio); /* * schedule writes */ atomic_set(&r1_bio->remaining, 1); for (i = 0; i < disks ; i++) { wbio = r1_bio->bios[i]; if (wbio->bi_end_io == NULL || (wbio->bi_end_io == end_sync_read && (i == r1_bio->read_disk || !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) continue; if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) { abort_sync_write(mddev, r1_bio); continue; } wbio->bi_opf = REQ_OP_WRITE; if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) wbio->bi_opf |= MD_FAILFAST; wbio->bi_end_io = end_sync_write; atomic_inc(&r1_bio->remaining); md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); submit_bio_noacct(wbio); } put_sync_write_buf(r1_bio, 1); } /* * This is a kernel thread which: * * 1. Retries failed read operations on working mirrors. * 2. Updates the raid superblock when problems encounter. * 3. Performs writes following reads for array synchronising. */ static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio) { sector_t sect = r1_bio->sector; int sectors = r1_bio->sectors; int read_disk = r1_bio->read_disk; struct mddev *mddev = conf->mddev; struct md_rdev *rdev = conf->mirrors[read_disk].rdev; if (exceed_read_errors(mddev, rdev)) { r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; return; } while(sectors) { int s = sectors; int d = read_disk; int success = 0; int start; if (s > (PAGE_SIZE>>9)) s = PAGE_SIZE >> 9; do { rdev = conf->mirrors[d].rdev; if (rdev && (test_bit(In_sync, &rdev->flags) || (!test_bit(Faulty, &rdev->flags) && rdev->recovery_offset >= sect + s)) && rdev_has_badblock(rdev, sect, s) == 0) { atomic_inc(&rdev->nr_pending); if (sync_page_io(rdev, sect, s<<9, conf->tmppage, REQ_OP_READ, false)) success = 1; rdev_dec_pending(rdev, mddev); if (success) break; } d++; if (d == conf->raid_disks * 2) d = 0; } while (d != read_disk); if (!success) { /* Cannot read from anywhere - mark it bad */ struct md_rdev *rdev = conf->mirrors[read_disk].rdev; if (!rdev_set_badblocks(rdev, sect, s, 0)) md_error(mddev, rdev); break; } /* write it back and re-read */ start = d; while (d != read_disk) { if (d==0) d = conf->raid_disks * 2; d--; rdev = conf->mirrors[d].rdev; if (rdev && !test_bit(Faulty, &rdev->flags)) { atomic_inc(&rdev->nr_pending); r1_sync_page_io(rdev, sect, s, conf->tmppage, REQ_OP_WRITE); rdev_dec_pending(rdev, mddev); } } d = start; while (d != read_disk) { if (d==0) d = conf->raid_disks * 2; d--; rdev = conf->mirrors[d].rdev; if (rdev && !test_bit(Faulty, &rdev->flags)) { atomic_inc(&rdev->nr_pending); if (r1_sync_page_io(rdev, sect, s, conf->tmppage, REQ_OP_READ)) { atomic_add(s, &rdev->corrected_errors); pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n", mdname(mddev), s, (unsigned long long)(sect + rdev->data_offset), rdev->bdev); } rdev_dec_pending(rdev, mddev); } } sectors -= s; sect += s; } } static int narrow_write_error(struct r1bio *r1_bio, int i) { struct mddev *mddev = r1_bio->mddev; struct r1conf *conf = mddev->private; struct md_rdev *rdev = conf->mirrors[i].rdev; /* bio has the data to be written to device 'i' where * we just recently had a write error. * We repeatedly clone the bio and trim down to one block, * then try the write. Where the write fails we record * a bad block. * It is conceivable that the bio doesn't exactly align with * blocks. We must handle this somehow. * * We currently own a reference on the rdev. */ int block_sectors; sector_t sector; int sectors; int sect_to_write = r1_bio->sectors; int ok = 1; if (rdev->badblocks.shift < 0) return 0; block_sectors = roundup(1 << rdev->badblocks.shift, bdev_logical_block_size(rdev->bdev) >> 9); sector = r1_bio->sector; sectors = ((sector + block_sectors) & ~(sector_t)(block_sectors - 1)) - sector; while (sect_to_write) { struct bio *wbio; if (sectors > sect_to_write) sectors = sect_to_write; /* Write at 'sector' for 'sectors'*/ if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { wbio = bio_alloc_clone(rdev->bdev, r1_bio->behind_master_bio, GFP_NOIO, &mddev->bio_set); } else { wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio, GFP_NOIO, &mddev->bio_set); } wbio->bi_opf = REQ_OP_WRITE; wbio->bi_iter.bi_sector = r1_bio->sector; wbio->bi_iter.bi_size = r1_bio->sectors << 9; bio_trim(wbio, sector - r1_bio->sector, sectors); wbio->bi_iter.bi_sector += rdev->data_offset; if (submit_bio_wait(wbio) < 0) /* failure! */ ok = rdev_set_badblocks(rdev, sector, sectors, 0) && ok; bio_put(wbio); sect_to_write -= sectors; sector += sectors; sectors = block_sectors; } return ok; } static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) { int m; int s = r1_bio->sectors; for (m = 0; m < conf->raid_disks * 2 ; m++) { struct md_rdev *rdev = conf->mirrors[m].rdev; struct bio *bio = r1_bio->bios[m]; if (bio->bi_end_io == NULL) continue; if (!bio->bi_status && test_bit(R1BIO_MadeGood, &r1_bio->state)) { rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); } if (bio->bi_status && test_bit(R1BIO_WriteError, &r1_bio->state)) { if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) md_error(conf->mddev, rdev); } } put_buf(r1_bio); md_done_sync(conf->mddev, s, 1); } static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) { int m, idx; bool fail = false; for (m = 0; m < conf->raid_disks * 2 ; m++) if (r1_bio->bios[m] == IO_MADE_GOOD) { struct md_rdev *rdev = conf->mirrors[m].rdev; rdev_clear_badblocks(rdev, r1_bio->sector, r1_bio->sectors, 0); rdev_dec_pending(rdev, conf->mddev); } else if (r1_bio->bios[m] != NULL) { /* This drive got a write error. We need to * narrow down and record precise write * errors. */ fail = true; if (!narrow_write_error(r1_bio, m)) { md_error(conf->mddev, conf->mirrors[m].rdev); /* an I/O failed, we can't clear the bitmap */ set_bit(R1BIO_Degraded, &r1_bio->state); } rdev_dec_pending(conf->mirrors[m].rdev, conf->mddev); } if (fail) { spin_lock_irq(&conf->device_lock); list_add(&r1_bio->retry_list, &conf->bio_end_io_list); idx = sector_to_idx(r1_bio->sector); atomic_inc(&conf->nr_queued[idx]); spin_unlock_irq(&conf->device_lock); /* * In case freeze_array() is waiting for condition * get_unqueued_pending() == extra to be true. */ wake_up(&conf->wait_barrier); md_wakeup_thread(conf->mddev->thread); } else { if (test_bit(R1BIO_WriteError, &r1_bio->state)) close_write(r1_bio); raid_end_bio_io(r1_bio); } } static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) { struct mddev *mddev = conf->mddev; struct bio *bio; struct md_rdev *rdev; sector_t sector; clear_bit(R1BIO_ReadError, &r1_bio->state); /* we got a read error. Maybe the drive is bad. Maybe just * the block and we can fix it. * We freeze all other IO, and try reading the block from * other devices. When we find one, we re-write * and check it that fixes the read error. * This is all done synchronously while the array is * frozen */ bio = r1_bio->bios[r1_bio->read_disk]; bio_put(bio); r1_bio->bios[r1_bio->read_disk] = NULL; rdev = conf->mirrors[r1_bio->read_disk].rdev; if (mddev->ro == 0 && !test_bit(FailFast, &rdev->flags)) { freeze_array(conf, 1); fix_read_error(conf, r1_bio); unfreeze_array(conf); } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) { md_error(mddev, rdev); } else { r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; } rdev_dec_pending(rdev, conf->mddev); sector = r1_bio->sector; bio = r1_bio->master_bio; /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ r1_bio->state = 0; raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); allow_barrier(conf, sector); } static void raid1d(struct md_thread *thread) { struct mddev *mddev = thread->mddev; struct r1bio *r1_bio; unsigned long flags; struct r1conf *conf = mddev->private; struct list_head *head = &conf->retry_list; struct blk_plug plug; int idx; md_check_recovery(mddev); if (!list_empty_careful(&conf->bio_end_io_list) && !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { LIST_HEAD(tmp); spin_lock_irqsave(&conf->device_lock, flags); if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) list_splice_init(&conf->bio_end_io_list, &tmp); spin_unlock_irqrestore(&conf->device_lock, flags); while (!list_empty(&tmp)) { r1_bio = list_first_entry(&tmp, struct r1bio, retry_list); list_del(&r1_bio->retry_list); idx = sector_to_idx(r1_bio->sector); atomic_dec(&conf->nr_queued[idx]); if (mddev->degraded) set_bit(R1BIO_Degraded, &r1_bio->state); if (test_bit(R1BIO_WriteError, &r1_bio->state)) close_write(r1_bio); raid_end_bio_io(r1_bio); } } blk_start_plug(&plug); for (;;) { flush_pending_writes(conf); spin_lock_irqsave(&conf->device_lock, flags); if (list_empty(head)) { spin_unlock_irqrestore(&conf->device_lock, flags); break; } r1_bio = list_entry(head->prev, struct r1bio, retry_list); list_del(head->prev); idx = sector_to_idx(r1_bio->sector); atomic_dec(&conf->nr_queued[idx]); spin_unlock_irqrestore(&conf->device_lock, flags); mddev = r1_bio->mddev; conf = mddev->private; if (test_bit(R1BIO_IsSync, &r1_bio->state)) { if (test_bit(R1BIO_MadeGood, &r1_bio->state) || test_bit(R1BIO_WriteError, &r1_bio->state)) handle_sync_write_finished(conf, r1_bio); else sync_request_write(mddev, r1_bio); } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || test_bit(R1BIO_WriteError, &r1_bio->state)) handle_write_finished(conf, r1_bio); else if (test_bit(R1BIO_ReadError, &r1_bio->state)) handle_read_error(conf, r1_bio); else WARN_ON_ONCE(1); cond_resched(); if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) md_check_recovery(mddev); } blk_finish_plug(&plug); } static int init_resync(struct r1conf *conf) { int buffs; buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; BUG_ON(mempool_initialized(&conf->r1buf_pool)); return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc, r1buf_pool_free, conf->poolinfo); } static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf) { struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO); struct resync_pages *rps; struct bio *bio; int i; for (i = conf->poolinfo->raid_disks; i--; ) { bio = r1bio->bios[i]; rps = bio->bi_private; bio_reset(bio, NULL, 0); bio->bi_private = rps; } r1bio->master_bio = NULL; return r1bio; } /* * perform a "sync" on one "block" * * We need to make sure that no normal I/O request - particularly write * requests - conflict with active sync requests. * * This is achieved by tracking pending requests and a 'barrier' concept * that can be installed to exclude normal IO requests. */ static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped) { struct r1conf *conf = mddev->private; struct r1bio *r1_bio; struct bio *bio; sector_t max_sector, nr_sectors; int disk = -1; int i; int wonly = -1; int write_targets = 0, read_targets = 0; sector_t sync_blocks; int still_degraded = 0; int good_sectors = RESYNC_SECTORS; int min_bad = 0; /* number of sectors that are bad in all devices */ int idx = sector_to_idx(sector_nr); int page_idx = 0; if (!mempool_initialized(&conf->r1buf_pool)) if (init_resync(conf)) return 0; max_sector = mddev->dev_sectors; if (sector_nr >= max_sector) { /* If we aborted, we need to abort the * sync on the 'current' bitmap chunk (there will * only be one in raid1 resync. * We can find the current addess in mddev->curr_resync */ if (mddev->curr_resync < max_sector) /* aborted */ md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, &sync_blocks, 1); else /* completed sync */ conf->fullsync = 0; md_bitmap_close_sync(mddev->bitmap); close_sync(conf); if (mddev_is_clustered(mddev)) { conf->cluster_sync_low = 0; conf->cluster_sync_high = 0; } return 0; } if (mddev->bitmap == NULL && mddev->recovery_cp == MaxSector && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && conf->fullsync == 0) { *skipped = 1; return max_sector - sector_nr; } /* before building a request, check if we can skip these blocks.. * This call the bitmap_start_sync doesn't actually record anything */ if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { /* We can skip this block, and probably several more */ *skipped = 1; return sync_blocks; } /* * If there is non-resync activity waiting for a turn, then let it * though before starting on this new sync request. */ if (atomic_read(&conf->nr_waiting[idx])) schedule_timeout_uninterruptible(1); /* we are incrementing sector_nr below. To be safe, we check against * sector_nr + two times RESYNC_SECTORS */ md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); if (raise_barrier(conf, sector_nr)) return 0; r1_bio = raid1_alloc_init_r1buf(conf); /* * If we get a correctably read error during resync or recovery, * we might want to read from a different device. So we * flag all drives that could conceivably be read from for READ, * and any others (which will be non-In_sync devices) for WRITE. * If a read fails, we try reading from something else for which READ * is OK. */ r1_bio->mddev = mddev; r1_bio->sector = sector_nr; r1_bio->state = 0; set_bit(R1BIO_IsSync, &r1_bio->state); /* make sure good_sectors won't go across barrier unit boundary */ good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); for (i = 0; i < conf->raid_disks * 2; i++) { struct md_rdev *rdev; bio = r1_bio->bios[i]; rdev = conf->mirrors[i].rdev; if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { if (i < conf->raid_disks) still_degraded = 1; } else if (!test_bit(In_sync, &rdev->flags)) { bio->bi_opf = REQ_OP_WRITE; bio->bi_end_io = end_sync_write; write_targets ++; } else { /* may need to read from here */ sector_t first_bad = MaxSector; int bad_sectors; if (is_badblock(rdev, sector_nr, good_sectors, &first_bad, &bad_sectors)) { if (first_bad > sector_nr) good_sectors = first_bad - sector_nr; else { bad_sectors -= (sector_nr - first_bad); if (min_bad == 0 || min_bad > bad_sectors) min_bad = bad_sectors; } } if (sector_nr < first_bad) { if (test_bit(WriteMostly, &rdev->flags)) { if (wonly < 0) wonly = i; } else { if (disk < 0) disk = i; } bio->bi_opf = REQ_OP_READ; bio->bi_end_io = end_sync_read; read_targets++; } else if (!test_bit(WriteErrorSeen, &rdev->flags) && test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { /* * The device is suitable for reading (InSync), * but has bad block(s) here. Let's try to correct them, * if we are doing resync or repair. Otherwise, leave * this device alone for this sync request. */ bio->bi_opf = REQ_OP_WRITE; bio->bi_end_io = end_sync_write; write_targets++; } } if (rdev && bio->bi_end_io) { atomic_inc(&rdev->nr_pending); bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; bio_set_dev(bio, rdev->bdev); if (test_bit(FailFast, &rdev->flags)) bio->bi_opf |= MD_FAILFAST; } } if (disk < 0) disk = wonly; r1_bio->read_disk = disk; if (read_targets == 0 && min_bad > 0) { /* These sectors are bad on all InSync devices, so we * need to mark them bad on all write targets */ int ok = 1; for (i = 0 ; i < conf->raid_disks * 2 ; i++) if (r1_bio->bios[i]->bi_end_io == end_sync_write) { struct md_rdev *rdev = conf->mirrors[i].rdev; ok = rdev_set_badblocks(rdev, sector_nr, min_bad, 0 ) && ok; } set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); *skipped = 1; put_buf(r1_bio); if (!ok) { /* Cannot record the badblocks, so need to * abort the resync. * If there are multiple read targets, could just * fail the really bad ones ??? */ conf->recovery_disabled = mddev->recovery_disabled; set_bit(MD_RECOVERY_INTR, &mddev->recovery); return 0; } else return min_bad; } if (min_bad > 0 && min_bad < good_sectors) { /* only resync enough to reach the next bad->good * transition */ good_sectors = min_bad; } if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) /* extra read targets are also write targets */ write_targets += read_targets-1; if (write_targets == 0 || read_targets == 0) { /* There is nowhere to write, so all non-sync * drives must be failed - so we are finished */ sector_t rv; if (min_bad > 0) max_sector = sector_nr + min_bad; rv = max_sector - sector_nr; *skipped = 1; put_buf(r1_bio); return rv; } if (max_sector > mddev->resync_max) max_sector = mddev->resync_max; /* Don't do IO beyond here */ if (max_sector > sector_nr + good_sectors) max_sector = sector_nr + good_sectors; nr_sectors = 0; sync_blocks = 0; do { struct page *page; int len = PAGE_SIZE; if (sector_nr + (len>>9) > max_sector) len = (max_sector - sector_nr) << 9; if (len == 0) break; if (sync_blocks == 0) { if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded) && !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) break; if ((len >> 9) > sync_blocks) len = sync_blocks<<9; } for (i = 0 ; i < conf->raid_disks * 2; i++) { struct resync_pages *rp; bio = r1_bio->bios[i]; rp = get_resync_pages(bio); if (bio->bi_end_io) { page = resync_fetch_page(rp, page_idx); /* * won't fail because the vec table is big * enough to hold all these pages */ __bio_add_page(bio, page, len, 0); } } nr_sectors += len>>9; sector_nr += len>>9; sync_blocks -= (len>>9); } while (++page_idx < RESYNC_PAGES); r1_bio->sectors = nr_sectors; if (mddev_is_clustered(mddev) && conf->cluster_sync_high < sector_nr + nr_sectors) { conf->cluster_sync_low = mddev->curr_resync_completed; conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; /* Send resync message */ md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low, conf->cluster_sync_high); } /* For a user-requested sync, we read all readable devices and do a * compare */ if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { atomic_set(&r1_bio->remaining, read_targets); for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { bio = r1_bio->bios[i]; if (bio->bi_end_io == end_sync_read) { read_targets--; md_sync_acct_bio(bio, nr_sectors); if (read_targets == 1) bio->bi_opf &= ~MD_FAILFAST; submit_bio_noacct(bio); } } } else { atomic_set(&r1_bio->remaining, 1); bio = r1_bio->bios[r1_bio->read_disk]; md_sync_acct_bio(bio, nr_sectors); if (read_targets == 1) bio->bi_opf &= ~MD_FAILFAST; submit_bio_noacct(bio); } return nr_sectors; } static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) { if (sectors) return sectors; return mddev->dev_sectors; } static struct r1conf *setup_conf(struct mddev *mddev) { struct r1conf *conf; int i; struct raid1_info *disk; struct md_rdev *rdev; int err = -ENOMEM; conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); if (!conf) goto abort; conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, sizeof(atomic_t), GFP_KERNEL); if (!conf->nr_pending) goto abort; conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, sizeof(atomic_t), GFP_KERNEL); if (!conf->nr_waiting) goto abort; conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, sizeof(atomic_t), GFP_KERNEL); if (!conf->nr_queued) goto abort; conf->barrier = kcalloc(BARRIER_BUCKETS_NR, sizeof(atomic_t), GFP_KERNEL); if (!conf->barrier) goto abort; conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info), mddev->raid_disks, 2), GFP_KERNEL); if (!conf->mirrors) goto abort; conf->tmppage = alloc_page(GFP_KERNEL); if (!conf->tmppage) goto abort; conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); if (!conf->poolinfo) goto abort; conf->poolinfo->raid_disks = mddev->raid_disks * 2; err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc, rbio_pool_free, conf->poolinfo); if (err) goto abort; err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); if (err) goto abort; conf->poolinfo->mddev = mddev; err = -EINVAL; spin_lock_init(&conf->device_lock); conf->raid_disks = mddev->raid_disks; rdev_for_each(rdev, mddev) { int disk_idx = rdev->raid_disk; if (disk_idx >= conf->raid_disks || disk_idx < 0) continue; if (!raid1_add_conf(conf, rdev, disk_idx, test_bit(Replacement, &rdev->flags))) goto abort; } conf->mddev = mddev; INIT_LIST_HEAD(&conf->retry_list); INIT_LIST_HEAD(&conf->bio_end_io_list); spin_lock_init(&conf->resync_lock); init_waitqueue_head(&conf->wait_barrier); bio_list_init(&conf->pending_bio_list); conf->recovery_disabled = mddev->recovery_disabled - 1; err = -EIO; for (i = 0; i < conf->raid_disks * 2; i++) { disk = conf->mirrors + i; if (i < conf->raid_disks && disk[conf->raid_disks].rdev) { /* This slot has a replacement. */ if (!disk->rdev) { /* No original, just make the replacement * a recovering spare */ disk->rdev = disk[conf->raid_disks].rdev; disk[conf->raid_disks].rdev = NULL; } else if (!test_bit(In_sync, &disk->rdev->flags)) /* Original is not in_sync - bad */ goto abort; } if (!disk->rdev || !test_bit(In_sync, &disk->rdev->flags)) { disk->head_position = 0; if (disk->rdev && (disk->rdev->saved_raid_disk < 0)) conf->fullsync = 1; } } err = -ENOMEM; rcu_assign_pointer(conf->thread, md_register_thread(raid1d, mddev, "raid1")); if (!conf->thread) goto abort; return conf; abort: if (conf) { mempool_exit(&conf->r1bio_pool); kfree(conf->mirrors); safe_put_page(conf->tmppage); kfree(conf->poolinfo); kfree(conf->nr_pending); kfree(conf->nr_waiting); kfree(conf->nr_queued); kfree(conf->barrier); bioset_exit(&conf->bio_split); kfree(conf); } return ERR_PTR(err); } static int raid1_set_limits(struct mddev *mddev) { struct queue_limits lim; blk_set_stacking_limits(&lim); lim.max_write_zeroes_sectors = 0; mddev_stack_rdev_limits(mddev, &lim); return queue_limits_set(mddev->gendisk->queue, &lim); } static void raid1_free(struct mddev *mddev, void *priv); static int raid1_run(struct mddev *mddev) { struct r1conf *conf; int i; int ret; if (mddev->level != 1) { pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", mdname(mddev), mddev->level); return -EIO; } if (mddev->reshape_position != MaxSector) { pr_warn("md/raid1:%s: reshape_position set but not supported\n", mdname(mddev)); return -EIO; } /* * copy the already verified devices into our private RAID1 * bookkeeping area. [whatever we allocate in run(), * should be freed in raid1_free()] */ if (mddev->private == NULL) conf = setup_conf(mddev); else conf = mddev->private; if (IS_ERR(conf)) return PTR_ERR(conf); if (!mddev_is_dm(mddev)) { ret = raid1_set_limits(mddev); if (ret) goto abort; } mddev->degraded = 0; for (i = 0; i < conf->raid_disks; i++) if (conf->mirrors[i].rdev == NULL || !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || test_bit(Faulty, &conf->mirrors[i].rdev->flags)) mddev->degraded++; /* * RAID1 needs at least one disk in active */ if (conf->raid_disks - mddev->degraded < 1) { md_unregister_thread(mddev, &conf->thread); ret = -EINVAL; goto abort; } if (conf->raid_disks - mddev->degraded == 1) mddev->recovery_cp = MaxSector; if (mddev->recovery_cp != MaxSector) pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", mdname(mddev)); pr_info("md/raid1:%s: active with %d out of %d mirrors\n", mdname(mddev), mddev->raid_disks - mddev->degraded, mddev->raid_disks); /* * Ok, everything is just fine now */ rcu_assign_pointer(mddev->thread, conf->thread); rcu_assign_pointer(conf->thread, NULL); mddev->private = conf; set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); ret = md_integrity_register(mddev); if (ret) { md_unregister_thread(mddev, &mddev->thread); goto abort; } return 0; abort: raid1_free(mddev, conf); return ret; } static void raid1_free(struct mddev *mddev, void *priv) { struct r1conf *conf = priv; mempool_exit(&conf->r1bio_pool); kfree(conf->mirrors); safe_put_page(conf->tmppage); kfree(conf->poolinfo); kfree(conf->nr_pending); kfree(conf->nr_waiting); kfree(conf->nr_queued); kfree(conf->barrier); bioset_exit(&conf->bio_split); kfree(conf); } static int raid1_resize(struct mddev *mddev, sector_t sectors) { /* no resync is happening, and there is enough space * on all devices, so we can resize. * We need to make sure resync covers any new space. * If the array is shrinking we should possibly wait until * any io in the removed space completes, but it hardly seems * worth it. */ sector_t newsize = raid1_size(mddev, sectors, 0); if (mddev->external_size && mddev->array_sectors > newsize) return -EINVAL; if (mddev->bitmap) { int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); if (ret) return ret; } md_set_array_sectors(mddev, newsize); if (sectors > mddev->dev_sectors && mddev->recovery_cp > mddev->dev_sectors) { mddev->recovery_cp = mddev->dev_sectors; set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); } mddev->dev_sectors = sectors; mddev->resync_max_sectors = sectors; return 0; } static int raid1_reshape(struct mddev *mddev) { /* We need to: * 1/ resize the r1bio_pool * 2/ resize conf->mirrors * * We allocate a new r1bio_pool if we can. * Then raise a device barrier and wait until all IO stops. * Then resize conf->mirrors and swap in the new r1bio pool. * * At the same time, we "pack" the devices so that all the missing * devices have the higher raid_disk numbers. */ mempool_t newpool, oldpool; struct pool_info *newpoolinfo; struct raid1_info *newmirrors; struct r1conf *conf = mddev->private; int cnt, raid_disks; unsigned long flags; int d, d2; int ret; memset(&newpool, 0, sizeof(newpool)); memset(&oldpool, 0, sizeof(oldpool)); /* Cannot change chunk_size, layout, or level */ if (mddev->chunk_sectors != mddev->new_chunk_sectors || mddev->layout != mddev->new_layout || mddev->level != mddev->new_level) { mddev->new_chunk_sectors = mddev->chunk_sectors; mddev->new_layout = mddev->layout; mddev->new_level = mddev->level; return -EINVAL; } if (!mddev_is_clustered(mddev)) md_allow_write(mddev); raid_disks = mddev->raid_disks + mddev->delta_disks; if (raid_disks < conf->raid_disks) { cnt=0; for (d= 0; d < conf->raid_disks; d++) if (conf->mirrors[d].rdev) cnt++; if (cnt > raid_disks) return -EBUSY; } newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); if (!newpoolinfo) return -ENOMEM; newpoolinfo->mddev = mddev; newpoolinfo->raid_disks = raid_disks * 2; ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc, rbio_pool_free, newpoolinfo); if (ret) { kfree(newpoolinfo); return ret; } newmirrors = kzalloc(array3_size(sizeof(struct raid1_info), raid_disks, 2), GFP_KERNEL); if (!newmirrors) { kfree(newpoolinfo); mempool_exit(&newpool); return -ENOMEM; } freeze_array(conf, 0); /* ok, everything is stopped */ oldpool = conf->r1bio_pool; conf->r1bio_pool = newpool; for (d = d2 = 0; d < conf->raid_disks; d++) { struct md_rdev *rdev = conf->mirrors[d].rdev; if (rdev && rdev->raid_disk != d2) { sysfs_unlink_rdev(mddev, rdev); rdev->raid_disk = d2; sysfs_unlink_rdev(mddev, rdev); if (sysfs_link_rdev(mddev, rdev)) pr_warn("md/raid1:%s: cannot register rd%d\n", mdname(mddev), rdev->raid_disk); } if (rdev) newmirrors[d2++].rdev = rdev; } kfree(conf->mirrors); conf->mirrors = newmirrors; kfree(conf->poolinfo); conf->poolinfo = newpoolinfo; spin_lock_irqsave(&conf->device_lock, flags); mddev->degraded += (raid_disks - conf->raid_disks); spin_unlock_irqrestore(&conf->device_lock, flags); conf->raid_disks = mddev->raid_disks = raid_disks; mddev->delta_disks = 0; unfreeze_array(conf); set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); md_wakeup_thread(mddev->thread); mempool_exit(&oldpool); return 0; } static void raid1_quiesce(struct mddev *mddev, int quiesce) { struct r1conf *conf = mddev->private; if (quiesce) freeze_array(conf, 0); else unfreeze_array(conf); } static void *raid1_takeover(struct mddev *mddev) { /* raid1 can take over: * raid5 with 2 devices, any layout or chunk size */ if (mddev->level == 5 && mddev->raid_disks == 2) { struct r1conf *conf; mddev->new_level = 1; mddev->new_layout = 0; mddev->new_chunk_sectors = 0; conf = setup_conf(mddev); if (!IS_ERR(conf)) { /* Array must appear to be quiesced */ conf->array_frozen = 1; mddev_clear_unsupported_flags(mddev, UNSUPPORTED_MDDEV_FLAGS); } return conf; } return ERR_PTR(-EINVAL); } static struct md_personality raid1_personality = { .name = "raid1", .level = 1, .owner = THIS_MODULE, .make_request = raid1_make_request, .run = raid1_run, .free = raid1_free, .status = raid1_status, .error_handler = raid1_error, .hot_add_disk = raid1_add_disk, .hot_remove_disk= raid1_remove_disk, .spare_active = raid1_spare_active, .sync_request = raid1_sync_request, .resize = raid1_resize, .size = raid1_size, .check_reshape = raid1_reshape, .quiesce = raid1_quiesce, .takeover = raid1_takeover, }; static int __init raid_init(void) { return register_md_personality(&raid1_personality); } static void raid_exit(void) { unregister_md_personality(&raid1_personality); } module_init(raid_init); module_exit(raid_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); MODULE_ALIAS("md-personality-3"); /* RAID1 */ MODULE_ALIAS("md-raid1"); MODULE_ALIAS("md-level-1"); |