Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
 *
 *  Copyright (C) 2013-2023 Eric Dumazet <edumazet@google.com>
 *
 *  Meant to be mostly used for locally generated traffic :
 *  Fast classification depends on skb->sk being set before reaching us.
 *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
 *  All packets belonging to a socket are considered as a 'flow'.
 *
 *  Flows are dynamically allocated and stored in a hash table of RB trees
 *  They are also part of one Round Robin 'queues' (new or old flows)
 *
 *  Burst avoidance (aka pacing) capability :
 *
 *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
 *  bunch of packets, and this packet scheduler adds delay between
 *  packets to respect rate limitation.
 *
 *  enqueue() :
 *   - lookup one RB tree (out of 1024 or more) to find the flow.
 *     If non existent flow, create it, add it to the tree.
 *     Add skb to the per flow list of skb (fifo).
 *   - Use a special fifo for high prio packets
 *
 *  dequeue() : serves flows in Round Robin
 *  Note : When a flow becomes empty, we do not immediately remove it from
 *  rb trees, for performance reasons (its expected to send additional packets,
 *  or SLAB cache will reuse socket for another flow)
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/jiffies.h>
#include <linux/string.h>
#include <linux/in.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/slab.h>
#include <linux/rbtree.h>
#include <linux/hash.h>
#include <linux/prefetch.h>
#include <linux/vmalloc.h>
#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <net/sock.h>
#include <net/tcp_states.h>
#include <net/tcp.h>

struct fq_skb_cb {
	u64	time_to_send;
	u8	band;
};

static inline struct fq_skb_cb *fq_skb_cb(struct sk_buff *skb)
{
	qdisc_cb_private_validate(skb, sizeof(struct fq_skb_cb));
	return (struct fq_skb_cb *)qdisc_skb_cb(skb)->data;
}

/*
 * Per flow structure, dynamically allocated.
 * If packets have monotically increasing time_to_send, they are placed in O(1)
 * in linear list (head,tail), otherwise are placed in a rbtree (t_root).
 */
struct fq_flow {
/* First cache line : used in fq_gc(), fq_enqueue(), fq_dequeue() */
	struct rb_root	t_root;
	struct sk_buff	*head;		/* list of skbs for this flow : first skb */
	union {
		struct sk_buff *tail;	/* last skb in the list */
		unsigned long  age;	/* (jiffies | 1UL) when flow was emptied, for gc */
	};
	union {
		struct rb_node	fq_node;	/* anchor in fq_root[] trees */
		/* Following field is only used for q->internal,
		 * because q->internal is not hashed in fq_root[]
		 */
		u64		stat_fastpath_packets;
	};
	struct sock	*sk;
	u32		socket_hash;	/* sk_hash */
	int		qlen;		/* number of packets in flow queue */

/* Second cache line */
	int		credit;
	int		band;
	struct fq_flow *next;		/* next pointer in RR lists */

	struct rb_node  rate_node;	/* anchor in q->delayed tree */
	u64		time_next_packet;
};

struct fq_flow_head {
	struct fq_flow *first;
	struct fq_flow *last;
};

struct fq_perband_flows {
	struct fq_flow_head new_flows;
	struct fq_flow_head old_flows;
	int		    credit;
	int		    quantum; /* based on band nr : 576KB, 192KB, 64KB */
};

struct fq_sched_data {
/* Read mostly cache line */

	u32		quantum;
	u32		initial_quantum;
	u32		flow_refill_delay;
	u32		flow_plimit;	/* max packets per flow */
	unsigned long	flow_max_rate;	/* optional max rate per flow */
	u64		ce_threshold;
	u64		horizon;	/* horizon in ns */
	u32		orphan_mask;	/* mask for orphaned skb */
	u32		low_rate_threshold;
	struct rb_root	*fq_root;
	u8		rate_enable;
	u8		fq_trees_log;
	u8		horizon_drop;
	u8		prio2band[(TC_PRIO_MAX + 1) >> 2];
	u32		timer_slack; /* hrtimer slack in ns */

/* Read/Write fields. */

	unsigned int band_nr; /* band being serviced in fq_dequeue() */

	struct fq_perband_flows band_flows[FQ_BANDS];

	struct fq_flow	internal;	/* fastpath queue. */
	struct rb_root	delayed;	/* for rate limited flows */
	u64		time_next_delayed_flow;
	unsigned long	unthrottle_latency_ns;

	u32		band_pkt_count[FQ_BANDS];
	u32		flows;
	u32		inactive_flows; /* Flows with no packet to send. */
	u32		throttled_flows;

	u64		stat_throttled;
	struct qdisc_watchdog watchdog;
	u64		stat_gc_flows;

/* Seldom used fields. */

	u64		stat_band_drops[FQ_BANDS];
	u64		stat_ce_mark;
	u64		stat_horizon_drops;
	u64		stat_horizon_caps;
	u64		stat_flows_plimit;
	u64		stat_pkts_too_long;
	u64		stat_allocation_errors;
};

/* return the i-th 2-bit value ("crumb") */
static u8 fq_prio2band(const u8 *prio2band, unsigned int prio)
{
	return (prio2band[prio / 4] >> (2 * (prio & 0x3))) & 0x3;
}

/*
 * f->tail and f->age share the same location.
 * We can use the low order bit to differentiate if this location points
 * to a sk_buff or contains a jiffies value, if we force this value to be odd.
 * This assumes f->tail low order bit must be 0 since alignof(struct sk_buff) >= 2
 */
static void fq_flow_set_detached(struct fq_flow *f)
{
	f->age = jiffies | 1UL;
}

static bool fq_flow_is_detached(const struct fq_flow *f)
{
	return !!(f->age & 1UL);
}

/* special value to mark a throttled flow (not on old/new list) */
static struct fq_flow throttled;

static bool fq_flow_is_throttled(const struct fq_flow *f)
{
	return f->next == &throttled;
}

enum new_flow {
	NEW_FLOW,
	OLD_FLOW
};

static void fq_flow_add_tail(struct fq_sched_data *q, struct fq_flow *flow,
			     enum new_flow list_sel)
{
	struct fq_perband_flows *pband = &q->band_flows[flow->band];
	struct fq_flow_head *head = (list_sel == NEW_FLOW) ?
					&pband->new_flows :
					&pband->old_flows;

	if (head->first)
		head->last->next = flow;
	else
		head->first = flow;
	head->last = flow;
	flow->next = NULL;
}

static void fq_flow_unset_throttled(struct fq_sched_data *q, struct fq_flow *f)
{
	rb_erase(&f->rate_node, &q->delayed);
	q->throttled_flows--;
	fq_flow_add_tail(q, f, OLD_FLOW);
}

static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
{
	struct rb_node **p = &q->delayed.rb_node, *parent = NULL;

	while (*p) {
		struct fq_flow *aux;

		parent = *p;
		aux = rb_entry(parent, struct fq_flow, rate_node);
		if (f->time_next_packet >= aux->time_next_packet)
			p = &parent->rb_right;
		else
			p = &parent->rb_left;
	}
	rb_link_node(&f->rate_node, parent, p);
	rb_insert_color(&f->rate_node, &q->delayed);
	q->throttled_flows++;
	q->stat_throttled++;

	f->next = &throttled;
	if (q->time_next_delayed_flow > f->time_next_packet)
		q->time_next_delayed_flow = f->time_next_packet;
}


static struct kmem_cache *fq_flow_cachep __read_mostly;


/* limit number of collected flows per round */
#define FQ_GC_MAX 8
#define FQ_GC_AGE (3*HZ)

static bool fq_gc_candidate(const struct fq_flow *f)
{
	return fq_flow_is_detached(f) &&
	       time_after(jiffies, f->age + FQ_GC_AGE);
}

static void fq_gc(struct fq_sched_data *q,
		  struct rb_root *root,
		  struct sock *sk)
{
	struct rb_node **p, *parent;
	void *tofree[FQ_GC_MAX];
	struct fq_flow *f;
	int i, fcnt = 0;

	p = &root->rb_node;
	parent = NULL;
	while (*p) {
		parent = *p;

		f = rb_entry(parent, struct fq_flow, fq_node);
		if (f->sk == sk)
			break;

		if (fq_gc_candidate(f)) {
			tofree[fcnt++] = f;
			if (fcnt == FQ_GC_MAX)
				break;
		}

		if (f->sk > sk)
			p = &parent->rb_right;
		else
			p = &parent->rb_left;
	}

	if (!fcnt)
		return;

	for (i = fcnt; i > 0; ) {
		f = tofree[--i];
		rb_erase(&f->fq_node, root);
	}
	q->flows -= fcnt;
	q->inactive_flows -= fcnt;
	q->stat_gc_flows += fcnt;

	kmem_cache_free_bulk(fq_flow_cachep, fcnt, tofree);
}

/* Fast path can be used if :
 * 1) Packet tstamp is in the past.
 * 2) FQ qlen == 0   OR
 *   (no flow is currently eligible for transmit,
 *    AND fast path queue has less than 8 packets)
 * 3) No SO_MAX_PACING_RATE on the socket (if any).
 * 4) No @maxrate attribute on this qdisc,
 *
 * FQ can not use generic TCQ_F_CAN_BYPASS infrastructure.
 */
static bool fq_fastpath_check(const struct Qdisc *sch, struct sk_buff *skb,
			      u64 now)
{
	const struct fq_sched_data *q = qdisc_priv(sch);
	const struct sock *sk;

	if (fq_skb_cb(skb)->time_to_send > now)
		return false;

	if (sch->q.qlen != 0) {
		/* Even if some packets are stored in this qdisc,
		 * we can still enable fast path if all of them are
		 * scheduled in the future (ie no flows are eligible)
		 * or in the fast path queue.
		 */
		if (q->flows != q->inactive_flows + q->throttled_flows)
			return false;

		/* Do not allow fast path queue to explode, we want Fair Queue mode
		 * under pressure.
		 */
		if (q->internal.qlen >= 8)
			return false;
	}

	sk = skb->sk;
	if (sk && sk_fullsock(sk) && !sk_is_tcp(sk) &&
	    sk->sk_max_pacing_rate != ~0UL)
		return false;

	if (q->flow_max_rate != ~0UL)
		return false;

	return true;
}

static struct fq_flow *fq_classify(struct Qdisc *sch, struct sk_buff *skb,
				   u64 now)
{
	struct fq_sched_data *q = qdisc_priv(sch);
	struct rb_node **p, *parent;
	struct sock *sk = skb->sk;
	struct rb_root *root;
	struct fq_flow *f;

	/* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
	 * or a listener (SYNCOOKIE mode)
	 * 1) request sockets are not full blown,
	 *    they do not contain sk_pacing_rate
	 * 2) They are not part of a 'flow' yet
	 * 3) We do not want to rate limit them (eg SYNFLOOD attack),
	 *    especially if the listener set SO_MAX_PACING_RATE
	 * 4) We pretend they are orphaned
	 */
	if (!sk || sk_listener(sk)) {
		unsigned long hash = skb_get_hash(skb) & q->orphan_mask;

		/* By forcing low order bit to 1, we make sure to not
		 * collide with a local flow (socket pointers are word aligned)
		 */
		sk = (struct sock *)((hash << 1) | 1UL);
		skb_orphan(skb);
	} else if (sk->sk_state == TCP_CLOSE) {
		unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
		/*
		 * Sockets in TCP_CLOSE are non connected.
		 * Typical use case is UDP sockets, they can send packets
		 * with sendto() to many different destinations.
		 * We probably could use a generic bit advertising
		 * non connected sockets, instead of sk_state == TCP_CLOSE,
		 * if we care enough.
		 */
		sk = (struct sock *)((hash << 1) | 1UL);
	}

	if (fq_fastpath_check(sch, skb, now)) {
		q->internal.stat_fastpath_packets++;
		if (skb->sk == sk && q->rate_enable &&
		    READ_ONCE(sk->sk_pacing_status) != SK_PACING_FQ)
			smp_store_release(&sk->sk_pacing_status,
					  SK_PACING_FQ);
		return &q->internal;
	}

	root = &q->fq_root[hash_ptr(sk, q->fq_trees_log)];

	fq_gc(q, root, sk);

	p = &root->rb_node;
	parent = NULL;
	while (*p) {
		parent = *p;

		f = rb_entry(parent, struct fq_flow, fq_node);
		if (f->sk == sk) {
			/* socket might have been reallocated, so check
			 * if its sk_hash is the same.
			 * It not, we need to refill credit with
			 * initial quantum
			 */
			if (unlikely(skb->sk == sk &&
				     f->socket_hash != sk->sk_hash)) {
				f->credit = q->initial_quantum;
				f->socket_hash = sk->sk_hash;
				if (q->rate_enable)
					smp_store_release(&sk->sk_pacing_status,
							  SK_PACING_FQ);
				if (fq_flow_is_throttled(f))
					fq_flow_unset_throttled(q, f);
				f->time_next_packet = 0ULL;
			}
			return f;
		}
		if (f->sk > sk)
			p = &parent->rb_right;
		else
			p = &parent->rb_left;
	}

	f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
	if (unlikely(!f)) {
		q->stat_allocation_errors++;
		return &q->internal;
	}
	/* f->t_root is already zeroed after kmem_cache_zalloc() */

	fq_flow_set_detached(f);
	f->sk = sk;
	if (skb->sk == sk) {
		f->socket_hash = sk->sk_hash;
		if (q->rate_enable)
			smp_store_release(&sk->sk_pacing_status,
					  SK_PACING_FQ);
	}
	f->credit = q->initial_quantum;

	rb_link_node(&f->fq_node, parent, p);
	rb_insert_color(&f->fq_node, root);

	q->flows++;
	q->inactive_flows++;
	return f;
}

static struct sk_buff *fq_peek(struct fq_flow *flow)
{
	struct sk_buff *skb = skb_rb_first(&flow->t_root);
	struct sk_buff *head = flow->head;

	if (!skb)
		return head;

	if (!head)
		return skb;

	if (fq_skb_cb(skb)->time_to_send < fq_skb_cb(head)->time_to_send)
		return skb;
	return head;
}

static void fq_erase_head(struct Qdisc *sch, struct fq_flow *flow,
			  struct sk_buff *skb)
{
	if (skb == flow->head) {
		flow->head = skb->next;
	} else {
		rb_erase(&skb->rbnode, &flow->t_root);
		skb->dev = qdisc_dev(sch);
	}
}

/* Remove one skb from flow queue.
 * This skb must be the return value of prior fq_peek().
 */
static void fq_dequeue_skb(struct Qdisc *sch, struct fq_flow *flow,
			   struct sk_buff *skb)
{
	fq_erase_head(sch, flow, skb);
	skb_mark_not_on_list(skb);
	qdisc_qstats_backlog_dec(sch, skb);
	sch->q.qlen--;
}

static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
{
	struct rb_node **p, *parent;
	struct sk_buff *head, *aux;

	head = flow->head;
	if (!head ||
	    fq_skb_cb(skb)->time_to_send >= fq_skb_cb(flow->tail)->time_to_send) {
		if (!head)
			flow->head = skb;
		else
			flow->tail->next = skb;
		flow->tail = skb;
		skb->next = NULL;
		return;
	}

	p = &flow->t_root.rb_node;
	parent = NULL;

	while (*p) {
		parent = *p;
		aux = rb_to_skb(parent);
		if (fq_skb_cb(skb)->time_to_send >= fq_skb_cb(aux)->time_to_send)
			p = &parent->rb_right;
		else
			p = &parent->rb_left;
	}
	rb_link_node(&skb->rbnode, parent, p);
	rb_insert_color(&skb->rbnode, &flow->t_root);
}

static bool fq_packet_beyond_horizon(const struct sk_buff *skb,
				     const struct fq_sched_data *q, u64 now)
{
	return unlikely((s64)skb->tstamp > (s64)(now + q->horizon));
}

static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
		      struct sk_buff **to_free)
{
	struct fq_sched_data *q = qdisc_priv(sch);
	struct fq_flow *f;
	u64 now;
	u8 band;

	band = fq_prio2band(q->prio2band, skb->priority & TC_PRIO_MAX);
	if (unlikely(q->band_pkt_count[band] >= sch->limit)) {
		q->stat_band_drops[band]++;
		return qdisc_drop(skb, sch, to_free);
	}

	now = ktime_get_ns();
	if (!skb->tstamp) {
		fq_skb_cb(skb)->time_to_send = now;
	} else {
		/* Check if packet timestamp is too far in the future. */
		if (fq_packet_beyond_horizon(skb, q, now)) {
			if (q->horizon_drop) {
					q->stat_horizon_drops++;
					return qdisc_drop(skb, sch, to_free);
			}
			q->stat_horizon_caps++;
			skb->tstamp = now + q->horizon;
		}
		fq_skb_cb(skb)->time_to_send = skb->tstamp;
	}

	f = fq_classify(sch, skb, now);

	if (f != &q->internal) {
		if (unlikely(f->qlen >= q->flow_plimit)) {
			q->stat_flows_plimit++;
			return qdisc_drop(skb, sch, to_free);
		}

		if (fq_flow_is_detached(f)) {
			fq_flow_add_tail(q, f, NEW_FLOW);
			if (time_after(jiffies, f->age + q->flow_refill_delay))
				f->credit = max_t(u32, f->credit, q->quantum);
		}

		f->band = band;
		q->band_pkt_count[band]++;
		fq_skb_cb(skb)->band = band;
		if (f->qlen == 0)
			q->inactive_flows--;
	}

	f->qlen++;
	/* Note: this overwrites f->age */
	flow_queue_add(f, skb);

	qdisc_qstats_backlog_inc(sch, skb);
	sch->q.qlen++;

	return NET_XMIT_SUCCESS;
}

static void fq_check_throttled(struct fq_sched_data *q, u64 now)
{
	unsigned long sample;
	struct rb_node *p;

	if (q->time_next_delayed_flow > now)
		return;

	/* Update unthrottle latency EWMA.
	 * This is cheap and can help diagnosing timer/latency problems.
	 */
	sample = (unsigned long)(now - q->time_next_delayed_flow);
	q->unthrottle_latency_ns -= q->unthrottle_latency_ns >> 3;
	q->unthrottle_latency_ns += sample >> 3;

	q->time_next_delayed_flow = ~0ULL;
	while ((p = rb_first(&q->delayed)) != NULL) {
		struct fq_flow *f = rb_entry(p, struct fq_flow, rate_node);

		if (f->time_next_packet > now) {
			q->time_next_delayed_flow = f->time_next_packet;
			break;
		}
		fq_flow_unset_throttled(q, f);
	}
}

static struct fq_flow_head *fq_pband_head_select(struct fq_perband_flows *pband)
{
	if (pband->credit <= 0)
		return NULL;

	if (pband->new_flows.first)
		return &pband->new_flows;

	return pband->old_flows.first ? &pband->old_flows : NULL;
}

static struct sk_buff *fq_dequeue(struct Qdisc *sch)
{
	struct fq_sched_data *q = qdisc_priv(sch);
	struct fq_perband_flows *pband;
	struct fq_flow_head *head;
	struct sk_buff *skb;
	struct fq_flow *f;
	unsigned long rate;
	int retry;
	u32 plen;
	u64 now;

	if (!sch->q.qlen)
		return NULL;

	skb = fq_peek(&q->internal);
	if (unlikely(skb)) {
		q->internal.qlen--;
		fq_dequeue_skb(sch, &q->internal, skb);
		goto out;
	}

	now = ktime_get_ns();
	fq_check_throttled(q, now);
	retry = 0;
	pband = &q->band_flows[q->band_nr];
begin:
	head = fq_pband_head_select(pband);
	if (!head) {
		while (++retry <= FQ_BANDS) {
			if (++q->band_nr == FQ_BANDS)
				q->band_nr = 0;
			pband = &q->band_flows[q->band_nr];
			pband->credit = min(pband->credit + pband->quantum,
					    pband->quantum);
			goto begin;
		}
		if (q->time_next_delayed_flow != ~0ULL)
			qdisc_watchdog_schedule_range_ns(&q->watchdog,
							q->time_next_delayed_flow,
							q->timer_slack);
		return NULL;
	}
	f = head->first;
	retry = 0;
	if (f->credit <= 0) {
		f->credit += q->quantum;
		head->first = f->next;
		fq_flow_add_tail(q, f, OLD_FLOW);
		goto begin;
	}

	skb = fq_peek(f);
	if (skb) {
		u64 time_next_packet = max_t(u64, fq_skb_cb(skb)->time_to_send,
					     f->time_next_packet);

		if (now < time_next_packet) {
			head->first = f->next;
			f->time_next_packet = time_next_packet;
			fq_flow_set_throttled(q, f);
			goto begin;
		}
		prefetch(&skb->end);
		if ((s64)(now - time_next_packet - q->ce_threshold) > 0) {
			INET_ECN_set_ce(skb);
			q->stat_ce_mark++;
		}
		if (--f->qlen == 0)
			q->inactive_flows++;
		q->band_pkt_count[fq_skb_cb(skb)->band]--;
		fq_dequeue_skb(sch, f, skb);
	} else {
		head->first = f->next;
		/* force a pass through old_flows to prevent starvation */
		if (head == &pband->new_flows) {
			fq_flow_add_tail(q, f, OLD_FLOW);
		} else {
			fq_flow_set_detached(f);
		}
		goto begin;
	}
	plen = qdisc_pkt_len(skb);
	f->credit -= plen;
	pband->credit -= plen;

	if (!q->rate_enable)
		goto out;

	rate = q->flow_max_rate;

	/* If EDT time was provided for this skb, we need to
	 * update f->time_next_packet only if this qdisc enforces
	 * a flow max rate.
	 */
	if (!skb->tstamp) {
		if (skb->sk)
			rate = min(READ_ONCE(skb->sk->sk_pacing_rate), rate);

		if (rate <= q->low_rate_threshold) {
			f->credit = 0;
		} else {
			plen = max(plen, q->quantum);
			if (f->credit > 0)
				goto out;
		}
	}
	if (rate != ~0UL) {
		u64 len = (u64)plen * NSEC_PER_SEC;

		if (likely(rate))
			len = div64_ul(len, rate);
		/* Since socket rate can change later,
		 * clamp the delay to 1 second.
		 * Really, providers of too big packets should be fixed !
		 */
		if (unlikely(len > NSEC_PER_SEC)) {
			len = NSEC_PER_SEC;
			q->stat_pkts_too_long++;
		}
		/* Account for schedule/timers drifts.
		 * f->time_next_packet was set when prior packet was sent,
		 * and current time (@now) can be too late by tens of us.
		 */
		if (f->time_next_packet)
			len -= min(len/2, now - f->time_next_packet);
		f->time_next_packet = now + len;
	}
out:
	qdisc_bstats_update(sch, skb);
	return skb;
}

static void fq_flow_purge(struct fq_flow *flow)
{
	struct rb_node *p = rb_first(&flow->t_root);

	while (p) {
		struct sk_buff *skb = rb_to_skb(p);

		p = rb_next(p);
		rb_erase(&skb->rbnode, &flow->t_root);
		rtnl_kfree_skbs(skb, skb);
	}
	rtnl_kfree_skbs(flow->head, flow->tail);
	flow->head = NULL;
	flow->qlen = 0;
}

static void fq_reset(struct Qdisc *sch)
{
	struct fq_sched_data *q = qdisc_priv(sch);
	struct rb_root *root;
	struct rb_node *p;
	struct fq_flow *f;
	unsigned int idx;

	sch->q.qlen = 0;
	sch->qstats.backlog = 0;

	fq_flow_purge(&q->internal);

	if (!q->fq_root)
		return;

	for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
		root = &q->fq_root[idx];
		while ((p = rb_first(root)) != NULL) {
			f = rb_entry(p, struct fq_flow, fq_node);
			rb_erase(p, root);

			fq_flow_purge(f);

			kmem_cache_free(fq_flow_cachep, f);
		}
	}
	for (idx = 0; idx < FQ_BANDS; idx++) {
		q->band_flows[idx].new_flows.first = NULL;
		q->band_flows[idx].old_flows.first = NULL;
	}
	q->delayed		= RB_ROOT;
	q->flows		= 0;
	q->inactive_flows	= 0;
	q->throttled_flows	= 0;
}

static void fq_rehash(struct fq_sched_data *q,
		      struct rb_root *old_array, u32 old_log,
		      struct rb_root *new_array, u32 new_log)
{
	struct rb_node *op, **np, *parent;
	struct rb_root *oroot, *nroot;
	struct fq_flow *of, *nf;
	int fcnt = 0;
	u32 idx;

	for (idx = 0; idx < (1U << old_log); idx++) {
		oroot = &old_array[idx];
		while ((op = rb_first(oroot)) != NULL) {
			rb_erase(op, oroot);
			of = rb_entry(op, struct fq_flow, fq_node);
			if (fq_gc_candidate(of)) {
				fcnt++;
				kmem_cache_free(fq_flow_cachep, of);
				continue;
			}
			nroot = &new_array[hash_ptr(of->sk, new_log)];

			np = &nroot->rb_node;
			parent = NULL;
			while (*np) {
				parent = *np;

				nf = rb_entry(parent, struct fq_flow, fq_node);
				BUG_ON(nf->sk == of->sk);

				if (nf->sk > of->sk)
					np = &parent->rb_right;
				else
					np = &parent->rb_left;
			}

			rb_link_node(&of->fq_node, parent, np);
			rb_insert_color(&of->fq_node, nroot);
		}
	}
	q->flows -= fcnt;
	q->inactive_flows -= fcnt;
	q->stat_gc_flows += fcnt;
}

static void fq_free(void *addr)
{
	kvfree(addr);
}

static int fq_resize(struct Qdisc *sch, u32 log)
{
	struct fq_sched_data *q = qdisc_priv(sch);
	struct rb_root *array;
	void *old_fq_root;
	u32 idx;

	if (q->fq_root && log == q->fq_trees_log)
		return 0;

	/* If XPS was setup, we can allocate memory on right NUMA node */
	array = kvmalloc_node(sizeof(struct rb_root) << log, GFP_KERNEL | __GFP_RETRY_MAYFAIL,
			      netdev_queue_numa_node_read(sch->dev_queue));
	if (!array)
		return -ENOMEM;

	for (idx = 0; idx < (1U << log); idx++)
		array[idx] = RB_ROOT;

	sch_tree_lock(sch);

	old_fq_root = q->fq_root;
	if (old_fq_root)
		fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);

	q->fq_root = array;
	q->fq_trees_log = log;

	sch_tree_unlock(sch);

	fq_free(old_fq_root);

	return 0;
}

static const struct netlink_range_validation iq_range = {
	.max = INT_MAX,
};

static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
	[TCA_FQ_UNSPEC]			= { .strict_start_type = TCA_FQ_TIMER_SLACK },

	[TCA_FQ_PLIMIT]			= { .type = NLA_U32 },
	[TCA_FQ_FLOW_PLIMIT]		= { .type = NLA_U32 },
	[TCA_FQ_QUANTUM]		= { .type = NLA_U32 },
	[TCA_FQ_INITIAL_QUANTUM]	= NLA_POLICY_FULL_RANGE(NLA_U32, &iq_range),
	[TCA_FQ_RATE_ENABLE]		= { .type = NLA_U32 },
	[TCA_FQ_FLOW_DEFAULT_RATE]	= { .type = NLA_U32 },
	[TCA_FQ_FLOW_MAX_RATE]		= { .type = NLA_U32 },
	[TCA_FQ_BUCKETS_LOG]		= { .type = NLA_U32 },
	[TCA_FQ_FLOW_REFILL_DELAY]	= { .type = NLA_U32 },
	[TCA_FQ_ORPHAN_MASK]		= { .type = NLA_U32 },
	[TCA_FQ_LOW_RATE_THRESHOLD]	= { .type = NLA_U32 },
	[TCA_FQ_CE_THRESHOLD]		= { .type = NLA_U32 },
	[TCA_FQ_TIMER_SLACK]		= { .type = NLA_U32 },
	[TCA_FQ_HORIZON]		= { .type = NLA_U32 },
	[TCA_FQ_HORIZON_DROP]		= { .type = NLA_U8 },
	[TCA_FQ_PRIOMAP]		= NLA_POLICY_EXACT_LEN(sizeof(struct tc_prio_qopt)),
	[TCA_FQ_WEIGHTS]		= NLA_POLICY_EXACT_LEN(FQ_BANDS * sizeof(s32)),
};

/* compress a u8 array with all elems <= 3 to an array of 2-bit fields */
static void fq_prio2band_compress_crumb(const u8 *in, u8 *out)
{
	const int num_elems = TC_PRIO_MAX + 1;
	int i;

	memset(out, 0, num_elems / 4);
	for (i = 0; i < num_elems; i++)
		out[i / 4] |= in[i] << (2 * (i & 0x3));
}

static void fq_prio2band_decompress_crumb(const u8 *in, u8 *out)
{
	const int num_elems = TC_PRIO_MAX + 1;
	int i;

	for (i = 0; i < num_elems; i++)
		out[i] = fq_prio2band(in, i);
}

static int fq_load_weights(struct fq_sched_data *q,
			   const struct nlattr *attr,
			   struct netlink_ext_ack *extack)
{
	s32 *weights = nla_data(attr);
	int i;

	for (i = 0; i < FQ_BANDS; i++) {
		if (weights[i] < FQ_MIN_WEIGHT) {
			NL_SET_ERR_MSG_FMT_MOD(extack, "Weight %d less that minimum allowed %d",
					       weights[i], FQ_MIN_WEIGHT);
			return -EINVAL;
		}
	}
	for (i = 0; i < FQ_BANDS; i++)
		q->band_flows[i].quantum = weights[i];
	return 0;
}

static int fq_load_priomap(struct fq_sched_data *q,
			   const struct nlattr *attr,
			   struct netlink_ext_ack *extack)
{
	const struct tc_prio_qopt *map = nla_data(attr);
	int i;

	if (map->bands != FQ_BANDS) {
		NL_SET_ERR_MSG_MOD(extack, "FQ only supports 3 bands");
		return -EINVAL;
	}
	for (i = 0; i < TC_PRIO_MAX + 1; i++) {
		if (map->priomap[i] >= FQ_BANDS) {
			NL_SET_ERR_MSG_FMT_MOD(extack, "FQ priomap field %d maps to a too high band %d",
					       i, map->priomap[i]);
			return -EINVAL;
		}
	}
	fq_prio2band_compress_crumb(map->priomap, q->prio2band);
	return 0;
}

static int fq_change(struct Qdisc *sch, struct nlattr *opt,
		     struct netlink_ext_ack *extack)
{
	struct fq_sched_data *q = qdisc_priv(sch);
	struct nlattr *tb[TCA_FQ_MAX + 1];
	int err, drop_count = 0;
	unsigned drop_len = 0;
	u32 fq_log;

	err = nla_parse_nested_deprecated(tb, TCA_FQ_MAX, opt, fq_policy,
					  NULL);
	if (err < 0)
		return err;

	sch_tree_lock(sch);

	fq_log = q->fq_trees_log;

	if (tb[TCA_FQ_BUCKETS_LOG]) {
		u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);

		if (nval >= 1 && nval <= ilog2(256*1024))
			fq_log = nval;
		else
			err = -EINVAL;
	}
	if (tb[TCA_FQ_PLIMIT])
		sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);

	if (tb[TCA_FQ_FLOW_PLIMIT])
		q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);

	if (tb[TCA_FQ_QUANTUM]) {
		u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);

		if (quantum > 0 && quantum <= (1 << 20)) {
			q->quantum = quantum;
		} else {
			NL_SET_ERR_MSG_MOD(extack, "invalid quantum");
			err = -EINVAL;
		}
	}

	if (tb[TCA_FQ_INITIAL_QUANTUM])
		q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);

	if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
		pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
				    nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));

	if (tb[TCA_FQ_FLOW_MAX_RATE]) {
		u32 rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);

		q->flow_max_rate = (rate == ~0U) ? ~0UL : rate;
	}
	if (tb[TCA_FQ_LOW_RATE_THRESHOLD])
		q->low_rate_threshold =
			nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]);

	if (tb[TCA_FQ_RATE_ENABLE]) {
		u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);

		if (enable <= 1)
			q->rate_enable = enable;
		else
			err = -EINVAL;
	}

	if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
		u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;

		q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
	}

	if (!err && tb[TCA_FQ_PRIOMAP])
		err = fq_load_priomap(q, tb[TCA_FQ_PRIOMAP], extack);

	if (!err && tb[TCA_FQ_WEIGHTS])
		err = fq_load_weights(q, tb[TCA_FQ_WEIGHTS], extack);

	if (tb[TCA_FQ_ORPHAN_MASK])
		q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]);

	if (tb[TCA_FQ_CE_THRESHOLD])
		q->ce_threshold = (u64)NSEC_PER_USEC *
				  nla_get_u32(tb[TCA_FQ_CE_THRESHOLD]);

	if (tb[TCA_FQ_TIMER_SLACK])
		q->timer_slack = nla_get_u32(tb[TCA_FQ_TIMER_SLACK]);

	if (tb[TCA_FQ_HORIZON])
		q->horizon = (u64)NSEC_PER_USEC *
				  nla_get_u32(tb[TCA_FQ_HORIZON]);

	if (tb[TCA_FQ_HORIZON_DROP])
		q->horizon_drop = nla_get_u8(tb[TCA_FQ_HORIZON_DROP]);

	if (!err) {

		sch_tree_unlock(sch);
		err = fq_resize(sch, fq_log);
		sch_tree_lock(sch);
	}
	while (sch->q.qlen > sch->limit) {
		struct sk_buff *skb = fq_dequeue(sch);

		if (!skb)
			break;
		drop_len += qdisc_pkt_len(skb);
		rtnl_kfree_skbs(skb, skb);
		drop_count++;
	}
	qdisc_tree_reduce_backlog(sch, drop_count, drop_len);

	sch_tree_unlock(sch);
	return err;
}

static void fq_destroy(struct Qdisc *sch)
{
	struct fq_sched_data *q = qdisc_priv(sch);

	fq_reset(sch);
	fq_free(q->fq_root);
	qdisc_watchdog_cancel(&q->watchdog);
}

static int fq_init(struct Qdisc *sch, struct nlattr *opt,
		   struct netlink_ext_ack *extack)
{
	struct fq_sched_data *q = qdisc_priv(sch);
	int i, err;

	sch->limit		= 10000;
	q->flow_plimit		= 100;
	q->quantum		= 2 * psched_mtu(qdisc_dev(sch));
	q->initial_quantum	= 10 * psched_mtu(qdisc_dev(sch));
	q->flow_refill_delay	= msecs_to_jiffies(40);
	q->flow_max_rate	= ~0UL;
	q->time_next_delayed_flow = ~0ULL;
	q->rate_enable		= 1;
	for (i = 0; i < FQ_BANDS; i++) {
		q->band_flows[i].new_flows.first = NULL;
		q->band_flows[i].old_flows.first = NULL;
	}
	q->band_flows[0].quantum = 9 << 16;
	q->band_flows[1].quantum = 3 << 16;
	q->band_flows[2].quantum = 1 << 16;
	q->delayed		= RB_ROOT;
	q->fq_root		= NULL;
	q->fq_trees_log		= ilog2(1024);
	q->orphan_mask		= 1024 - 1;
	q->low_rate_threshold	= 550000 / 8;

	q->timer_slack = 10 * NSEC_PER_USEC; /* 10 usec of hrtimer slack */

	q->horizon = 10ULL * NSEC_PER_SEC; /* 10 seconds */
	q->horizon_drop = 1; /* by default, drop packets beyond horizon */

	/* Default ce_threshold of 4294 seconds */
	q->ce_threshold		= (u64)NSEC_PER_USEC * ~0U;

	fq_prio2band_compress_crumb(sch_default_prio2band, q->prio2band);
	qdisc_watchdog_init_clockid(&q->watchdog, sch, CLOCK_MONOTONIC);

	if (opt)
		err = fq_change(sch, opt, extack);
	else
		err = fq_resize(sch, q->fq_trees_log);

	return err;
}

static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
{
	struct fq_sched_data *q = qdisc_priv(sch);
	u64 ce_threshold = q->ce_threshold;
	struct tc_prio_qopt prio = {
		.bands = FQ_BANDS,
	};
	u64 horizon = q->horizon;
	struct nlattr *opts;
	s32 weights[3];

	opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
	if (opts == NULL)
		goto nla_put_failure;

	/* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */

	do_div(ce_threshold, NSEC_PER_USEC);
	do_div(horizon, NSEC_PER_USEC);

	if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
	    nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
	    nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
	    nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
	    nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
	    nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE,
			min_t(unsigned long, q->flow_max_rate, ~0U)) ||
	    nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
			jiffies_to_usecs(q->flow_refill_delay)) ||
	    nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) ||
	    nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD,
			q->low_rate_threshold) ||
	    nla_put_u32(skb, TCA_FQ_CE_THRESHOLD, (u32)ce_threshold) ||
	    nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log) ||
	    nla_put_u32(skb, TCA_FQ_TIMER_SLACK, q->timer_slack) ||
	    nla_put_u32(skb, TCA_FQ_HORIZON, (u32)horizon) ||
	    nla_put_u8(skb, TCA_FQ_HORIZON_DROP, q->horizon_drop))
		goto nla_put_failure;

	fq_prio2band_decompress_crumb(q->prio2band, prio.priomap);
	if (nla_put(skb, TCA_FQ_PRIOMAP, sizeof(prio), &prio))
		goto nla_put_failure;

	weights[0] = q->band_flows[0].quantum;
	weights[1] = q->band_flows[1].quantum;
	weights[2] = q->band_flows[2].quantum;
	if (nla_put(skb, TCA_FQ_WEIGHTS, sizeof(weights), &weights))
		goto nla_put_failure;

	return nla_nest_end(skb, opts);

nla_put_failure:
	return -1;
}

static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
{
	struct fq_sched_data *q = qdisc_priv(sch);
	struct tc_fq_qd_stats st;
	int i;

	st.pad = 0;

	sch_tree_lock(sch);

	st.gc_flows		  = q->stat_gc_flows;
	st.highprio_packets	  = 0;
	st.fastpath_packets	  = q->internal.stat_fastpath_packets;
	st.tcp_retrans		  = 0;
	st.throttled		  = q->stat_throttled;
	st.flows_plimit		  = q->stat_flows_plimit;
	st.pkts_too_long	  = q->stat_pkts_too_long;
	st.allocation_errors	  = q->stat_allocation_errors;
	st.time_next_delayed_flow = q->time_next_delayed_flow + q->timer_slack -
				    ktime_get_ns();
	st.flows		  = q->flows;
	st.inactive_flows	  = q->inactive_flows;
	st.throttled_flows	  = q->throttled_flows;
	st.unthrottle_latency_ns  = min_t(unsigned long,
					  q->unthrottle_latency_ns, ~0U);
	st.ce_mark		  = q->stat_ce_mark;
	st.horizon_drops	  = q->stat_horizon_drops;
	st.horizon_caps		  = q->stat_horizon_caps;
	for (i = 0; i < FQ_BANDS; i++) {
		st.band_drops[i]  = q->stat_band_drops[i];
		st.band_pkt_count[i] = q->band_pkt_count[i];
	}
	sch_tree_unlock(sch);

	return gnet_stats_copy_app(d, &st, sizeof(st));
}

static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
	.id		=	"fq",
	.priv_size	=	sizeof(struct fq_sched_data),

	.enqueue	=	fq_enqueue,
	.dequeue	=	fq_dequeue,
	.peek		=	qdisc_peek_dequeued,
	.init		=	fq_init,
	.reset		=	fq_reset,
	.destroy	=	fq_destroy,
	.change		=	fq_change,
	.dump		=	fq_dump,
	.dump_stats	=	fq_dump_stats,
	.owner		=	THIS_MODULE,
};

static int __init fq_module_init(void)
{
	int ret;

	fq_flow_cachep = kmem_cache_create("fq_flow_cache",
					   sizeof(struct fq_flow),
					   0, SLAB_HWCACHE_ALIGN, NULL);
	if (!fq_flow_cachep)
		return -ENOMEM;

	ret = register_qdisc(&fq_qdisc_ops);
	if (ret)
		kmem_cache_destroy(fq_flow_cachep);
	return ret;
}

static void __exit fq_module_exit(void)
{
	unregister_qdisc(&fq_qdisc_ops);
	kmem_cache_destroy(fq_flow_cachep);
}

module_init(fq_module_init)
module_exit(fq_module_exit)
MODULE_AUTHOR("Eric Dumazet");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Fair Queue Packet Scheduler");