Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 | // SPDX-License-Identifier: GPL-2.0-only /* PIPAPO: PIle PAcket POlicies: set for arbitrary concatenations of ranges * * Copyright (c) 2019-2020 Red Hat GmbH * * Author: Stefano Brivio <sbrivio@redhat.com> */ /** * DOC: Theory of Operation * * * Problem * ------- * * Match packet bytes against entries composed of ranged or non-ranged packet * field specifiers, mapping them to arbitrary references. For example: * * :: * * --- fields ---> * | [net],[port],[net]... => [reference] * entries [net],[port],[net]... => [reference] * | [net],[port],[net]... => [reference] * V ... * * where [net] fields can be IP ranges or netmasks, and [port] fields are port * ranges. Arbitrary packet fields can be matched. * * * Algorithm Overview * ------------------ * * This algorithm is loosely inspired by [Ligatti 2010], and fundamentally * relies on the consideration that every contiguous range in a space of b bits * can be converted into b * 2 netmasks, from Theorem 3 in [Rottenstreich 2010], * as also illustrated in Section 9 of [Kogan 2014]. * * Classification against a number of entries, that require matching given bits * of a packet field, is performed by grouping those bits in sets of arbitrary * size, and classifying packet bits one group at a time. * * Example: * to match the source port (16 bits) of a packet, we can divide those 16 bits * in 4 groups of 4 bits each. Given the entry: * 0000 0001 0101 1001 * and a packet with source port: * 0000 0001 1010 1001 * first and second groups match, but the third doesn't. We conclude that the * packet doesn't match the given entry. * * Translate the set to a sequence of lookup tables, one per field. Each table * has two dimensions: bit groups to be matched for a single packet field, and * all the possible values of said groups (buckets). Input entries are * represented as one or more rules, depending on the number of composing * netmasks for the given field specifier, and a group match is indicated as a * set bit, with number corresponding to the rule index, in all the buckets * whose value matches the entry for a given group. * * Rules are mapped between fields through an array of x, n pairs, with each * item mapping a matched rule to one or more rules. The position of the pair in * the array indicates the matched rule to be mapped to the next field, x * indicates the first rule index in the next field, and n the amount of * next-field rules the current rule maps to. * * The mapping array for the last field maps to the desired references. * * To match, we perform table lookups using the values of grouped packet bits, * and use a sequence of bitwise operations to progressively evaluate rule * matching. * * A stand-alone, reference implementation, also including notes about possible * future optimisations, is available at: * https://pipapo.lameexcu.se/ * * Insertion * --------- * * - For each packet field: * * - divide the b packet bits we want to classify into groups of size t, * obtaining ceil(b / t) groups * * Example: match on destination IP address, with t = 4: 32 bits, 8 groups * of 4 bits each * * - allocate a lookup table with one column ("bucket") for each possible * value of a group, and with one row for each group * * Example: 8 groups, 2^4 buckets: * * :: * * bucket * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 * 0 * 1 * 2 * 3 * 4 * 5 * 6 * 7 * * - map the bits we want to classify for the current field, for a given * entry, to a single rule for non-ranged and netmask set items, and to one * or multiple rules for ranges. Ranges are expanded to composing netmasks * by pipapo_expand(). * * Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048 * - rule #0: 10.0.0.5 * - rule #1: 192.168.1.0/24 * - rule #2: 192.168.2.0/31 * * - insert references to the rules in the lookup table, selecting buckets * according to bit values of a rule in the given group. This is done by * pipapo_insert(). * * Example: given: * - rule #0: 10.0.0.5 mapping to buckets * < 0 10 0 0 0 0 0 5 > * - rule #1: 192.168.1.0/24 mapping to buckets * < 12 0 10 8 0 1 < 0..15 > < 0..15 > > * - rule #2: 192.168.2.0/31 mapping to buckets * < 12 0 10 8 0 2 0 < 0..1 > > * * these bits are set in the lookup table: * * :: * * bucket * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 * 0 0 1,2 * 1 1,2 0 * 2 0 1,2 * 3 0 1,2 * 4 0,1,2 * 5 0 1 2 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1 * * - if this is not the last field in the set, fill a mapping array that maps * rules from the lookup table to rules belonging to the same entry in * the next lookup table, done by pipapo_map(). * * Note that as rules map to contiguous ranges of rules, given how netmask * expansion and insertion is performed, &union nft_pipapo_map_bucket stores * this information as pairs of first rule index, rule count. * * Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048, * given lookup table #0 for field 0 (see example above): * * :: * * bucket * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 * 0 0 1,2 * 1 1,2 0 * 2 0 1,2 * 3 0 1,2 * 4 0,1,2 * 5 0 1 2 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1 * * and lookup table #1 for field 1 with: * - rule #0: 1024 mapping to buckets * < 0 0 4 0 > * - rule #1: 2048 mapping to buckets * < 0 0 5 0 > * * :: * * bucket * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 * 0 0,1 * 1 0,1 * 2 0 1 * 3 0,1 * * we need to map rules for 10.0.0.5 in lookup table #0 (rule #0) to 1024 * in lookup table #1 (rule #0) and rules for 192.168.1.0-192.168.2.1 * (rules #1, #2) to 2048 in lookup table #2 (rule #1): * * :: * * rule indices in current field: 0 1 2 * map to rules in next field: 0 1 1 * * - if this is the last field in the set, fill a mapping array that maps * rules from the last lookup table to element pointers, also done by * pipapo_map(). * * Note that, in this implementation, we have two elements (start, end) for * each entry. The pointer to the end element is stored in this array, and * the pointer to the start element is linked from it. * * Example: entry 10.0.0.5:1024 has a corresponding &struct nft_pipapo_elem * pointer, 0x66, and element for 192.168.1.0-192.168.2.1:2048 is at 0x42. * From the rules of lookup table #1 as mapped above: * * :: * * rule indices in last field: 0 1 * map to elements: 0x66 0x42 * * * Matching * -------- * * We use a result bitmap, with the size of a single lookup table bucket, to * represent the matching state that applies at every algorithm step. This is * done by pipapo_lookup(). * * - For each packet field: * * - start with an all-ones result bitmap (res_map in pipapo_lookup()) * * - perform a lookup into the table corresponding to the current field, * for each group, and at every group, AND the current result bitmap with * the value from the lookup table bucket * * :: * * Example: 192.168.1.5 < 12 0 10 8 0 1 0 5 >, with lookup table from * insertion examples. * Lookup table buckets are at least 3 bits wide, we'll assume 8 bits for * convenience in this example. Initial result bitmap is 0xff, the steps * below show the value of the result bitmap after each group is processed: * * bucket * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 * 0 0 1,2 * result bitmap is now: 0xff & 0x6 [bucket 12] = 0x6 * * 1 1,2 0 * result bitmap is now: 0x6 & 0x6 [bucket 0] = 0x6 * * 2 0 1,2 * result bitmap is now: 0x6 & 0x6 [bucket 10] = 0x6 * * 3 0 1,2 * result bitmap is now: 0x6 & 0x6 [bucket 8] = 0x6 * * 4 0,1,2 * result bitmap is now: 0x6 & 0x7 [bucket 0] = 0x6 * * 5 0 1 2 * result bitmap is now: 0x6 & 0x2 [bucket 1] = 0x2 * * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 * result bitmap is now: 0x2 & 0x7 [bucket 0] = 0x2 * * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1 * final result bitmap for this field is: 0x2 & 0x3 [bucket 5] = 0x2 * * - at the next field, start with a new, all-zeroes result bitmap. For each * bit set in the previous result bitmap, fill the new result bitmap * (fill_map in pipapo_lookup()) with the rule indices from the * corresponding buckets of the mapping field for this field, done by * pipapo_refill() * * Example: with mapping table from insertion examples, with the current * result bitmap from the previous example, 0x02: * * :: * * rule indices in current field: 0 1 2 * map to rules in next field: 0 1 1 * * the new result bitmap will be 0x02: rule 1 was set, and rule 1 will be * set. * * We can now extend this example to cover the second iteration of the step * above (lookup and AND bitmap): assuming the port field is * 2048 < 0 0 5 0 >, with starting result bitmap 0x2, and lookup table * for "port" field from pre-computation example: * * :: * * bucket * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 * 0 0,1 * 1 0,1 * 2 0 1 * 3 0,1 * * operations are: 0x2 & 0x3 [bucket 0] & 0x3 [bucket 0] & 0x2 [bucket 5] * & 0x3 [bucket 0], resulting bitmap is 0x2. * * - if this is the last field in the set, look up the value from the mapping * array corresponding to the final result bitmap * * Example: 0x2 resulting bitmap from 192.168.1.5:2048, mapping array for * last field from insertion example: * * :: * * rule indices in last field: 0 1 * map to elements: 0x66 0x42 * * the matching element is at 0x42. * * * References * ---------- * * [Ligatti 2010] * A Packet-classification Algorithm for Arbitrary Bitmask Rules, with * Automatic Time-space Tradeoffs * Jay Ligatti, Josh Kuhn, and Chris Gage. * Proceedings of the IEEE International Conference on Computer * Communication Networks (ICCCN), August 2010. * https://www.cse.usf.edu/~ligatti/papers/grouper-conf.pdf * * [Rottenstreich 2010] * Worst-Case TCAM Rule Expansion * Ori Rottenstreich and Isaac Keslassy. * 2010 Proceedings IEEE INFOCOM, San Diego, CA, 2010. * http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.212.4592&rep=rep1&type=pdf * * [Kogan 2014] * SAX-PAC (Scalable And eXpressive PAcket Classification) * Kirill Kogan, Sergey Nikolenko, Ori Rottenstreich, William Culhane, * and Patrick Eugster. * Proceedings of the 2014 ACM conference on SIGCOMM, August 2014. * https://www.sigcomm.org/sites/default/files/ccr/papers/2014/August/2619239-2626294.pdf */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/module.h> #include <linux/netlink.h> #include <linux/netfilter.h> #include <linux/netfilter/nf_tables.h> #include <net/netfilter/nf_tables_core.h> #include <uapi/linux/netfilter/nf_tables.h> #include <linux/bitmap.h> #include <linux/bitops.h> #include "nft_set_pipapo_avx2.h" #include "nft_set_pipapo.h" /** * pipapo_refill() - For each set bit, set bits from selected mapping table item * @map: Bitmap to be scanned for set bits * @len: Length of bitmap in longs * @rules: Number of rules in field * @dst: Destination bitmap * @mt: Mapping table containing bit set specifiers * @match_only: Find a single bit and return, don't fill * * Iteration over set bits with __builtin_ctzl(): Daniel Lemire, public domain. * * For each bit set in map, select the bucket from mapping table with index * corresponding to the position of the bit set. Use start bit and amount of * bits specified in bucket to fill region in dst. * * Return: -1 on no match, bit position on 'match_only', 0 otherwise. */ int pipapo_refill(unsigned long *map, int len, int rules, unsigned long *dst, union nft_pipapo_map_bucket *mt, bool match_only) { unsigned long bitset; int k, ret = -1; for (k = 0; k < len; k++) { bitset = map[k]; while (bitset) { unsigned long t = bitset & -bitset; int r = __builtin_ctzl(bitset); int i = k * BITS_PER_LONG + r; if (unlikely(i >= rules)) { map[k] = 0; return -1; } if (match_only) { bitmap_clear(map, i, 1); return i; } ret = 0; bitmap_set(dst, mt[i].to, mt[i].n); bitset ^= t; } map[k] = 0; } return ret; } /** * nft_pipapo_lookup() - Lookup function * @net: Network namespace * @set: nftables API set representation * @key: nftables API element representation containing key data * @ext: nftables API extension pointer, filled with matching reference * * For more details, see DOC: Theory of Operation. * * Return: true on match, false otherwise. */ bool nft_pipapo_lookup(const struct net *net, const struct nft_set *set, const u32 *key, const struct nft_set_ext **ext) { struct nft_pipapo *priv = nft_set_priv(set); struct nft_pipapo_scratch *scratch; unsigned long *res_map, *fill_map; u8 genmask = nft_genmask_cur(net); const u8 *rp = (const u8 *)key; struct nft_pipapo_match *m; struct nft_pipapo_field *f; bool map_index; int i; local_bh_disable(); m = rcu_dereference(priv->match); if (unlikely(!m || !*raw_cpu_ptr(m->scratch))) goto out; scratch = *raw_cpu_ptr(m->scratch); map_index = scratch->map_index; res_map = scratch->map + (map_index ? m->bsize_max : 0); fill_map = scratch->map + (map_index ? 0 : m->bsize_max); memset(res_map, 0xff, m->bsize_max * sizeof(*res_map)); nft_pipapo_for_each_field(f, i, m) { bool last = i == m->field_count - 1; int b; /* For each bit group: select lookup table bucket depending on * packet bytes value, then AND bucket value */ if (likely(f->bb == 8)) pipapo_and_field_buckets_8bit(f, res_map, rp); else pipapo_and_field_buckets_4bit(f, res_map, rp); NFT_PIPAPO_GROUP_BITS_ARE_8_OR_4; rp += f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f); /* Now populate the bitmap for the next field, unless this is * the last field, in which case return the matched 'ext' * pointer if any. * * Now res_map contains the matching bitmap, and fill_map is the * bitmap for the next field. */ next_match: b = pipapo_refill(res_map, f->bsize, f->rules, fill_map, f->mt, last); if (b < 0) { scratch->map_index = map_index; local_bh_enable(); return false; } if (last) { *ext = &f->mt[b].e->ext; if (unlikely(nft_set_elem_expired(*ext) || !nft_set_elem_active(*ext, genmask))) goto next_match; /* Last field: we're just returning the key without * filling the initial bitmap for the next field, so the * current inactive bitmap is clean and can be reused as * *next* bitmap (not initial) for the next packet. */ scratch->map_index = map_index; local_bh_enable(); return true; } /* Swap bitmap indices: res_map is the initial bitmap for the * next field, and fill_map is guaranteed to be all-zeroes at * this point. */ map_index = !map_index; swap(res_map, fill_map); rp += NFT_PIPAPO_GROUPS_PADDING(f); } out: local_bh_enable(); return false; } /** * pipapo_get() - Get matching element reference given key data * @net: Network namespace * @set: nftables API set representation * @data: Key data to be matched against existing elements * @genmask: If set, check that element is active in given genmask * @tstamp: timestamp to check for expired elements * * This is essentially the same as the lookup function, except that it matches * key data against the uncommitted copy and doesn't use preallocated maps for * bitmap results. * * Return: pointer to &struct nft_pipapo_elem on match, error pointer otherwise. */ static struct nft_pipapo_elem *pipapo_get(const struct net *net, const struct nft_set *set, const u8 *data, u8 genmask, u64 tstamp) { struct nft_pipapo_elem *ret = ERR_PTR(-ENOENT); struct nft_pipapo *priv = nft_set_priv(set); struct nft_pipapo_match *m = priv->clone; unsigned long *res_map, *fill_map = NULL; struct nft_pipapo_field *f; int i; res_map = kmalloc_array(m->bsize_max, sizeof(*res_map), GFP_ATOMIC); if (!res_map) { ret = ERR_PTR(-ENOMEM); goto out; } fill_map = kcalloc(m->bsize_max, sizeof(*res_map), GFP_ATOMIC); if (!fill_map) { ret = ERR_PTR(-ENOMEM); goto out; } memset(res_map, 0xff, m->bsize_max * sizeof(*res_map)); nft_pipapo_for_each_field(f, i, m) { bool last = i == m->field_count - 1; int b; /* For each bit group: select lookup table bucket depending on * packet bytes value, then AND bucket value */ if (f->bb == 8) pipapo_and_field_buckets_8bit(f, res_map, data); else if (f->bb == 4) pipapo_and_field_buckets_4bit(f, res_map, data); else BUG(); data += f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f); /* Now populate the bitmap for the next field, unless this is * the last field, in which case return the matched 'ext' * pointer if any. * * Now res_map contains the matching bitmap, and fill_map is the * bitmap for the next field. */ next_match: b = pipapo_refill(res_map, f->bsize, f->rules, fill_map, f->mt, last); if (b < 0) goto out; if (last) { if (__nft_set_elem_expired(&f->mt[b].e->ext, tstamp)) goto next_match; if ((genmask && !nft_set_elem_active(&f->mt[b].e->ext, genmask))) goto next_match; ret = f->mt[b].e; goto out; } data += NFT_PIPAPO_GROUPS_PADDING(f); /* Swap bitmap indices: fill_map will be the initial bitmap for * the next field (i.e. the new res_map), and res_map is * guaranteed to be all-zeroes at this point, ready to be filled * according to the next mapping table. */ swap(res_map, fill_map); } out: kfree(fill_map); kfree(res_map); return ret; } /** * nft_pipapo_get() - Get matching element reference given key data * @net: Network namespace * @set: nftables API set representation * @elem: nftables API element representation containing key data * @flags: Unused */ static struct nft_elem_priv * nft_pipapo_get(const struct net *net, const struct nft_set *set, const struct nft_set_elem *elem, unsigned int flags) { struct nft_pipapo_elem *e; e = pipapo_get(net, set, (const u8 *)elem->key.val.data, nft_genmask_cur(net), get_jiffies_64()); if (IS_ERR(e)) return ERR_CAST(e); return &e->priv; } /** * pipapo_resize() - Resize lookup or mapping table, or both * @f: Field containing lookup and mapping tables * @old_rules: Previous amount of rules in field * @rules: New amount of rules * * Increase, decrease or maintain tables size depending on new amount of rules, * and copy data over. In case the new size is smaller, throw away data for * highest-numbered rules. * * Return: 0 on success, -ENOMEM on allocation failure. */ static int pipapo_resize(struct nft_pipapo_field *f, int old_rules, int rules) { long *new_lt = NULL, *new_p, *old_lt = f->lt, *old_p; union nft_pipapo_map_bucket *new_mt, *old_mt = f->mt; size_t new_bucket_size, copy; int group, bucket; new_bucket_size = DIV_ROUND_UP(rules, BITS_PER_LONG); #ifdef NFT_PIPAPO_ALIGN new_bucket_size = roundup(new_bucket_size, NFT_PIPAPO_ALIGN / sizeof(*new_lt)); #endif if (new_bucket_size == f->bsize) goto mt; if (new_bucket_size > f->bsize) copy = f->bsize; else copy = new_bucket_size; new_lt = kvzalloc(f->groups * NFT_PIPAPO_BUCKETS(f->bb) * new_bucket_size * sizeof(*new_lt) + NFT_PIPAPO_ALIGN_HEADROOM, GFP_KERNEL); if (!new_lt) return -ENOMEM; new_p = NFT_PIPAPO_LT_ALIGN(new_lt); old_p = NFT_PIPAPO_LT_ALIGN(old_lt); for (group = 0; group < f->groups; group++) { for (bucket = 0; bucket < NFT_PIPAPO_BUCKETS(f->bb); bucket++) { memcpy(new_p, old_p, copy * sizeof(*new_p)); new_p += copy; old_p += copy; if (new_bucket_size > f->bsize) new_p += new_bucket_size - f->bsize; else old_p += f->bsize - new_bucket_size; } } mt: new_mt = kvmalloc(rules * sizeof(*new_mt), GFP_KERNEL); if (!new_mt) { kvfree(new_lt); return -ENOMEM; } memcpy(new_mt, f->mt, min(old_rules, rules) * sizeof(*new_mt)); if (rules > old_rules) { memset(new_mt + old_rules, 0, (rules - old_rules) * sizeof(*new_mt)); } if (new_lt) { f->bsize = new_bucket_size; NFT_PIPAPO_LT_ASSIGN(f, new_lt); kvfree(old_lt); } f->mt = new_mt; kvfree(old_mt); return 0; } /** * pipapo_bucket_set() - Set rule bit in bucket given group and group value * @f: Field containing lookup table * @rule: Rule index * @group: Group index * @v: Value of bit group */ static void pipapo_bucket_set(struct nft_pipapo_field *f, int rule, int group, int v) { unsigned long *pos; pos = NFT_PIPAPO_LT_ALIGN(f->lt); pos += f->bsize * NFT_PIPAPO_BUCKETS(f->bb) * group; pos += f->bsize * v; __set_bit(rule, pos); } /** * pipapo_lt_4b_to_8b() - Switch lookup table group width from 4 bits to 8 bits * @old_groups: Number of current groups * @bsize: Size of one bucket, in longs * @old_lt: Pointer to the current lookup table * @new_lt: Pointer to the new, pre-allocated lookup table * * Each bucket with index b in the new lookup table, belonging to group g, is * filled with the bit intersection between: * - bucket with index given by the upper 4 bits of b, from group g, and * - bucket with index given by the lower 4 bits of b, from group g + 1 * * That is, given buckets from the new lookup table N(x, y) and the old lookup * table O(x, y), with x bucket index, and y group index: * * N(b, g) := O(b / 16, g) & O(b % 16, g + 1) * * This ensures equivalence of the matching results on lookup. Two examples in * pictures: * * bucket * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ... 254 255 * 0 ^ * 1 | ^ * ... ( & ) | * / \ | * / \ .-( & )-. * / bucket \ | | * group 0 / 1 2 3 \ 4 5 6 7 8 9 10 11 12 13 |14 15 | * 0 / \ | | * 1 \ | | * 2 | --' * 3 '- * ... */ static void pipapo_lt_4b_to_8b(int old_groups, int bsize, unsigned long *old_lt, unsigned long *new_lt) { int g, b, i; for (g = 0; g < old_groups / 2; g++) { int src_g0 = g * 2, src_g1 = g * 2 + 1; for (b = 0; b < NFT_PIPAPO_BUCKETS(8); b++) { int src_b0 = b / NFT_PIPAPO_BUCKETS(4); int src_b1 = b % NFT_PIPAPO_BUCKETS(4); int src_i0 = src_g0 * NFT_PIPAPO_BUCKETS(4) + src_b0; int src_i1 = src_g1 * NFT_PIPAPO_BUCKETS(4) + src_b1; for (i = 0; i < bsize; i++) { *new_lt = old_lt[src_i0 * bsize + i] & old_lt[src_i1 * bsize + i]; new_lt++; } } } } /** * pipapo_lt_8b_to_4b() - Switch lookup table group width from 8 bits to 4 bits * @old_groups: Number of current groups * @bsize: Size of one bucket, in longs * @old_lt: Pointer to the current lookup table * @new_lt: Pointer to the new, pre-allocated lookup table * * Each bucket with index b in the new lookup table, belonging to group g, is * filled with the bit union of: * - all the buckets with index such that the upper four bits of the lower byte * equal b, from group g, with g odd * - all the buckets with index such that the lower four bits equal b, from * group g, with g even * * That is, given buckets from the new lookup table N(x, y) and the old lookup * table O(x, y), with x bucket index, and y group index: * * - with g odd: N(b, g) := U(O(x, g) for each x : x = (b & 0xf0) >> 4) * - with g even: N(b, g) := U(O(x, g) for each x : x = b & 0x0f) * * where U() denotes the arbitrary union operation (binary OR of n terms). This * ensures equivalence of the matching results on lookup. */ static void pipapo_lt_8b_to_4b(int old_groups, int bsize, unsigned long *old_lt, unsigned long *new_lt) { int g, b, bsrc, i; memset(new_lt, 0, old_groups * 2 * NFT_PIPAPO_BUCKETS(4) * bsize * sizeof(unsigned long)); for (g = 0; g < old_groups * 2; g += 2) { int src_g = g / 2; for (b = 0; b < NFT_PIPAPO_BUCKETS(4); b++) { for (bsrc = NFT_PIPAPO_BUCKETS(8) * src_g; bsrc < NFT_PIPAPO_BUCKETS(8) * (src_g + 1); bsrc++) { if (((bsrc & 0xf0) >> 4) != b) continue; for (i = 0; i < bsize; i++) new_lt[i] |= old_lt[bsrc * bsize + i]; } new_lt += bsize; } for (b = 0; b < NFT_PIPAPO_BUCKETS(4); b++) { for (bsrc = NFT_PIPAPO_BUCKETS(8) * src_g; bsrc < NFT_PIPAPO_BUCKETS(8) * (src_g + 1); bsrc++) { if ((bsrc & 0x0f) != b) continue; for (i = 0; i < bsize; i++) new_lt[i] |= old_lt[bsrc * bsize + i]; } new_lt += bsize; } } } /** * pipapo_lt_bits_adjust() - Adjust group size for lookup table if needed * @f: Field containing lookup table */ static void pipapo_lt_bits_adjust(struct nft_pipapo_field *f) { unsigned long *new_lt; int groups, bb; size_t lt_size; lt_size = f->groups * NFT_PIPAPO_BUCKETS(f->bb) * f->bsize * sizeof(*f->lt); if (f->bb == NFT_PIPAPO_GROUP_BITS_SMALL_SET && lt_size > NFT_PIPAPO_LT_SIZE_HIGH) { groups = f->groups * 2; bb = NFT_PIPAPO_GROUP_BITS_LARGE_SET; lt_size = groups * NFT_PIPAPO_BUCKETS(bb) * f->bsize * sizeof(*f->lt); } else if (f->bb == NFT_PIPAPO_GROUP_BITS_LARGE_SET && lt_size < NFT_PIPAPO_LT_SIZE_LOW) { groups = f->groups / 2; bb = NFT_PIPAPO_GROUP_BITS_SMALL_SET; lt_size = groups * NFT_PIPAPO_BUCKETS(bb) * f->bsize * sizeof(*f->lt); /* Don't increase group width if the resulting lookup table size * would exceed the upper size threshold for a "small" set. */ if (lt_size > NFT_PIPAPO_LT_SIZE_HIGH) return; } else { return; } new_lt = kvzalloc(lt_size + NFT_PIPAPO_ALIGN_HEADROOM, GFP_KERNEL); if (!new_lt) return; NFT_PIPAPO_GROUP_BITS_ARE_8_OR_4; if (f->bb == 4 && bb == 8) { pipapo_lt_4b_to_8b(f->groups, f->bsize, NFT_PIPAPO_LT_ALIGN(f->lt), NFT_PIPAPO_LT_ALIGN(new_lt)); } else if (f->bb == 8 && bb == 4) { pipapo_lt_8b_to_4b(f->groups, f->bsize, NFT_PIPAPO_LT_ALIGN(f->lt), NFT_PIPAPO_LT_ALIGN(new_lt)); } else { BUG(); } f->groups = groups; f->bb = bb; kvfree(f->lt); NFT_PIPAPO_LT_ASSIGN(f, new_lt); } /** * pipapo_insert() - Insert new rule in field given input key and mask length * @f: Field containing lookup table * @k: Input key for classification, without nftables padding * @mask_bits: Length of mask; matches field length for non-ranged entry * * Insert a new rule reference in lookup buckets corresponding to k and * mask_bits. * * Return: 1 on success (one rule inserted), negative error code on failure. */ static int pipapo_insert(struct nft_pipapo_field *f, const uint8_t *k, int mask_bits) { int rule = f->rules, group, ret, bit_offset = 0; ret = pipapo_resize(f, f->rules, f->rules + 1); if (ret) return ret; f->rules++; for (group = 0; group < f->groups; group++) { int i, v; u8 mask; v = k[group / (BITS_PER_BYTE / f->bb)]; v &= GENMASK(BITS_PER_BYTE - bit_offset - 1, 0); v >>= (BITS_PER_BYTE - bit_offset) - f->bb; bit_offset += f->bb; bit_offset %= BITS_PER_BYTE; if (mask_bits >= (group + 1) * f->bb) { /* Not masked */ pipapo_bucket_set(f, rule, group, v); } else if (mask_bits <= group * f->bb) { /* Completely masked */ for (i = 0; i < NFT_PIPAPO_BUCKETS(f->bb); i++) pipapo_bucket_set(f, rule, group, i); } else { /* The mask limit falls on this group */ mask = GENMASK(f->bb - 1, 0); mask >>= mask_bits - group * f->bb; for (i = 0; i < NFT_PIPAPO_BUCKETS(f->bb); i++) { if ((i & ~mask) == (v & ~mask)) pipapo_bucket_set(f, rule, group, i); } } } pipapo_lt_bits_adjust(f); return 1; } /** * pipapo_step_diff() - Check if setting @step bit in netmask would change it * @base: Mask we are expanding * @step: Step bit for given expansion step * @len: Total length of mask space (set and unset bits), bytes * * Convenience function for mask expansion. * * Return: true if step bit changes mask (i.e. isn't set), false otherwise. */ static bool pipapo_step_diff(u8 *base, int step, int len) { /* Network order, byte-addressed */ #ifdef __BIG_ENDIAN__ return !(BIT(step % BITS_PER_BYTE) & base[step / BITS_PER_BYTE]); #else return !(BIT(step % BITS_PER_BYTE) & base[len - 1 - step / BITS_PER_BYTE]); #endif } /** * pipapo_step_after_end() - Check if mask exceeds range end with given step * @base: Mask we are expanding * @end: End of range * @step: Step bit for given expansion step, highest bit to be set * @len: Total length of mask space (set and unset bits), bytes * * Convenience function for mask expansion. * * Return: true if mask exceeds range setting step bits, false otherwise. */ static bool pipapo_step_after_end(const u8 *base, const u8 *end, int step, int len) { u8 tmp[NFT_PIPAPO_MAX_BYTES]; int i; memcpy(tmp, base, len); /* Network order, byte-addressed */ for (i = 0; i <= step; i++) #ifdef __BIG_ENDIAN__ tmp[i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE); #else tmp[len - 1 - i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE); #endif return memcmp(tmp, end, len) > 0; } /** * pipapo_base_sum() - Sum step bit to given len-sized netmask base with carry * @base: Netmask base * @step: Step bit to sum * @len: Netmask length, bytes */ static void pipapo_base_sum(u8 *base, int step, int len) { bool carry = false; int i; /* Network order, byte-addressed */ #ifdef __BIG_ENDIAN__ for (i = step / BITS_PER_BYTE; i < len; i++) { #else for (i = len - 1 - step / BITS_PER_BYTE; i >= 0; i--) { #endif if (carry) base[i]++; else base[i] += 1 << (step % BITS_PER_BYTE); if (base[i]) break; carry = true; } } /** * pipapo_expand() - Expand to composing netmasks, insert into lookup table * @f: Field containing lookup table * @start: Start of range * @end: End of range * @len: Length of value in bits * * Expand range to composing netmasks and insert corresponding rule references * in lookup buckets. * * Return: number of inserted rules on success, negative error code on failure. */ static int pipapo_expand(struct nft_pipapo_field *f, const u8 *start, const u8 *end, int len) { int step, masks = 0, bytes = DIV_ROUND_UP(len, BITS_PER_BYTE); u8 base[NFT_PIPAPO_MAX_BYTES]; memcpy(base, start, bytes); while (memcmp(base, end, bytes) <= 0) { int err; step = 0; while (pipapo_step_diff(base, step, bytes)) { if (pipapo_step_after_end(base, end, step, bytes)) break; step++; if (step >= len) { if (!masks) { err = pipapo_insert(f, base, 0); if (err < 0) return err; masks = 1; } goto out; } } err = pipapo_insert(f, base, len - step); if (err < 0) return err; masks++; pipapo_base_sum(base, step, bytes); } out: return masks; } /** * pipapo_map() - Insert rules in mapping tables, mapping them between fields * @m: Matching data, including mapping table * @map: Table of rule maps: array of first rule and amount of rules * in next field a given rule maps to, for each field * @e: For last field, nft_set_ext pointer matching rules map to */ static void pipapo_map(struct nft_pipapo_match *m, union nft_pipapo_map_bucket map[NFT_PIPAPO_MAX_FIELDS], struct nft_pipapo_elem *e) { struct nft_pipapo_field *f; int i, j; for (i = 0, f = m->f; i < m->field_count - 1; i++, f++) { for (j = 0; j < map[i].n; j++) { f->mt[map[i].to + j].to = map[i + 1].to; f->mt[map[i].to + j].n = map[i + 1].n; } } /* Last field: map to ext instead of mapping to next field */ for (j = 0; j < map[i].n; j++) f->mt[map[i].to + j].e = e; } /** * pipapo_free_scratch() - Free per-CPU map at original (not aligned) address * @m: Matching data * @cpu: CPU number */ static void pipapo_free_scratch(const struct nft_pipapo_match *m, unsigned int cpu) { struct nft_pipapo_scratch *s; void *mem; s = *per_cpu_ptr(m->scratch, cpu); if (!s) return; mem = s; mem -= s->align_off; kfree(mem); } /** * pipapo_realloc_scratch() - Reallocate scratch maps for partial match results * @clone: Copy of matching data with pending insertions and deletions * @bsize_max: Maximum bucket size, scratch maps cover two buckets * * Return: 0 on success, -ENOMEM on failure. */ static int pipapo_realloc_scratch(struct nft_pipapo_match *clone, unsigned long bsize_max) { int i; for_each_possible_cpu(i) { struct nft_pipapo_scratch *scratch; #ifdef NFT_PIPAPO_ALIGN void *scratch_aligned; u32 align_off; #endif scratch = kzalloc_node(struct_size(scratch, map, bsize_max * 2) + NFT_PIPAPO_ALIGN_HEADROOM, GFP_KERNEL, cpu_to_node(i)); if (!scratch) { /* On failure, there's no need to undo previous * allocations: this means that some scratch maps have * a bigger allocated size now (this is only called on * insertion), but the extra space won't be used by any * CPU as new elements are not inserted and m->bsize_max * is not updated. */ return -ENOMEM; } pipapo_free_scratch(clone, i); #ifdef NFT_PIPAPO_ALIGN /* Align &scratch->map (not the struct itself): the extra * %NFT_PIPAPO_ALIGN_HEADROOM bytes passed to kzalloc_node() * above guarantee we can waste up to those bytes in order * to align the map field regardless of its offset within * the struct. */ BUILD_BUG_ON(offsetof(struct nft_pipapo_scratch, map) > NFT_PIPAPO_ALIGN_HEADROOM); scratch_aligned = NFT_PIPAPO_LT_ALIGN(&scratch->map); scratch_aligned -= offsetof(struct nft_pipapo_scratch, map); align_off = scratch_aligned - (void *)scratch; scratch = scratch_aligned; scratch->align_off = align_off; #endif *per_cpu_ptr(clone->scratch, i) = scratch; } return 0; } /** * nft_pipapo_insert() - Validate and insert ranged elements * @net: Network namespace * @set: nftables API set representation * @elem: nftables API element representation containing key data * @elem_priv: Filled with pointer to &struct nft_set_ext in inserted element * * Return: 0 on success, error pointer on failure. */ static int nft_pipapo_insert(const struct net *net, const struct nft_set *set, const struct nft_set_elem *elem, struct nft_elem_priv **elem_priv) { const struct nft_set_ext *ext = nft_set_elem_ext(set, elem->priv); union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS]; const u8 *start = (const u8 *)elem->key.val.data, *end; struct nft_pipapo *priv = nft_set_priv(set); struct nft_pipapo_match *m = priv->clone; u8 genmask = nft_genmask_next(net); struct nft_pipapo_elem *e, *dup; u64 tstamp = nft_net_tstamp(net); struct nft_pipapo_field *f; const u8 *start_p, *end_p; int i, bsize_max, err = 0; if (nft_set_ext_exists(ext, NFT_SET_EXT_KEY_END)) end = (const u8 *)nft_set_ext_key_end(ext)->data; else end = start; dup = pipapo_get(net, set, start, genmask, tstamp); if (!IS_ERR(dup)) { /* Check if we already have the same exact entry */ const struct nft_data *dup_key, *dup_end; dup_key = nft_set_ext_key(&dup->ext); if (nft_set_ext_exists(&dup->ext, NFT_SET_EXT_KEY_END)) dup_end = nft_set_ext_key_end(&dup->ext); else dup_end = dup_key; if (!memcmp(start, dup_key->data, sizeof(*dup_key->data)) && !memcmp(end, dup_end->data, sizeof(*dup_end->data))) { *elem_priv = &dup->priv; return -EEXIST; } return -ENOTEMPTY; } if (PTR_ERR(dup) == -ENOENT) { /* Look for partially overlapping entries */ dup = pipapo_get(net, set, end, nft_genmask_next(net), tstamp); } if (PTR_ERR(dup) != -ENOENT) { if (IS_ERR(dup)) return PTR_ERR(dup); *elem_priv = &dup->priv; return -ENOTEMPTY; } /* Validate */ start_p = start; end_p = end; nft_pipapo_for_each_field(f, i, m) { if (f->rules >= (unsigned long)NFT_PIPAPO_RULE0_MAX) return -ENOSPC; if (memcmp(start_p, end_p, f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)) > 0) return -EINVAL; start_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f); end_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f); } /* Insert */ priv->dirty = true; bsize_max = m->bsize_max; nft_pipapo_for_each_field(f, i, m) { int ret; rulemap[i].to = f->rules; ret = memcmp(start, end, f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)); if (!ret) ret = pipapo_insert(f, start, f->groups * f->bb); else ret = pipapo_expand(f, start, end, f->groups * f->bb); if (ret < 0) return ret; if (f->bsize > bsize_max) bsize_max = f->bsize; rulemap[i].n = ret; start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f); end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f); } if (!*get_cpu_ptr(m->scratch) || bsize_max > m->bsize_max) { put_cpu_ptr(m->scratch); err = pipapo_realloc_scratch(m, bsize_max); if (err) return err; m->bsize_max = bsize_max; } else { put_cpu_ptr(m->scratch); } e = nft_elem_priv_cast(elem->priv); *elem_priv = &e->priv; pipapo_map(m, rulemap, e); return 0; } /** * pipapo_clone() - Clone matching data to create new working copy * @old: Existing matching data * * Return: copy of matching data passed as 'old', error pointer on failure */ static struct nft_pipapo_match *pipapo_clone(struct nft_pipapo_match *old) { struct nft_pipapo_field *dst, *src; struct nft_pipapo_match *new; int i; new = kmalloc(struct_size(new, f, old->field_count), GFP_KERNEL); if (!new) return ERR_PTR(-ENOMEM); new->field_count = old->field_count; new->bsize_max = old->bsize_max; new->scratch = alloc_percpu(*new->scratch); if (!new->scratch) goto out_scratch; for_each_possible_cpu(i) *per_cpu_ptr(new->scratch, i) = NULL; if (pipapo_realloc_scratch(new, old->bsize_max)) goto out_scratch_realloc; rcu_head_init(&new->rcu); src = old->f; dst = new->f; for (i = 0; i < old->field_count; i++) { unsigned long *new_lt; memcpy(dst, src, offsetof(struct nft_pipapo_field, lt)); new_lt = kvzalloc(src->groups * NFT_PIPAPO_BUCKETS(src->bb) * src->bsize * sizeof(*dst->lt) + NFT_PIPAPO_ALIGN_HEADROOM, GFP_KERNEL); if (!new_lt) goto out_lt; NFT_PIPAPO_LT_ASSIGN(dst, new_lt); memcpy(NFT_PIPAPO_LT_ALIGN(new_lt), NFT_PIPAPO_LT_ALIGN(src->lt), src->bsize * sizeof(*dst->lt) * src->groups * NFT_PIPAPO_BUCKETS(src->bb)); dst->mt = kvmalloc(src->rules * sizeof(*src->mt), GFP_KERNEL); if (!dst->mt) goto out_mt; memcpy(dst->mt, src->mt, src->rules * sizeof(*src->mt)); src++; dst++; } return new; out_mt: kvfree(dst->lt); out_lt: for (dst--; i > 0; i--) { kvfree(dst->mt); kvfree(dst->lt); dst--; } out_scratch_realloc: for_each_possible_cpu(i) pipapo_free_scratch(new, i); out_scratch: free_percpu(new->scratch); kfree(new); return ERR_PTR(-ENOMEM); } /** * pipapo_rules_same_key() - Get number of rules originated from the same entry * @f: Field containing mapping table * @first: Index of first rule in set of rules mapping to same entry * * Using the fact that all rules in a field that originated from the same entry * will map to the same set of rules in the next field, or to the same element * reference, return the cardinality of the set of rules that originated from * the same entry as the rule with index @first, @first rule included. * * In pictures: * rules * field #0 0 1 2 3 4 * map to: 0 1 2-4 2-4 5-9 * . . ....... . ... * | | | | \ \ * | | | | \ \ * | | | | \ \ * ' ' ' ' ' \ * in field #1 0 1 2 3 4 5 ... * * if this is called for rule 2 on field #0, it will return 3, as also rules 2 * and 3 in field 0 map to the same set of rules (2, 3, 4) in the next field. * * For the last field in a set, we can rely on associated entries to map to the * same element references. * * Return: Number of rules that originated from the same entry as @first. */ static int pipapo_rules_same_key(struct nft_pipapo_field *f, int first) { struct nft_pipapo_elem *e = NULL; /* Keep gcc happy */ int r; for (r = first; r < f->rules; r++) { if (r != first && e != f->mt[r].e) return r - first; e = f->mt[r].e; } if (r != first) return r - first; return 0; } /** * pipapo_unmap() - Remove rules from mapping tables, renumber remaining ones * @mt: Mapping array * @rules: Original amount of rules in mapping table * @start: First rule index to be removed * @n: Amount of rules to be removed * @to_offset: First rule index, in next field, this group of rules maps to * @is_last: If this is the last field, delete reference from mapping array * * This is used to unmap rules from the mapping table for a single field, * maintaining consistency and compactness for the existing ones. * * In pictures: let's assume that we want to delete rules 2 and 3 from the * following mapping array: * * rules * 0 1 2 3 4 * map to: 4-10 4-10 11-15 11-15 16-18 * * the result will be: * * rules * 0 1 2 * map to: 4-10 4-10 11-13 * * for fields before the last one. In case this is the mapping table for the * last field in a set, and rules map to pointers to &struct nft_pipapo_elem: * * rules * 0 1 2 3 4 * element pointers: 0x42 0x42 0x33 0x33 0x44 * * the result will be: * * rules * 0 1 2 * element pointers: 0x42 0x42 0x44 */ static void pipapo_unmap(union nft_pipapo_map_bucket *mt, int rules, int start, int n, int to_offset, bool is_last) { int i; memmove(mt + start, mt + start + n, (rules - start - n) * sizeof(*mt)); memset(mt + rules - n, 0, n * sizeof(*mt)); if (is_last) return; for (i = start; i < rules - n; i++) mt[i].to -= to_offset; } /** * pipapo_drop() - Delete entry from lookup and mapping tables, given rule map * @m: Matching data * @rulemap: Table of rule maps, arrays of first rule and amount of rules * in next field a given entry maps to, for each field * * For each rule in lookup table buckets mapping to this set of rules, drop * all bits set in lookup table mapping. In pictures, assuming we want to drop * rules 0 and 1 from this lookup table: * * bucket * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 * 0 0 1,2 * 1 1,2 0 * 2 0 1,2 * 3 0 1,2 * 4 0,1,2 * 5 0 1 2 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1 * * rule 2 becomes rule 0, and the result will be: * * bucket * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 * 0 0 * 1 0 * 2 0 * 3 0 * 4 0 * 5 0 * 6 0 * 7 0 0 * * once this is done, call unmap() to drop all the corresponding rule references * from mapping tables. */ static void pipapo_drop(struct nft_pipapo_match *m, union nft_pipapo_map_bucket rulemap[]) { struct nft_pipapo_field *f; int i; nft_pipapo_for_each_field(f, i, m) { int g; for (g = 0; g < f->groups; g++) { unsigned long *pos; int b; pos = NFT_PIPAPO_LT_ALIGN(f->lt) + g * NFT_PIPAPO_BUCKETS(f->bb) * f->bsize; for (b = 0; b < NFT_PIPAPO_BUCKETS(f->bb); b++) { bitmap_cut(pos, pos, rulemap[i].to, rulemap[i].n, f->bsize * BITS_PER_LONG); pos += f->bsize; } } pipapo_unmap(f->mt, f->rules, rulemap[i].to, rulemap[i].n, rulemap[i + 1].n, i == m->field_count - 1); if (pipapo_resize(f, f->rules, f->rules - rulemap[i].n)) { /* We can ignore this, a failure to shrink tables down * doesn't make tables invalid. */ ; } f->rules -= rulemap[i].n; pipapo_lt_bits_adjust(f); } } static void nft_pipapo_gc_deactivate(struct net *net, struct nft_set *set, struct nft_pipapo_elem *e) { nft_setelem_data_deactivate(net, set, &e->priv); } /** * pipapo_gc() - Drop expired entries from set, destroy start and end elements * @set: nftables API set representation * @m: Matching data */ static void pipapo_gc(struct nft_set *set, struct nft_pipapo_match *m) { struct nft_pipapo *priv = nft_set_priv(set); struct net *net = read_pnet(&set->net); u64 tstamp = nft_net_tstamp(net); int rules_f0, first_rule = 0; struct nft_pipapo_elem *e; struct nft_trans_gc *gc; gc = nft_trans_gc_alloc(set, 0, GFP_KERNEL); if (!gc) return; while ((rules_f0 = pipapo_rules_same_key(m->f, first_rule))) { union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS]; struct nft_pipapo_field *f; int i, start, rules_fx; start = first_rule; rules_fx = rules_f0; nft_pipapo_for_each_field(f, i, m) { rulemap[i].to = start; rulemap[i].n = rules_fx; if (i < m->field_count - 1) { rules_fx = f->mt[start].n; start = f->mt[start].to; } } /* Pick the last field, and its last index */ f--; i--; e = f->mt[rulemap[i].to].e; /* synchronous gc never fails, there is no need to set on * NFT_SET_ELEM_DEAD_BIT. */ if (__nft_set_elem_expired(&e->ext, tstamp)) { priv->dirty = true; gc = nft_trans_gc_queue_sync(gc, GFP_KERNEL); if (!gc) return; nft_pipapo_gc_deactivate(net, set, e); pipapo_drop(m, rulemap); nft_trans_gc_elem_add(gc, e); /* And check again current first rule, which is now the * first we haven't checked. */ } else { first_rule += rules_f0; } } gc = nft_trans_gc_catchall_sync(gc); if (gc) { nft_trans_gc_queue_sync_done(gc); priv->last_gc = jiffies; } } /** * pipapo_free_fields() - Free per-field tables contained in matching data * @m: Matching data */ static void pipapo_free_fields(struct nft_pipapo_match *m) { struct nft_pipapo_field *f; int i; nft_pipapo_for_each_field(f, i, m) { kvfree(f->lt); kvfree(f->mt); } } static void pipapo_free_match(struct nft_pipapo_match *m) { int i; for_each_possible_cpu(i) pipapo_free_scratch(m, i); free_percpu(m->scratch); pipapo_free_fields(m); kfree(m); } /** * pipapo_reclaim_match - RCU callback to free fields from old matching data * @rcu: RCU head */ static void pipapo_reclaim_match(struct rcu_head *rcu) { struct nft_pipapo_match *m; m = container_of(rcu, struct nft_pipapo_match, rcu); pipapo_free_match(m); } /** * nft_pipapo_commit() - Replace lookup data with current working copy * @set: nftables API set representation * * While at it, check if we should perform garbage collection on the working * copy before committing it for lookup, and don't replace the table if the * working copy doesn't have pending changes. * * We also need to create a new working copy for subsequent insertions and * deletions. */ static void nft_pipapo_commit(struct nft_set *set) { struct nft_pipapo *priv = nft_set_priv(set); struct nft_pipapo_match *new_clone, *old; if (time_after_eq(jiffies, priv->last_gc + nft_set_gc_interval(set))) pipapo_gc(set, priv->clone); if (!priv->dirty) return; new_clone = pipapo_clone(priv->clone); if (IS_ERR(new_clone)) return; priv->dirty = false; old = rcu_access_pointer(priv->match); rcu_assign_pointer(priv->match, priv->clone); if (old) call_rcu(&old->rcu, pipapo_reclaim_match); priv->clone = new_clone; } static bool nft_pipapo_transaction_mutex_held(const struct nft_set *set) { #ifdef CONFIG_PROVE_LOCKING const struct net *net = read_pnet(&set->net); return lockdep_is_held(&nft_pernet(net)->commit_mutex); #else return true; #endif } static void nft_pipapo_abort(const struct nft_set *set) { struct nft_pipapo *priv = nft_set_priv(set); struct nft_pipapo_match *new_clone, *m; if (!priv->dirty) return; m = rcu_dereference_protected(priv->match, nft_pipapo_transaction_mutex_held(set)); new_clone = pipapo_clone(m); if (IS_ERR(new_clone)) return; priv->dirty = false; pipapo_free_match(priv->clone); priv->clone = new_clone; } /** * nft_pipapo_activate() - Mark element reference as active given key, commit * @net: Network namespace * @set: nftables API set representation * @elem_priv: nftables API element representation containing key data * * On insertion, elements are added to a copy of the matching data currently * in use for lookups, and not directly inserted into current lookup data. Both * nft_pipapo_insert() and nft_pipapo_activate() are called once for each * element, hence we can't purpose either one as a real commit operation. */ static void nft_pipapo_activate(const struct net *net, const struct nft_set *set, struct nft_elem_priv *elem_priv) { struct nft_pipapo_elem *e = nft_elem_priv_cast(elem_priv); nft_set_elem_change_active(net, set, &e->ext); } /** * pipapo_deactivate() - Check that element is in set, mark as inactive * @net: Network namespace * @set: nftables API set representation * @data: Input key data * @ext: nftables API extension pointer, used to check for end element * * This is a convenience function that can be called from both * nft_pipapo_deactivate() and nft_pipapo_flush(), as they are in fact the same * operation. * * Return: deactivated element if found, NULL otherwise. */ static void *pipapo_deactivate(const struct net *net, const struct nft_set *set, const u8 *data, const struct nft_set_ext *ext) { struct nft_pipapo_elem *e; e = pipapo_get(net, set, data, nft_genmask_next(net), nft_net_tstamp(net)); if (IS_ERR(e)) return NULL; nft_set_elem_change_active(net, set, &e->ext); return e; } /** * nft_pipapo_deactivate() - Call pipapo_deactivate() to make element inactive * @net: Network namespace * @set: nftables API set representation * @elem: nftables API element representation containing key data * * Return: deactivated element if found, NULL otherwise. */ static struct nft_elem_priv * nft_pipapo_deactivate(const struct net *net, const struct nft_set *set, const struct nft_set_elem *elem) { const struct nft_set_ext *ext = nft_set_elem_ext(set, elem->priv); return pipapo_deactivate(net, set, (const u8 *)elem->key.val.data, ext); } /** * nft_pipapo_flush() - Call pipapo_deactivate() to make element inactive * @net: Network namespace * @set: nftables API set representation * @elem_priv: nftables API element representation containing key data * * This is functionally the same as nft_pipapo_deactivate(), with a slightly * different interface, and it's also called once for each element in a set * being flushed, so we can't implement, strictly speaking, a flush operation, * which would otherwise be as simple as allocating an empty copy of the * matching data. * * Note that we could in theory do that, mark the set as flushed, and ignore * subsequent calls, but we would leak all the elements after the first one, * because they wouldn't then be freed as result of API calls. * * Return: true if element was found and deactivated. */ static void nft_pipapo_flush(const struct net *net, const struct nft_set *set, struct nft_elem_priv *elem_priv) { struct nft_pipapo_elem *e = nft_elem_priv_cast(elem_priv); nft_set_elem_change_active(net, set, &e->ext); } /** * pipapo_get_boundaries() - Get byte interval for associated rules * @f: Field including lookup table * @first_rule: First rule (lowest index) * @rule_count: Number of associated rules * @left: Byte expression for left boundary (start of range) * @right: Byte expression for right boundary (end of range) * * Given the first rule and amount of rules that originated from the same entry, * build the original range associated with the entry, and calculate the length * of the originating netmask. * * In pictures: * * bucket * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 * 0 1,2 * 1 1,2 * 2 1,2 * 3 1,2 * 4 1,2 * 5 1 2 * 6 1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 * 7 1,2 1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 * * this is the lookup table corresponding to the IPv4 range * 192.168.1.0-192.168.2.1, which was expanded to the two composing netmasks, * rule #1: 192.168.1.0/24, and rule #2: 192.168.2.0/31. * * This function fills @left and @right with the byte values of the leftmost * and rightmost bucket indices for the lowest and highest rule indices, * respectively. If @first_rule is 1 and @rule_count is 2, we obtain, in * nibbles: * left: < 12, 0, 10, 8, 0, 1, 0, 0 > * right: < 12, 0, 10, 8, 0, 2, 2, 1 > * corresponding to bytes: * left: < 192, 168, 1, 0 > * right: < 192, 168, 2, 1 > * with mask length irrelevant here, unused on return, as the range is already * defined by its start and end points. The mask length is relevant for a single * ranged entry instead: if @first_rule is 1 and @rule_count is 1, we ignore * rule 2 above: @left becomes < 192, 168, 1, 0 >, @right becomes * < 192, 168, 1, 255 >, and the mask length, calculated from the distances * between leftmost and rightmost bucket indices for each group, would be 24. * * Return: mask length, in bits. */ static int pipapo_get_boundaries(struct nft_pipapo_field *f, int first_rule, int rule_count, u8 *left, u8 *right) { int g, mask_len = 0, bit_offset = 0; u8 *l = left, *r = right; for (g = 0; g < f->groups; g++) { int b, x0, x1; x0 = -1; x1 = -1; for (b = 0; b < NFT_PIPAPO_BUCKETS(f->bb); b++) { unsigned long *pos; pos = NFT_PIPAPO_LT_ALIGN(f->lt) + (g * NFT_PIPAPO_BUCKETS(f->bb) + b) * f->bsize; if (test_bit(first_rule, pos) && x0 == -1) x0 = b; if (test_bit(first_rule + rule_count - 1, pos)) x1 = b; } *l |= x0 << (BITS_PER_BYTE - f->bb - bit_offset); *r |= x1 << (BITS_PER_BYTE - f->bb - bit_offset); bit_offset += f->bb; if (bit_offset >= BITS_PER_BYTE) { bit_offset %= BITS_PER_BYTE; l++; r++; } if (x1 - x0 == 0) mask_len += 4; else if (x1 - x0 == 1) mask_len += 3; else if (x1 - x0 == 3) mask_len += 2; else if (x1 - x0 == 7) mask_len += 1; } return mask_len; } /** * pipapo_match_field() - Match rules against byte ranges * @f: Field including the lookup table * @first_rule: First of associated rules originating from same entry * @rule_count: Amount of associated rules * @start: Start of range to be matched * @end: End of range to be matched * * Return: true on match, false otherwise. */ static bool pipapo_match_field(struct nft_pipapo_field *f, int first_rule, int rule_count, const u8 *start, const u8 *end) { u8 right[NFT_PIPAPO_MAX_BYTES] = { 0 }; u8 left[NFT_PIPAPO_MAX_BYTES] = { 0 }; pipapo_get_boundaries(f, first_rule, rule_count, left, right); return !memcmp(start, left, f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)) && !memcmp(end, right, f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)); } /** * nft_pipapo_remove() - Remove element given key, commit * @net: Network namespace * @set: nftables API set representation * @elem_priv: nftables API element representation containing key data * * Similarly to nft_pipapo_activate(), this is used as commit operation by the * API, but it's called once per element in the pending transaction, so we can't * implement this as a single commit operation. Closest we can get is to remove * the matched element here, if any, and commit the updated matching data. */ static void nft_pipapo_remove(const struct net *net, const struct nft_set *set, struct nft_elem_priv *elem_priv) { struct nft_pipapo *priv = nft_set_priv(set); struct nft_pipapo_match *m = priv->clone; int rules_f0, first_rule = 0; struct nft_pipapo_elem *e; const u8 *data; e = nft_elem_priv_cast(elem_priv); data = (const u8 *)nft_set_ext_key(&e->ext); while ((rules_f0 = pipapo_rules_same_key(m->f, first_rule))) { union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS]; const u8 *match_start, *match_end; struct nft_pipapo_field *f; int i, start, rules_fx; match_start = data; if (nft_set_ext_exists(&e->ext, NFT_SET_EXT_KEY_END)) match_end = (const u8 *)nft_set_ext_key_end(&e->ext)->data; else match_end = data; start = first_rule; rules_fx = rules_f0; nft_pipapo_for_each_field(f, i, m) { if (!pipapo_match_field(f, start, rules_fx, match_start, match_end)) break; rulemap[i].to = start; rulemap[i].n = rules_fx; rules_fx = f->mt[start].n; start = f->mt[start].to; match_start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f); match_end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f); } if (i == m->field_count) { priv->dirty = true; pipapo_drop(m, rulemap); return; } first_rule += rules_f0; } } /** * nft_pipapo_walk() - Walk over elements * @ctx: nftables API context * @set: nftables API set representation * @iter: Iterator * * As elements are referenced in the mapping array for the last field, directly * scan that array: there's no need to follow rule mappings from the first * field. */ static void nft_pipapo_walk(const struct nft_ctx *ctx, struct nft_set *set, struct nft_set_iter *iter) { struct nft_pipapo *priv = nft_set_priv(set); struct net *net = read_pnet(&set->net); struct nft_pipapo_match *m; struct nft_pipapo_field *f; int i, r; rcu_read_lock(); if (iter->genmask == nft_genmask_cur(net)) m = rcu_dereference(priv->match); else m = priv->clone; if (unlikely(!m)) goto out; for (i = 0, f = m->f; i < m->field_count - 1; i++, f++) ; for (r = 0; r < f->rules; r++) { struct nft_pipapo_elem *e; if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e) continue; if (iter->count < iter->skip) goto cont; e = f->mt[r].e; if (!nft_set_elem_active(&e->ext, iter->genmask)) goto cont; iter->err = iter->fn(ctx, set, iter, &e->priv); if (iter->err < 0) goto out; cont: iter->count++; } out: rcu_read_unlock(); } /** * nft_pipapo_privsize() - Return the size of private data for the set * @nla: netlink attributes, ignored as size doesn't depend on them * @desc: Set description, ignored as size doesn't depend on it * * Return: size of private data for this set implementation, in bytes */ static u64 nft_pipapo_privsize(const struct nlattr * const nla[], const struct nft_set_desc *desc) { return sizeof(struct nft_pipapo); } /** * nft_pipapo_estimate() - Set size, space and lookup complexity * @desc: Set description, element count and field description used * @features: Flags: NFT_SET_INTERVAL needs to be there * @est: Storage for estimation data * * Return: true if set description is compatible, false otherwise */ static bool nft_pipapo_estimate(const struct nft_set_desc *desc, u32 features, struct nft_set_estimate *est) { if (!(features & NFT_SET_INTERVAL) || desc->field_count < NFT_PIPAPO_MIN_FIELDS) return false; est->size = pipapo_estimate_size(desc); if (!est->size) return false; est->lookup = NFT_SET_CLASS_O_LOG_N; est->space = NFT_SET_CLASS_O_N; return true; } /** * nft_pipapo_init() - Initialise data for a set instance * @set: nftables API set representation * @desc: Set description * @nla: netlink attributes * * Validate number and size of fields passed as NFTA_SET_DESC_CONCAT netlink * attributes, initialise internal set parameters, current instance of matching * data and a copy for subsequent insertions. * * Return: 0 on success, negative error code on failure. */ static int nft_pipapo_init(const struct nft_set *set, const struct nft_set_desc *desc, const struct nlattr * const nla[]) { struct nft_pipapo *priv = nft_set_priv(set); struct nft_pipapo_match *m; struct nft_pipapo_field *f; int err, i, field_count; BUILD_BUG_ON(offsetof(struct nft_pipapo_elem, priv) != 0); field_count = desc->field_count ? : 1; if (field_count > NFT_PIPAPO_MAX_FIELDS) return -EINVAL; m = kmalloc(struct_size(m, f, field_count), GFP_KERNEL); if (!m) return -ENOMEM; m->field_count = field_count; m->bsize_max = 0; m->scratch = alloc_percpu(struct nft_pipapo_scratch *); if (!m->scratch) { err = -ENOMEM; goto out_scratch; } for_each_possible_cpu(i) *per_cpu_ptr(m->scratch, i) = NULL; rcu_head_init(&m->rcu); nft_pipapo_for_each_field(f, i, m) { int len = desc->field_len[i] ? : set->klen; f->bb = NFT_PIPAPO_GROUP_BITS_INIT; f->groups = len * NFT_PIPAPO_GROUPS_PER_BYTE(f); priv->width += round_up(len, sizeof(u32)); f->bsize = 0; f->rules = 0; NFT_PIPAPO_LT_ASSIGN(f, NULL); f->mt = NULL; } /* Create an initial clone of matching data for next insertion */ priv->clone = pipapo_clone(m); if (IS_ERR(priv->clone)) { err = PTR_ERR(priv->clone); goto out_free; } priv->dirty = false; rcu_assign_pointer(priv->match, m); return 0; out_free: free_percpu(m->scratch); out_scratch: kfree(m); return err; } /** * nft_set_pipapo_match_destroy() - Destroy elements from key mapping array * @ctx: context * @set: nftables API set representation * @m: matching data pointing to key mapping array */ static void nft_set_pipapo_match_destroy(const struct nft_ctx *ctx, const struct nft_set *set, struct nft_pipapo_match *m) { struct nft_pipapo_field *f; int i, r; for (i = 0, f = m->f; i < m->field_count - 1; i++, f++) ; for (r = 0; r < f->rules; r++) { struct nft_pipapo_elem *e; if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e) continue; e = f->mt[r].e; nf_tables_set_elem_destroy(ctx, set, &e->priv); } } /** * nft_pipapo_destroy() - Free private data for set and all committed elements * @ctx: context * @set: nftables API set representation */ static void nft_pipapo_destroy(const struct nft_ctx *ctx, const struct nft_set *set) { struct nft_pipapo *priv = nft_set_priv(set); struct nft_pipapo_match *m; int cpu; m = rcu_dereference_protected(priv->match, true); if (m) { rcu_barrier(); nft_set_pipapo_match_destroy(ctx, set, m); for_each_possible_cpu(cpu) pipapo_free_scratch(m, cpu); free_percpu(m->scratch); pipapo_free_fields(m); kfree(m); priv->match = NULL; } if (priv->clone) { m = priv->clone; if (priv->dirty) nft_set_pipapo_match_destroy(ctx, set, m); for_each_possible_cpu(cpu) pipapo_free_scratch(priv->clone, cpu); free_percpu(priv->clone->scratch); pipapo_free_fields(priv->clone); kfree(priv->clone); priv->clone = NULL; } } /** * nft_pipapo_gc_init() - Initialise garbage collection * @set: nftables API set representation * * Instead of actually setting up a periodic work for garbage collection, as * this operation requires a swap of matching data with the working copy, we'll * do that opportunistically with other commit operations if the interval is * elapsed, so we just need to set the current jiffies timestamp here. */ static void nft_pipapo_gc_init(const struct nft_set *set) { struct nft_pipapo *priv = nft_set_priv(set); priv->last_gc = jiffies; } const struct nft_set_type nft_set_pipapo_type = { .features = NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT | NFT_SET_TIMEOUT, .ops = { .lookup = nft_pipapo_lookup, .insert = nft_pipapo_insert, .activate = nft_pipapo_activate, .deactivate = nft_pipapo_deactivate, .flush = nft_pipapo_flush, .remove = nft_pipapo_remove, .walk = nft_pipapo_walk, .get = nft_pipapo_get, .privsize = nft_pipapo_privsize, .estimate = nft_pipapo_estimate, .init = nft_pipapo_init, .destroy = nft_pipapo_destroy, .gc_init = nft_pipapo_gc_init, .commit = nft_pipapo_commit, .abort = nft_pipapo_abort, .elemsize = offsetof(struct nft_pipapo_elem, ext), }, }; #if defined(CONFIG_X86_64) && !defined(CONFIG_UML) const struct nft_set_type nft_set_pipapo_avx2_type = { .features = NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT | NFT_SET_TIMEOUT, .ops = { .lookup = nft_pipapo_avx2_lookup, .insert = nft_pipapo_insert, .activate = nft_pipapo_activate, .deactivate = nft_pipapo_deactivate, .flush = nft_pipapo_flush, .remove = nft_pipapo_remove, .walk = nft_pipapo_walk, .get = nft_pipapo_get, .privsize = nft_pipapo_privsize, .estimate = nft_pipapo_avx2_estimate, .init = nft_pipapo_init, .destroy = nft_pipapo_destroy, .gc_init = nft_pipapo_gc_init, .commit = nft_pipapo_commit, .abort = nft_pipapo_abort, .elemsize = offsetof(struct nft_pipapo_elem, ext), }, }; #endif |