Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 | // SPDX-License-Identifier: GPL-2.0 //! A kernel spinlock. //! //! This module allows Rust code to use the kernel's `spinlock_t`. use crate::bindings; /// Creates a [`SpinLock`] initialiser with the given name and a newly-created lock class. /// /// It uses the name if one is given, otherwise it generates one based on the file name and line /// number. #[macro_export] macro_rules! new_spinlock { ($inner:expr $(, $name:literal)? $(,)?) => { $crate::sync::SpinLock::new( $inner, $crate::optional_name!($($name)?), $crate::static_lock_class!()) }; } /// A spinlock. /// /// Exposes the kernel's [`spinlock_t`]. When multiple CPUs attempt to lock the same spinlock, only /// one at a time is allowed to progress, the others will block (spinning) until the spinlock is /// unlocked, at which point another CPU will be allowed to make progress. /// /// Instances of [`SpinLock`] need a lock class and to be pinned. The recommended way to create such /// instances is with the [`pin_init`](crate::pin_init) and [`new_spinlock`] macros. /// /// # Examples /// /// The following example shows how to declare, allocate and initialise a struct (`Example`) that /// contains an inner struct (`Inner`) that is protected by a spinlock. /// /// ``` /// use kernel::{init::InPlaceInit, init::PinInit, new_spinlock, pin_init, sync::SpinLock}; /// /// struct Inner { /// a: u32, /// b: u32, /// } /// /// #[pin_data] /// struct Example { /// c: u32, /// #[pin] /// d: SpinLock<Inner>, /// } /// /// impl Example { /// fn new() -> impl PinInit<Self> { /// pin_init!(Self { /// c: 10, /// d <- new_spinlock!(Inner { a: 20, b: 30 }), /// }) /// } /// } /// /// // Allocate a boxed `Example`. /// let e = Box::pin_init(Example::new())?; /// assert_eq!(e.c, 10); /// assert_eq!(e.d.lock().a, 20); /// assert_eq!(e.d.lock().b, 30); /// # Ok::<(), Error>(()) /// ``` /// /// The following example shows how to use interior mutability to modify the contents of a struct /// protected by a spinlock despite only having a shared reference: /// /// ``` /// use kernel::sync::SpinLock; /// /// struct Example { /// a: u32, /// b: u32, /// } /// /// fn example(m: &SpinLock<Example>) { /// let mut guard = m.lock(); /// guard.a += 10; /// guard.b += 20; /// } /// ``` /// /// [`spinlock_t`]: srctree/include/linux/spinlock.h pub type SpinLock<T> = super::Lock<T, SpinLockBackend>; /// A kernel `spinlock_t` lock backend. pub struct SpinLockBackend; // SAFETY: The underlying kernel `spinlock_t` object ensures mutual exclusion. `relock` uses the // default implementation that always calls the same locking method. unsafe impl super::Backend for SpinLockBackend { type State = bindings::spinlock_t; type GuardState = (); unsafe fn init( ptr: *mut Self::State, name: *const core::ffi::c_char, key: *mut bindings::lock_class_key, ) { // SAFETY: The safety requirements ensure that `ptr` is valid for writes, and `name` and // `key` are valid for read indefinitely. unsafe { bindings::__spin_lock_init(ptr, name, key) } } unsafe fn lock(ptr: *mut Self::State) -> Self::GuardState { // SAFETY: The safety requirements of this function ensure that `ptr` points to valid // memory, and that it has been initialised before. unsafe { bindings::spin_lock(ptr) } } unsafe fn unlock(ptr: *mut Self::State, _guard_state: &Self::GuardState) { // SAFETY: The safety requirements of this function ensure that `ptr` is valid and that the // caller is the owner of the mutex. unsafe { bindings::spin_unlock(ptr) } } } |