// SPDX-License-Identifier: GPL-2.0
/*
* bcachefs setup/teardown code, and some metadata io - read a superblock and
* figure out what to do with it.
*
* Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
* Copyright 2012 Google, Inc.
*/
#include "bcachefs.h"
#include "alloc_background.h"
#include "alloc_foreground.h"
#include "bkey_sort.h"
#include "btree_cache.h"
#include "btree_gc.h"
#include "btree_journal_iter.h"
#include "btree_key_cache.h"
#include "btree_update_interior.h"
#include "btree_io.h"
#include "btree_write_buffer.h"
#include "buckets_waiting_for_journal.h"
#include "chardev.h"
#include "checksum.h"
#include "clock.h"
#include "compress.h"
#include "debug.h"
#include "disk_groups.h"
#include "ec.h"
#include "errcode.h"
#include "error.h"
#include "fs.h"
#include "fs-io.h"
#include "fs-io-buffered.h"
#include "fs-io-direct.h"
#include "fsck.h"
#include "inode.h"
#include "io_read.h"
#include "io_write.h"
#include "journal.h"
#include "journal_reclaim.h"
#include "journal_seq_blacklist.h"
#include "move.h"
#include "migrate.h"
#include "movinggc.h"
#include "nocow_locking.h"
#include "quota.h"
#include "rebalance.h"
#include "recovery.h"
#include "replicas.h"
#include "sb-clean.h"
#include "sb-counters.h"
#include "sb-errors.h"
#include "sb-members.h"
#include "snapshot.h"
#include "subvolume.h"
#include "super.h"
#include "super-io.h"
#include "sysfs.h"
#include "trace.h"
#include <linux/backing-dev.h>
#include <linux/blkdev.h>
#include <linux/debugfs.h>
#include <linux/device.h>
#include <linux/idr.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/random.h>
#include <linux/sysfs.h>
#include <crypto/hash.h>
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
MODULE_DESCRIPTION("bcachefs filesystem");
MODULE_SOFTDEP("pre: crc32c");
MODULE_SOFTDEP("pre: crc64");
MODULE_SOFTDEP("pre: sha256");
MODULE_SOFTDEP("pre: chacha20");
MODULE_SOFTDEP("pre: poly1305");
MODULE_SOFTDEP("pre: xxhash");
const char * const bch2_fs_flag_strs[] = {
#define x(n) #n,
BCH_FS_FLAGS()
#undef x
NULL
};
void __bch2_print(struct bch_fs *c, const char *fmt, ...)
{
struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c);
va_list args;
va_start(args, fmt);
if (likely(!stdio)) {
vprintk(fmt, args);
} else {
unsigned long flags;
if (fmt[0] == KERN_SOH[0])
fmt += 2;
spin_lock_irqsave(&stdio->output_lock, flags);
prt_vprintf(&stdio->output_buf, fmt, args);
spin_unlock_irqrestore(&stdio->output_lock, flags);
wake_up(&stdio->output_wait);
}
va_end(args);
}
#define KTYPE(type) \
static const struct attribute_group type ## _group = { \
.attrs = type ## _files \
}; \
\
static const struct attribute_group *type ## _groups[] = { \
&type ## _group, \
NULL \
}; \
\
static const struct kobj_type type ## _ktype = { \
.release = type ## _release, \
.sysfs_ops = &type ## _sysfs_ops, \
.default_groups = type ## _groups \
}
static void bch2_fs_release(struct kobject *);
static void bch2_dev_release(struct kobject *);
static void bch2_fs_counters_release(struct kobject *k)
{
}
static void bch2_fs_internal_release(struct kobject *k)
{
}
static void bch2_fs_opts_dir_release(struct kobject *k)
{
}
static void bch2_fs_time_stats_release(struct kobject *k)
{
}
KTYPE(bch2_fs);
KTYPE(bch2_fs_counters);
KTYPE(bch2_fs_internal);
KTYPE(bch2_fs_opts_dir);
KTYPE(bch2_fs_time_stats);
KTYPE(bch2_dev);
static struct kset *bcachefs_kset;
static LIST_HEAD(bch_fs_list);
static DEFINE_MUTEX(bch_fs_list_lock);
DECLARE_WAIT_QUEUE_HEAD(bch2_read_only_wait);
static void bch2_dev_free(struct bch_dev *);
static int bch2_dev_alloc(struct bch_fs *, unsigned);
static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *);
static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *);
struct bch_fs *bch2_dev_to_fs(dev_t dev)
{
struct bch_fs *c;
mutex_lock(&bch_fs_list_lock);
rcu_read_lock();
list_for_each_entry(c, &bch_fs_list, list)
for_each_member_device_rcu(c, ca, NULL)
if (ca->disk_sb.bdev && ca->disk_sb.bdev->bd_dev == dev) {
closure_get(&c->cl);
goto found;
}
c = NULL;
found:
rcu_read_unlock();
mutex_unlock(&bch_fs_list_lock);
return c;
}
static struct bch_fs *__bch2_uuid_to_fs(__uuid_t uuid)
{
struct bch_fs *c;
lockdep_assert_held(&bch_fs_list_lock);
list_for_each_entry(c, &bch_fs_list, list)
if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid)))
return c;
return NULL;
}
struct bch_fs *bch2_uuid_to_fs(__uuid_t uuid)
{
struct bch_fs *c;
mutex_lock(&bch_fs_list_lock);
c = __bch2_uuid_to_fs(uuid);
if (c)
closure_get(&c->cl);
mutex_unlock(&bch_fs_list_lock);
return c;
}
static void bch2_dev_usage_journal_reserve(struct bch_fs *c)
{
unsigned nr = 0, u64s =
((sizeof(struct jset_entry_dev_usage) +
sizeof(struct jset_entry_dev_usage_type) * BCH_DATA_NR)) /
sizeof(u64);
rcu_read_lock();
for_each_member_device_rcu(c, ca, NULL)
nr++;
rcu_read_unlock();
bch2_journal_entry_res_resize(&c->journal,
&c->dev_usage_journal_res, u64s * nr);
}
/* Filesystem RO/RW: */
/*
* For startup/shutdown of RW stuff, the dependencies are:
*
* - foreground writes depend on copygc and rebalance (to free up space)
*
* - copygc and rebalance depend on mark and sweep gc (they actually probably
* don't because they either reserve ahead of time or don't block if
* allocations fail, but allocations can require mark and sweep gc to run
* because of generation number wraparound)
*
* - all of the above depends on the allocator threads
*
* - allocator depends on the journal (when it rewrites prios and gens)
*/
static void __bch2_fs_read_only(struct bch_fs *c)
{
unsigned clean_passes = 0;
u64 seq = 0;
bch2_fs_ec_stop(c);
bch2_open_buckets_stop(c, NULL, true);
bch2_rebalance_stop(c);
bch2_copygc_stop(c);
bch2_gc_thread_stop(c);
bch2_fs_ec_flush(c);
bch_verbose(c, "flushing journal and stopping allocators, journal seq %llu",
journal_cur_seq(&c->journal));
do {
clean_passes++;
if (bch2_btree_interior_updates_flush(c) ||
bch2_journal_flush_all_pins(&c->journal) ||
bch2_btree_flush_all_writes(c) ||
seq != atomic64_read(&c->journal.seq)) {
seq = atomic64_read(&c->journal.seq);
clean_passes = 0;
}
} while (clean_passes < 2);
bch_verbose(c, "flushing journal and stopping allocators complete, journal seq %llu",
journal_cur_seq(&c->journal));
if (test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags) &&
!test_bit(BCH_FS_emergency_ro, &c->flags))
set_bit(BCH_FS_clean_shutdown, &c->flags);
bch2_fs_journal_stop(&c->journal);
/*
* After stopping journal:
*/
for_each_member_device(c, ca)
bch2_dev_allocator_remove(c, ca);
}
#ifndef BCH_WRITE_REF_DEBUG
static void bch2_writes_disabled(struct percpu_ref *writes)
{
struct bch_fs *c = container_of(writes, struct bch_fs, writes);
set_bit(BCH_FS_write_disable_complete, &c->flags);
wake_up(&bch2_read_only_wait);
}
#endif
void bch2_fs_read_only(struct bch_fs *c)
{
if (!test_bit(BCH_FS_rw, &c->flags)) {
bch2_journal_reclaim_stop(&c->journal);
return;
}
BUG_ON(test_bit(BCH_FS_write_disable_complete, &c->flags));
bch_verbose(c, "going read-only");
/*
* Block new foreground-end write operations from starting - any new
* writes will return -EROFS:
*/
set_bit(BCH_FS_going_ro, &c->flags);
#ifndef BCH_WRITE_REF_DEBUG
percpu_ref_kill(&c->writes);
#else
for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++)
bch2_write_ref_put(c, i);
#endif
/*
* If we're not doing an emergency shutdown, we want to wait on
* outstanding writes to complete so they don't see spurious errors due
* to shutting down the allocator:
*
* If we are doing an emergency shutdown outstanding writes may
* hang until we shutdown the allocator so we don't want to wait
* on outstanding writes before shutting everything down - but
* we do need to wait on them before returning and signalling
* that going RO is complete:
*/
wait_event(bch2_read_only_wait,
test_bit(BCH_FS_write_disable_complete, &c->flags) ||
test_bit(BCH_FS_emergency_ro, &c->flags));
bool writes_disabled = test_bit(BCH_FS_write_disable_complete, &c->flags);
if (writes_disabled)
bch_verbose(c, "finished waiting for writes to stop");
__bch2_fs_read_only(c);
wait_event(bch2_read_only_wait,
test_bit(BCH_FS_write_disable_complete, &c->flags));
if (!writes_disabled)
bch_verbose(c, "finished waiting for writes to stop");
clear_bit(BCH_FS_write_disable_complete, &c->flags);
clear_bit(BCH_FS_going_ro, &c->flags);
clear_bit(BCH_FS_rw, &c->flags);
if (!bch2_journal_error(&c->journal) &&
!test_bit(BCH_FS_error, &c->flags) &&
!test_bit(BCH_FS_emergency_ro, &c->flags) &&
test_bit(BCH_FS_started, &c->flags) &&
test_bit(BCH_FS_clean_shutdown, &c->flags) &&
!c->opts.norecovery) {
BUG_ON(c->journal.last_empty_seq != journal_cur_seq(&c->journal));
BUG_ON(atomic_read(&c->btree_cache.dirty));
BUG_ON(atomic_long_read(&c->btree_key_cache.nr_dirty));
BUG_ON(c->btree_write_buffer.inc.keys.nr);
BUG_ON(c->btree_write_buffer.flushing.keys.nr);
bch_verbose(c, "marking filesystem clean");
bch2_fs_mark_clean(c);
} else {
bch_verbose(c, "done going read-only, filesystem not clean");
}
}
static void bch2_fs_read_only_work(struct work_struct *work)
{
struct bch_fs *c =
container_of(work, struct bch_fs, read_only_work);
down_write(&c->state_lock);
bch2_fs_read_only(c);
up_write(&c->state_lock);
}
static void bch2_fs_read_only_async(struct bch_fs *c)
{
queue_work(system_long_wq, &c->read_only_work);
}
bool bch2_fs_emergency_read_only(struct bch_fs *c)
{
bool ret = !test_and_set_bit(BCH_FS_emergency_ro, &c->flags);
bch2_journal_halt(&c->journal);
bch2_fs_read_only_async(c);
wake_up(&bch2_read_only_wait);
return ret;
}
static int bch2_fs_read_write_late(struct bch_fs *c)
{
int ret;
/*
* Data move operations can't run until after check_snapshots has
* completed, and bch2_snapshot_is_ancestor() is available.
*
* Ideally we'd start copygc/rebalance earlier instead of waiting for
* all of recovery/fsck to complete:
*/
ret = bch2_copygc_start(c);
if (ret) {
bch_err(c, "error starting copygc thread");
return ret;
}
ret = bch2_rebalance_start(c);
if (ret) {
bch_err(c, "error starting rebalance thread");
return ret;
}
return 0;
}
static int __bch2_fs_read_write(struct bch_fs *c, bool early)
{
int ret;
if (test_bit(BCH_FS_initial_gc_unfixed, &c->flags)) {
bch_err(c, "cannot go rw, unfixed btree errors");
return -BCH_ERR_erofs_unfixed_errors;
}
if (test_bit(BCH_FS_rw, &c->flags))
return 0;
bch_info(c, "going read-write");
ret = bch2_sb_members_v2_init(c);
if (ret)
goto err;
ret = bch2_fs_mark_dirty(c);
if (ret)
goto err;
clear_bit(BCH_FS_clean_shutdown, &c->flags);
/*
* First journal write must be a flush write: after a clean shutdown we
* don't read the journal, so the first journal write may end up
* overwriting whatever was there previously, and there must always be
* at least one non-flush write in the journal or recovery will fail:
*/
set_bit(JOURNAL_NEED_FLUSH_WRITE, &c->journal.flags);
for_each_rw_member(c, ca)
bch2_dev_allocator_add(c, ca);
bch2_recalc_capacity(c);
set_bit(BCH_FS_rw, &c->flags);
set_bit(BCH_FS_was_rw, &c->flags);
#ifndef BCH_WRITE_REF_DEBUG
percpu_ref_reinit(&c->writes);
#else
for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) {
BUG_ON(atomic_long_read(&c->writes[i]));
atomic_long_inc(&c->writes[i]);
}
#endif
ret = bch2_gc_thread_start(c);
if (ret) {
bch_err(c, "error starting gc thread");
return ret;
}
ret = bch2_journal_reclaim_start(&c->journal);
if (ret)
goto err;
if (!early) {
ret = bch2_fs_read_write_late(c);
if (ret)
goto err;
}
bch2_do_discards(c);
bch2_do_invalidates(c);
bch2_do_stripe_deletes(c);
bch2_do_pending_node_rewrites(c);
return 0;
err:
if (test_bit(BCH_FS_rw, &c->flags))
bch2_fs_read_only(c);
else
__bch2_fs_read_only(c);
return ret;
}
int bch2_fs_read_write(struct bch_fs *c)
{
if (c->opts.norecovery)
return -BCH_ERR_erofs_norecovery;
if (c->opts.nochanges)
return -BCH_ERR_erofs_nochanges;
return __bch2_fs_read_write(c, false);
}
int bch2_fs_read_write_early(struct bch_fs *c)
{
lockdep_assert_held(&c->state_lock);
return __bch2_fs_read_write(c, true);
}
/* Filesystem startup/shutdown: */
static void __bch2_fs_free(struct bch_fs *c)
{
unsigned i;
for (i = 0; i < BCH_TIME_STAT_NR; i++)
bch2_time_stats_exit(&c->times[i]);
bch2_free_pending_node_rewrites(c);
bch2_fs_sb_errors_exit(c);
bch2_fs_counters_exit(c);
bch2_fs_snapshots_exit(c);
bch2_fs_quota_exit(c);
bch2_fs_fs_io_direct_exit(c);
bch2_fs_fs_io_buffered_exit(c);
bch2_fs_fsio_exit(c);
bch2_fs_ec_exit(c);
bch2_fs_encryption_exit(c);
bch2_fs_nocow_locking_exit(c);
bch2_fs_io_write_exit(c);
bch2_fs_io_read_exit(c);
bch2_fs_buckets_waiting_for_journal_exit(c);
bch2_fs_btree_interior_update_exit(c);
bch2_fs_btree_iter_exit(c);
bch2_fs_btree_key_cache_exit(&c->btree_key_cache);
bch2_fs_btree_cache_exit(c);
bch2_fs_replicas_exit(c);
bch2_fs_journal_exit(&c->journal);
bch2_io_clock_exit(&c->io_clock[WRITE]);
bch2_io_clock_exit(&c->io_clock[READ]);
bch2_fs_compress_exit(c);
bch2_journal_keys_put_initial(c);
BUG_ON(atomic_read(&c->journal_keys.ref));
bch2_fs_btree_write_buffer_exit(c);
percpu_free_rwsem(&c->mark_lock);
free_percpu(c->online_reserved);
darray_exit(&c->btree_roots_extra);
free_percpu(c->pcpu);
mempool_exit(&c->large_bkey_pool);
mempool_exit(&c->btree_bounce_pool);
bioset_exit(&c->btree_bio);
mempool_exit(&c->fill_iter);
#ifndef BCH_WRITE_REF_DEBUG
percpu_ref_exit(&c->writes);
#endif
kfree(rcu_dereference_protected(c->disk_groups, 1));
kfree(c->journal_seq_blacklist_table);
kfree(c->unused_inode_hints);
if (c->write_ref_wq)
destroy_workqueue(c->write_ref_wq);
if (c->io_complete_wq)
destroy_workqueue(c->io_complete_wq);
if (c->copygc_wq)
destroy_workqueue(c->copygc_wq);
if (c->btree_io_complete_wq)
destroy_workqueue(c->btree_io_complete_wq);
if (c->btree_update_wq)
destroy_workqueue(c->btree_update_wq);
bch2_free_super(&c->disk_sb);
kvpfree(c, sizeof(*c));
module_put(THIS_MODULE);
}
static void bch2_fs_release(struct kobject *kobj)
{
struct bch_fs *c = container_of(kobj, struct bch_fs, kobj);
__bch2_fs_free(c);
}
void __bch2_fs_stop(struct bch_fs *c)
{
bch_verbose(c, "shutting down");
set_bit(BCH_FS_stopping, &c->flags);
cancel_work_sync(&c->journal_seq_blacklist_gc_work);
down_write(&c->state_lock);
bch2_fs_read_only(c);
up_write(&c->state_lock);
for_each_member_device(c, ca)
if (ca->kobj.state_in_sysfs &&
ca->disk_sb.bdev)
sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs");
if (c->kobj.state_in_sysfs)
kobject_del(&c->kobj);
bch2_fs_debug_exit(c);
bch2_fs_chardev_exit(c);
bch2_ro_ref_put(c);
wait_event(c->ro_ref_wait, !refcount_read(&c->ro_ref));
kobject_put(&c->counters_kobj);
kobject_put(&c->time_stats);
kobject_put(&c->opts_dir);
kobject_put(&c->internal);
/* btree prefetch might have kicked off reads in the background: */
bch2_btree_flush_all_reads(c);
for_each_member_device(c, ca)
cancel_work_sync(&ca->io_error_work);
cancel_work_sync(&c->read_only_work);
}
void bch2_fs_free(struct bch_fs *c)
{
unsigned i;
mutex_lock(&bch_fs_list_lock);
list_del(&c->list);
mutex_unlock(&bch_fs_list_lock);
closure_sync(&c->cl);
closure_debug_destroy(&c->cl);
for (i = 0; i < c->sb.nr_devices; i++) {
struct bch_dev *ca = rcu_dereference_protected(c->devs[i], true);
if (ca) {
bch2_free_super(&ca->disk_sb);
bch2_dev_free(ca);
}
}
bch_verbose(c, "shutdown complete");
kobject_put(&c->kobj);
}
void bch2_fs_stop(struct bch_fs *c)
{
__bch2_fs_stop(c);
bch2_fs_free(c);
}
static int bch2_fs_online(struct bch_fs *c)
{
int ret = 0;
lockdep_assert_held(&bch_fs_list_lock);
if (__bch2_uuid_to_fs(c->sb.uuid)) {
bch_err(c, "filesystem UUID already open");
return -EINVAL;
}
ret = bch2_fs_chardev_init(c);
if (ret) {
bch_err(c, "error creating character device");
return ret;
}
bch2_fs_debug_init(c);
ret = kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ?:
kobject_add(&c->internal, &c->kobj, "internal") ?:
kobject_add(&c->opts_dir, &c->kobj, "options") ?:
#ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
kobject_add(&c->time_stats, &c->kobj, "time_stats") ?:
#endif
kobject_add(&c->counters_kobj, &c->kobj, "counters") ?:
bch2_opts_create_sysfs_files(&c->opts_dir);
if (ret) {
bch_err(c, "error creating sysfs objects");
return ret;
}
down_write(&c->state_lock);
for_each_member_device(c, ca) {
ret = bch2_dev_sysfs_online(c, ca);
if (ret) {
bch_err(c, "error creating sysfs objects");
percpu_ref_put(&ca->ref);
goto err;
}
}
BUG_ON(!list_empty(&c->list));
list_add(&c->list, &bch_fs_list);
err:
up_write(&c->state_lock);
return ret;
}
static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts)
{
struct bch_fs *c;
struct printbuf name = PRINTBUF;
unsigned i, iter_size;
int ret = 0;
c = kvpmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO);
if (!c) {
c = ERR_PTR(-BCH_ERR_ENOMEM_fs_alloc);
goto out;
}
c->stdio = (void *)(unsigned long) opts.stdio;
__module_get(THIS_MODULE);
closure_init(&c->cl, NULL);
c->kobj.kset = bcachefs_kset;
kobject_init(&c->kobj, &bch2_fs_ktype);
kobject_init(&c->internal, &bch2_fs_internal_ktype);
kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype);
kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype);
kobject_init(&c->counters_kobj, &bch2_fs_counters_ktype);
c->minor = -1;
c->disk_sb.fs_sb = true;
init_rwsem(&c->state_lock);
mutex_init(&c->sb_lock);
mutex_init(&c->replicas_gc_lock);
mutex_init(&c->btree_root_lock);
INIT_WORK(&c->read_only_work, bch2_fs_read_only_work);
refcount_set(&c->ro_ref, 1);
init_waitqueue_head(&c->ro_ref_wait);
sema_init(&c->online_fsck_mutex, 1);
init_rwsem(&c->gc_lock);
mutex_init(&c->gc_gens_lock);
atomic_set(&c->journal_keys.ref, 1);
c->journal_keys.initial_ref_held = true;
for (i = 0; i < BCH_TIME_STAT_NR; i++)
bch2_time_stats_init(&c->times[i]);
bch2_fs_copygc_init(c);
bch2_fs_btree_key_cache_init_early(&c->btree_key_cache);
bch2_fs_btree_iter_init_early(c);
bch2_fs_btree_interior_update_init_early(c);
bch2_fs_allocator_background_init(c);
bch2_fs_allocator_foreground_init(c);
bch2_fs_rebalance_init(c);
bch2_fs_quota_init(c);
bch2_fs_ec_init_early(c);
bch2_fs_move_init(c);
bch2_fs_sb_errors_init_early(c);
INIT_LIST_HEAD(&c->list);
mutex_init(&c->usage_scratch_lock);
mutex_init(&c->bio_bounce_pages_lock);
mutex_init(&c->snapshot_table_lock);
init_rwsem(&c->snapshot_create_lock);
spin_lock_init(&c->btree_write_error_lock);
INIT_WORK(&c->journal_seq_blacklist_gc_work,
bch2_blacklist_entries_gc);
INIT_LIST_HEAD(&c->journal_iters);
INIT_LIST_HEAD(&c->fsck_error_msgs);
mutex_init(&c->fsck_error_msgs_lock);
seqcount_init(&c->gc_pos_lock);
seqcount_init(&c->usage_lock);
sema_init(&c->io_in_flight, 128);
INIT_LIST_HEAD(&c->vfs_inodes_list);
mutex_init(&c->vfs_inodes_lock);
c->copy_gc_enabled = 1;
c->rebalance.enabled = 1;
c->promote_whole_extents = true;
c->journal.flush_write_time = &c->times[BCH_TIME_journal_flush_write];
c->journal.noflush_write_time = &c->times[BCH_TIME_journal_noflush_write];
c->journal.flush_seq_time = &c->times[BCH_TIME_journal_flush_seq];
bch2_fs_btree_cache_init_early(&c->btree_cache);
mutex_init(&c->sectors_available_lock);
ret = percpu_init_rwsem(&c->mark_lock);
if (ret)
goto err;
mutex_lock(&c->sb_lock);
ret = bch2_sb_to_fs(c, sb);
mutex_unlock(&c->sb_lock);
if (ret)
goto err;
pr_uuid(&name, c->sb.user_uuid.b);
strscpy(c->name, name.buf, sizeof(c->name));
printbuf_exit(&name);
ret = name.allocation_failure ? -BCH_ERR_ENOMEM_fs_name_alloc : 0;
if (ret)
goto err;
/* Compat: */
if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 &&
!BCH_SB_JOURNAL_FLUSH_DELAY(sb))
SET_BCH_SB_JOURNAL_FLUSH_DELAY(sb, 1000);
if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 &&
!BCH_SB_JOURNAL_RECLAIM_DELAY(sb))
SET_BCH_SB_JOURNAL_RECLAIM_DELAY(sb, 100);
c->opts = bch2_opts_default;
ret = bch2_opts_from_sb(&c->opts, sb);
if (ret)
goto err;
bch2_opts_apply(&c->opts, opts);
c->btree_key_cache_btrees |= 1U << BTREE_ID_alloc;
if (c->opts.inodes_use_key_cache)
c->btree_key_cache_btrees |= 1U << BTREE_ID_inodes;
c->btree_key_cache_btrees |= 1U << BTREE_ID_logged_ops;
c->block_bits = ilog2(block_sectors(c));
c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c);
if (bch2_fs_init_fault("fs_alloc")) {
bch_err(c, "fs_alloc fault injected");
ret = -EFAULT;
goto err;
}
iter_size = sizeof(struct sort_iter) +
(btree_blocks(c) + 1) * 2 *
sizeof(struct sort_iter_set);
c->inode_shard_bits = ilog2(roundup_pow_of_two(num_possible_cpus()));
if (!(c->btree_update_wq = alloc_workqueue("bcachefs",
WQ_FREEZABLE|WQ_UNBOUND|WQ_MEM_RECLAIM, 512)) ||
!(c->btree_io_complete_wq = alloc_workqueue("bcachefs_btree_io",
WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) ||
!(c->copygc_wq = alloc_workqueue("bcachefs_copygc",
WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) ||
!(c->io_complete_wq = alloc_workqueue("bcachefs_io",
WQ_FREEZABLE|WQ_HIGHPRI|WQ_MEM_RECLAIM, 512)) ||
!(c->write_ref_wq = alloc_workqueue("bcachefs_write_ref",
WQ_FREEZABLE, 0)) ||
#ifndef BCH_WRITE_REF_DEBUG
percpu_ref_init(&c->writes, bch2_writes_disabled,
PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
#endif
mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
bioset_init(&c->btree_bio, 1,
max(offsetof(struct btree_read_bio, bio),
offsetof(struct btree_write_bio, wbio.bio)),
BIOSET_NEED_BVECS) ||
!(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) ||
!(c->online_reserved = alloc_percpu(u64)) ||
mempool_init_kvpmalloc_pool(&c->btree_bounce_pool, 1,
c->opts.btree_node_size) ||
mempool_init_kmalloc_pool(&c->large_bkey_pool, 1, 2048) ||
!(c->unused_inode_hints = kcalloc(1U << c->inode_shard_bits,
sizeof(u64), GFP_KERNEL))) {
ret = -BCH_ERR_ENOMEM_fs_other_alloc;
goto err;
}
ret = bch2_fs_counters_init(c) ?:
bch2_fs_sb_errors_init(c) ?:
bch2_io_clock_init(&c->io_clock[READ]) ?:
bch2_io_clock_init(&c->io_clock[WRITE]) ?:
bch2_fs_journal_init(&c->journal) ?:
bch2_fs_replicas_init(c) ?:
bch2_fs_btree_cache_init(c) ?:
bch2_fs_btree_key_cache_init(&c->btree_key_cache) ?:
bch2_fs_btree_iter_init(c) ?:
bch2_fs_btree_interior_update_init(c) ?:
bch2_fs_buckets_waiting_for_journal_init(c) ?:
bch2_fs_btree_write_buffer_init(c) ?:
bch2_fs_subvolumes_init(c) ?:
bch2_fs_io_read_init(c) ?:
bch2_fs_io_write_init(c) ?:
bch2_fs_nocow_locking_init(c) ?:
bch2_fs_encryption_init(c) ?:
bch2_fs_compress_init(c) ?:
bch2_fs_ec_init(c) ?:
bch2_fs_fsio_init(c) ?:
bch2_fs_fs_io_buffered_init(c) ?:
bch2_fs_fs_io_direct_init(c);
if (ret)
goto err;
for (i = 0; i < c->sb.nr_devices; i++)
if (bch2_dev_exists(c->disk_sb.sb, i) &&
bch2_dev_alloc(c, i)) {
ret = -EEXIST;
goto err;
}
bch2_journal_entry_res_resize(&c->journal,
&c->btree_root_journal_res,
BTREE_ID_NR * (JSET_KEYS_U64s + BKEY_BTREE_PTR_U64s_MAX));
bch2_dev_usage_journal_reserve(c);
bch2_journal_entry_res_resize(&c->journal,
&c->clock_journal_res,
(sizeof(struct jset_entry_clock) / sizeof(u64)) * 2);
mutex_lock(&bch_fs_list_lock);
ret = bch2_fs_online(c);
mutex_unlock(&bch_fs_list_lock);
if (ret)
goto err;
out:
return c;
err:
bch2_fs_free(c);
c = ERR_PTR(ret);
goto out;
}
noinline_for_stack
static void print_mount_opts(struct bch_fs *c)
{
enum bch_opt_id i;
struct printbuf p = PRINTBUF;
bool first = true;
prt_str(&p, "mounting version ");
bch2_version_to_text(&p, c->sb.version);
if (c->opts.read_only) {
prt_str(&p, " opts=");
first = false;
prt_printf(&p, "ro");
}
for (i = 0; i < bch2_opts_nr; i++) {
const struct bch_option *opt = &bch2_opt_table[i];
u64 v = bch2_opt_get_by_id(&c->opts, i);
if (!(opt->flags & OPT_MOUNT))
continue;
if (v == bch2_opt_get_by_id(&bch2_opts_default, i))
continue;
prt_str(&p, first ? " opts=" : ",");
first = false;
bch2_opt_to_text(&p, c, c->disk_sb.sb, opt, v, OPT_SHOW_MOUNT_STYLE);
}
bch_info(c, "%s", p.buf);
printbuf_exit(&p);
}
int bch2_fs_start(struct bch_fs *c)
{
time64_t now = ktime_get_real_seconds();
int ret;
print_mount_opts(c);
down_write(&c->state_lock);
BUG_ON(test_bit(BCH_FS_started, &c->flags));
mutex_lock(&c->sb_lock);
ret = bch2_sb_members_v2_init(c);
if (ret) {
mutex_unlock(&c->sb_lock);
goto err;
}
for_each_online_member(c, ca)
bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = cpu_to_le64(now);
mutex_unlock(&c->sb_lock);
for_each_rw_member(c, ca)
bch2_dev_allocator_add(c, ca);
bch2_recalc_capacity(c);
ret = BCH_SB_INITIALIZED(c->disk_sb.sb)
? bch2_fs_recovery(c)
: bch2_fs_initialize(c);
if (ret)
goto err;
ret = bch2_opts_check_may_set(c);
if (ret)
goto err;
if (bch2_fs_init_fault("fs_start")) {
bch_err(c, "fs_start fault injected");
ret = -EINVAL;
goto err;
}
set_bit(BCH_FS_started, &c->flags);
if (c->opts.read_only) {
bch2_fs_read_only(c);
} else {
ret = !test_bit(BCH_FS_rw, &c->flags)
? bch2_fs_read_write(c)
: bch2_fs_read_write_late(c);
if (ret)
goto err;
}
ret = 0;
err:
if (ret)
bch_err_msg(c, ret, "starting filesystem");
else
bch_verbose(c, "done starting filesystem");
up_write(&c->state_lock);
return ret;
}
static int bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c)
{
struct bch_member m = bch2_sb_member_get(sb, sb->dev_idx);
if (le16_to_cpu(sb->block_size) != block_sectors(c))
return -BCH_ERR_mismatched_block_size;
if (le16_to_cpu(m.bucket_size) <
BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb))
return -BCH_ERR_bucket_size_too_small;
return 0;
}
static int bch2_dev_in_fs(struct bch_sb_handle *fs,
struct bch_sb_handle *sb)
{
if (fs == sb)
return 0;
if (!uuid_equal(&fs->sb->uuid, &sb->sb->uuid))
return -BCH_ERR_device_not_a_member_of_filesystem;
if (!bch2_dev_exists(fs->sb, sb->sb->dev_idx))
return -BCH_ERR_device_has_been_removed;
if (fs->sb->block_size != sb->sb->block_size)
return -BCH_ERR_mismatched_block_size;
if (le16_to_cpu(fs->sb->version) < bcachefs_metadata_version_member_seq ||
le16_to_cpu(sb->sb->version) < bcachefs_metadata_version_member_seq)
return 0;
if (fs->sb->seq == sb->sb->seq &&
fs->sb->write_time != sb->sb->write_time) {
struct printbuf buf = PRINTBUF;
prt_str(&buf, "Split brain detected between ");
prt_bdevname(&buf, sb->bdev);
prt_str(&buf, " and ");
prt_bdevname(&buf, fs->bdev);
prt_char(&buf, ':');
prt_newline(&buf);
prt_printf(&buf, "seq=%llu but write_time different, got", le64_to_cpu(sb->sb->seq));
prt_newline(&buf);
prt_bdevname(&buf, fs->bdev);
prt_char(&buf, ' ');
bch2_prt_datetime(&buf, le64_to_cpu(fs->sb->write_time));;
prt_newline(&buf);
prt_bdevname(&buf, sb->bdev);
prt_char(&buf, ' ');
bch2_prt_datetime(&buf, le64_to_cpu(sb->sb->write_time));;
prt_newline(&buf);
prt_printf(&buf, "Not using older sb");
pr_err("%s", buf.buf);
printbuf_exit(&buf);
return -BCH_ERR_device_splitbrain;
}
struct bch_member m = bch2_sb_member_get(fs->sb, sb->sb->dev_idx);
u64 seq_from_fs = le64_to_cpu(m.seq);
u64 seq_from_member = le64_to_cpu(sb->sb->seq);
if (seq_from_fs && seq_from_fs < seq_from_member) {
struct printbuf buf = PRINTBUF;
prt_str(&buf, "Split brain detected between ");
prt_bdevname(&buf, sb->bdev);
prt_str(&buf, " and ");
prt_bdevname(&buf, fs->bdev);
prt_char(&buf, ':');
prt_newline(&buf);
prt_bdevname(&buf, fs->bdev);
prt_str(&buf, "believes seq of ");
prt_bdevname(&buf, sb->bdev);
prt_printf(&buf, " to be %llu, but ", seq_from_fs);
prt_bdevname(&buf, sb->bdev);
prt_printf(&buf, " has %llu\n", seq_from_member);
prt_str(&buf, "Not using ");
prt_bdevname(&buf, sb->bdev);
pr_err("%s", buf.buf);
printbuf_exit(&buf);
return -BCH_ERR_device_splitbrain;
}
return 0;
}
/* Device startup/shutdown: */
static void bch2_dev_release(struct kobject *kobj)
{
struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj);
kfree(ca);
}
static void bch2_dev_free(struct bch_dev *ca)
{
cancel_work_sync(&ca->io_error_work);
if (ca->kobj.state_in_sysfs &&
ca->disk_sb.bdev)
sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs");
if (ca->kobj.state_in_sysfs)
kobject_del(&ca->kobj);
bch2_free_super(&ca->disk_sb);
bch2_dev_journal_exit(ca);
free_percpu(ca->io_done);
bioset_exit(&ca->replica_set);
bch2_dev_buckets_free(ca);
free_page((unsigned long) ca->sb_read_scratch);
bch2_time_stats_exit(&ca->io_latency[WRITE]);
bch2_time_stats_exit(&ca->io_latency[READ]);
percpu_ref_exit(&ca->io_ref);
percpu_ref_exit(&ca->ref);
kobject_put(&ca->kobj);
}
static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca)
{
lockdep_assert_held(&c->state_lock);
if (percpu_ref_is_zero(&ca->io_ref))
return;
__bch2_dev_read_only(c, ca);
reinit_completion(&ca->io_ref_completion);
percpu_ref_kill(&ca->io_ref);
wait_for_completion(&ca->io_ref_completion);
if (ca->kobj.state_in_sysfs) {
sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs");
sysfs_remove_link(&ca->kobj, "block");
}
bch2_free_super(&ca->disk_sb);
bch2_dev_journal_exit(ca);
}
static void bch2_dev_ref_complete(struct percpu_ref *ref)
{
struct bch_dev *ca = container_of(ref, struct bch_dev, ref);
complete(&ca->ref_completion);
}
static void bch2_dev_io_ref_complete(struct percpu_ref *ref)
{
struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref);
complete(&ca->io_ref_completion);
}
static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca)
{
int ret;
if (!c->kobj.state_in_sysfs)
return 0;
if (!ca->kobj.state_in_sysfs) {
ret = kobject_add(&ca->kobj, &c->kobj,
"dev-%u", ca->dev_idx);
if (ret)
return ret;
}
if (ca->disk_sb.bdev) {
struct kobject *block = bdev_kobj(ca->disk_sb.bdev);
ret = sysfs_create_link(block, &ca->kobj, "bcachefs");
if (ret)
return ret;
ret = sysfs_create_link(&ca->kobj, block, "block");
if (ret)
return ret;
}
return 0;
}
static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c,
struct bch_member *member)
{
struct bch_dev *ca;
unsigned i;
ca = kzalloc(sizeof(*ca), GFP_KERNEL);
if (!ca)
return NULL;
kobject_init(&ca->kobj, &bch2_dev_ktype);
init_completion(&ca->ref_completion);
init_completion(&ca->io_ref_completion);
init_rwsem(&ca->bucket_lock);
INIT_WORK(&ca->io_error_work, bch2_io_error_work);
bch2_time_stats_init(&ca->io_latency[READ]);
bch2_time_stats_init(&ca->io_latency[WRITE]);
ca->mi = bch2_mi_to_cpu(member);
for (i = 0; i < ARRAY_SIZE(member->errors); i++)
atomic64_set(&ca->errors[i], le64_to_cpu(member->errors[i]));
ca->uuid = member->uuid;
ca->nr_btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE,
ca->mi.bucket_size / btree_sectors(c));
if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete,
0, GFP_KERNEL) ||
percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete,
PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
!(ca->sb_read_scratch = (void *) __get_free_page(GFP_KERNEL)) ||
bch2_dev_buckets_alloc(c, ca) ||
bioset_init(&ca->replica_set, 4,
offsetof(struct bch_write_bio, bio), 0) ||
!(ca->io_done = alloc_percpu(*ca->io_done)))
goto err;
return ca;
err:
bch2_dev_free(ca);
return NULL;
}
static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca,
unsigned dev_idx)
{
ca->dev_idx = dev_idx;
__set_bit(ca->dev_idx, ca->self.d);
scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx);
ca->fs = c;
rcu_assign_pointer(c->devs[ca->dev_idx], ca);
if (bch2_dev_sysfs_online(c, ca))
pr_warn("error creating sysfs objects");
}
static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx)
{
struct bch_member member = bch2_sb_member_get(c->disk_sb.sb, dev_idx);
struct bch_dev *ca = NULL;
int ret = 0;
if (bch2_fs_init_fault("dev_alloc"))
goto err;
ca = __bch2_dev_alloc(c, &member);
if (!ca)
goto err;
ca->fs = c;
bch2_dev_attach(c, ca, dev_idx);
return ret;
err:
if (ca)
bch2_dev_free(ca);
return -BCH_ERR_ENOMEM_dev_alloc;
}
static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb)
{
unsigned ret;
if (bch2_dev_is_online(ca)) {
bch_err(ca, "already have device online in slot %u",
sb->sb->dev_idx);
return -BCH_ERR_device_already_online;
}
if (get_capacity(sb->bdev->bd_disk) <
ca->mi.bucket_size * ca->mi.nbuckets) {
bch_err(ca, "cannot online: device too small");
return -BCH_ERR_device_size_too_small;
}
BUG_ON(!percpu_ref_is_zero(&ca->io_ref));
ret = bch2_dev_journal_init(ca, sb->sb);
if (ret)
return ret;
/* Commit: */
ca->disk_sb = *sb;
memset(sb, 0, sizeof(*sb));
ca->dev = ca->disk_sb.bdev->bd_dev;
percpu_ref_reinit(&ca->io_ref);
return 0;
}
static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb)
{
struct bch_dev *ca;
int ret;
lockdep_assert_held(&c->state_lock);
if (le64_to_cpu(sb->sb->seq) >
le64_to_cpu(c->disk_sb.sb->seq))
bch2_sb_to_fs(c, sb->sb);
BUG_ON(sb->sb->dev_idx >= c->sb.nr_devices ||
!c->devs[sb->sb->dev_idx]);
ca = bch_dev_locked(c, sb->sb->dev_idx);
ret = __bch2_dev_attach_bdev(ca, sb);
if (ret)
return ret;
bch2_dev_sysfs_online(c, ca);
struct printbuf name = PRINTBUF;
prt_bdevname(&name, ca->disk_sb.bdev);
if (c->sb.nr_devices == 1)
strscpy(c->name, name.buf, sizeof(c->name));
strscpy(ca->name, name.buf, sizeof(ca->name));
printbuf_exit(&name);
rebalance_wakeup(c);
return 0;
}
/* Device management: */
/*
* Note: this function is also used by the error paths - when a particular
* device sees an error, we call it to determine whether we can just set the
* device RO, or - if this function returns false - we'll set the whole
* filesystem RO:
*
* XXX: maybe we should be more explicit about whether we're changing state
* because we got an error or what have you?
*/
bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca,
enum bch_member_state new_state, int flags)
{
struct bch_devs_mask new_online_devs;
int nr_rw = 0, required;
lockdep_assert_held(&c->state_lock);
switch (new_state) {
case BCH_MEMBER_STATE_rw:
return true;
case BCH_MEMBER_STATE_ro:
if (ca->mi.state != BCH_MEMBER_STATE_rw)
return true;
/* do we have enough devices to write to? */
for_each_member_device(c, ca2)
if (ca2 != ca)
nr_rw += ca2->mi.state == BCH_MEMBER_STATE_rw;
required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED)
? c->opts.metadata_replicas
: metadata_replicas_required(c),
!(flags & BCH_FORCE_IF_DATA_DEGRADED)
? c->opts.data_replicas
: data_replicas_required(c));
return nr_rw >= required;
case BCH_MEMBER_STATE_failed:
case BCH_MEMBER_STATE_spare:
if (ca->mi.state != BCH_MEMBER_STATE_rw &&
ca->mi.state != BCH_MEMBER_STATE_ro)
return true;
/* do we have enough devices to read from? */
new_online_devs = bch2_online_devs(c);
__clear_bit(ca->dev_idx, new_online_devs.d);
return bch2_have_enough_devs(c, new_online_devs, flags, false);
default:
BUG();
}
}
static bool bch2_fs_may_start(struct bch_fs *c)
{
struct bch_dev *ca;
unsigned i, flags = 0;
if (c->opts.very_degraded)
flags |= BCH_FORCE_IF_DEGRADED|BCH_FORCE_IF_LOST;
if (c->opts.degraded)
flags |= BCH_FORCE_IF_DEGRADED;
if (!c->opts.degraded &&
!c->opts.very_degraded) {
mutex_lock(&c->sb_lock);
for (i = 0; i < c->disk_sb.sb->nr_devices; i++) {
if (!bch2_dev_exists(c->disk_sb.sb, i))
continue;
ca = bch_dev_locked(c, i);
if (!bch2_dev_is_online(ca) &&
(ca->mi.state == BCH_MEMBER_STATE_rw ||
ca->mi.state == BCH_MEMBER_STATE_ro)) {
mutex_unlock(&c->sb_lock);
return false;
}
}
mutex_unlock(&c->sb_lock);
}
return bch2_have_enough_devs(c, bch2_online_devs(c), flags, true);
}
static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca)
{
/*
* The allocator thread itself allocates btree nodes, so stop it first:
*/
bch2_dev_allocator_remove(c, ca);
bch2_dev_journal_stop(&c->journal, ca);
}
static void __bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca)
{
lockdep_assert_held(&c->state_lock);
BUG_ON(ca->mi.state != BCH_MEMBER_STATE_rw);
bch2_dev_allocator_add(c, ca);
bch2_recalc_capacity(c);
}
int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
enum bch_member_state new_state, int flags)
{
struct bch_member *m;
int ret = 0;
if (ca->mi.state == new_state)
return 0;
if (!bch2_dev_state_allowed(c, ca, new_state, flags))
return -BCH_ERR_device_state_not_allowed;
if (new_state != BCH_MEMBER_STATE_rw)
__bch2_dev_read_only(c, ca);
bch_notice(ca, "%s", bch2_member_states[new_state]);
mutex_lock(&c->sb_lock);
m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx);
SET_BCH_MEMBER_STATE(m, new_state);
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
if (new_state == BCH_MEMBER_STATE_rw)
__bch2_dev_read_write(c, ca);
rebalance_wakeup(c);
return ret;
}
int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
enum bch_member_state new_state, int flags)
{
int ret;
down_write(&c->state_lock);
ret = __bch2_dev_set_state(c, ca, new_state, flags);
up_write(&c->state_lock);
return ret;
}
/* Device add/removal: */
static int bch2_dev_remove_alloc(struct bch_fs *c, struct bch_dev *ca)
{
struct bpos start = POS(ca->dev_idx, 0);
struct bpos end = POS(ca->dev_idx, U64_MAX);
int ret;
/*
* We clear the LRU and need_discard btrees first so that we don't race
* with bch2_do_invalidates() and bch2_do_discards()
*/
ret = bch2_btree_delete_range(c, BTREE_ID_lru, start, end,
BTREE_TRIGGER_NORUN, NULL) ?:
bch2_btree_delete_range(c, BTREE_ID_need_discard, start, end,
BTREE_TRIGGER_NORUN, NULL) ?:
bch2_btree_delete_range(c, BTREE_ID_freespace, start, end,
BTREE_TRIGGER_NORUN, NULL) ?:
bch2_btree_delete_range(c, BTREE_ID_backpointers, start, end,
BTREE_TRIGGER_NORUN, NULL) ?:
bch2_btree_delete_range(c, BTREE_ID_alloc, start, end,
BTREE_TRIGGER_NORUN, NULL) ?:
bch2_btree_delete_range(c, BTREE_ID_bucket_gens, start, end,
BTREE_TRIGGER_NORUN, NULL);
bch_err_msg(c, ret, "removing dev alloc info");
return ret;
}
int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags)
{
struct bch_member *m;
unsigned dev_idx = ca->dev_idx, data;
int ret;
down_write(&c->state_lock);
/*
* We consume a reference to ca->ref, regardless of whether we succeed
* or fail:
*/
percpu_ref_put(&ca->ref);
if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) {
bch_err(ca, "Cannot remove without losing data");
ret = -BCH_ERR_device_state_not_allowed;
goto err;
}
__bch2_dev_read_only(c, ca);
ret = bch2_dev_data_drop(c, ca->dev_idx, flags);
bch_err_msg(ca, ret, "dropping data");
if (ret)
goto err;
ret = bch2_dev_remove_alloc(c, ca);
bch_err_msg(ca, ret, "deleting alloc info");
if (ret)
goto err;
ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx);
bch_err_msg(ca, ret, "flushing journal");
if (ret)
goto err;
ret = bch2_journal_flush(&c->journal);
bch_err(ca, "journal error");
if (ret)
goto err;
ret = bch2_replicas_gc2(c);
bch_err_msg(ca, ret, "in replicas_gc2()");
if (ret)
goto err;
data = bch2_dev_has_data(c, ca);
if (data) {
struct printbuf data_has = PRINTBUF;
prt_bitflags(&data_has, __bch2_data_types, data);
bch_err(ca, "Remove failed, still has data (%s)", data_has.buf);
printbuf_exit(&data_has);
ret = -EBUSY;
goto err;
}
__bch2_dev_offline(c, ca);
mutex_lock(&c->sb_lock);
rcu_assign_pointer(c->devs[ca->dev_idx], NULL);
mutex_unlock(&c->sb_lock);
percpu_ref_kill(&ca->ref);
wait_for_completion(&ca->ref_completion);
bch2_dev_free(ca);
/*
* At this point the device object has been removed in-core, but the
* on-disk journal might still refer to the device index via sb device
* usage entries. Recovery fails if it sees usage information for an
* invalid device. Flush journal pins to push the back of the journal
* past now invalid device index references before we update the
* superblock, but after the device object has been removed so any
* further journal writes elide usage info for the device.
*/
bch2_journal_flush_all_pins(&c->journal);
/*
* Free this device's slot in the bch_member array - all pointers to
* this device must be gone:
*/
mutex_lock(&c->sb_lock);
m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx);
memset(&m->uuid, 0, sizeof(m->uuid));
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
up_write(&c->state_lock);
bch2_dev_usage_journal_reserve(c);
return 0;
err:
if (ca->mi.state == BCH_MEMBER_STATE_rw &&
!percpu_ref_is_zero(&ca->io_ref))
__bch2_dev_read_write(c, ca);
up_write(&c->state_lock);
return ret;
}
/* Add new device to running filesystem: */
int bch2_dev_add(struct bch_fs *c, const char *path)
{
struct bch_opts opts = bch2_opts_empty();
struct bch_sb_handle sb;
struct bch_dev *ca = NULL;
struct bch_sb_field_members_v2 *mi;
struct bch_member dev_mi;
unsigned dev_idx, nr_devices, u64s;
struct printbuf errbuf = PRINTBUF;
struct printbuf label = PRINTBUF;
int ret;
ret = bch2_read_super(path, &opts, &sb);
bch_err_msg(c, ret, "reading super");
if (ret)
goto err;
dev_mi = bch2_sb_member_get(sb.sb, sb.sb->dev_idx);
if (BCH_MEMBER_GROUP(&dev_mi)) {
bch2_disk_path_to_text_sb(&label, sb.sb, BCH_MEMBER_GROUP(&dev_mi) - 1);
if (label.allocation_failure) {
ret = -ENOMEM;
goto err;
}
}
ret = bch2_dev_may_add(sb.sb, c);
if (ret)
goto err;
ca = __bch2_dev_alloc(c, &dev_mi);
if (!ca) {
ret = -ENOMEM;
goto err;
}
bch2_dev_usage_init(ca);
ret = __bch2_dev_attach_bdev(ca, &sb);
if (ret)
goto err;
ret = bch2_dev_journal_alloc(ca);
bch_err_msg(c, ret, "allocating journal");
if (ret)
goto err;
down_write(&c->state_lock);
mutex_lock(&c->sb_lock);
ret = bch2_sb_from_fs(c, ca);
bch_err_msg(c, ret, "setting up new superblock");
if (ret)
goto err_unlock;
if (dynamic_fault("bcachefs:add:no_slot"))
goto no_slot;
for (dev_idx = 0; dev_idx < BCH_SB_MEMBERS_MAX; dev_idx++)
if (!bch2_dev_exists(c->disk_sb.sb, dev_idx))
goto have_slot;
no_slot:
ret = -BCH_ERR_ENOSPC_sb_members;
bch_err_msg(c, ret, "setting up new superblock");
goto err_unlock;
have_slot:
nr_devices = max_t(unsigned, dev_idx + 1, c->sb.nr_devices);
mi = bch2_sb_field_get(c->disk_sb.sb, members_v2);
u64s = DIV_ROUND_UP(sizeof(struct bch_sb_field_members_v2) +
le16_to_cpu(mi->member_bytes) * nr_devices, sizeof(u64));
mi = bch2_sb_field_resize(&c->disk_sb, members_v2, u64s);
if (!mi) {
ret = -BCH_ERR_ENOSPC_sb_members;
bch_err_msg(c, ret, "setting up new superblock");
goto err_unlock;
}
struct bch_member *m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx);
/* success: */
*m = dev_mi;
m->last_mount = cpu_to_le64(ktime_get_real_seconds());
c->disk_sb.sb->nr_devices = nr_devices;
ca->disk_sb.sb->dev_idx = dev_idx;
bch2_dev_attach(c, ca, dev_idx);
if (BCH_MEMBER_GROUP(&dev_mi)) {
ret = __bch2_dev_group_set(c, ca, label.buf);
bch_err_msg(c, ret, "creating new label");
if (ret)
goto err_unlock;
}
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
bch2_dev_usage_journal_reserve(c);
ret = bch2_trans_mark_dev_sb(c, ca);
bch_err_msg(ca, ret, "marking new superblock");
if (ret)
goto err_late;
ret = bch2_fs_freespace_init(c);
bch_err_msg(ca, ret, "initializing free space");
if (ret)
goto err_late;
ca->new_fs_bucket_idx = 0;
if (ca->mi.state == BCH_MEMBER_STATE_rw)
__bch2_dev_read_write(c, ca);
up_write(&c->state_lock);
return 0;
err_unlock:
mutex_unlock(&c->sb_lock);
up_write(&c->state_lock);
err:
if (ca)
bch2_dev_free(ca);
bch2_free_super(&sb);
printbuf_exit(&label);
printbuf_exit(&errbuf);
bch_err_fn(c, ret);
return ret;
err_late:
up_write(&c->state_lock);
ca = NULL;
goto err;
}
/* Hot add existing device to running filesystem: */
int bch2_dev_online(struct bch_fs *c, const char *path)
{
struct bch_opts opts = bch2_opts_empty();
struct bch_sb_handle sb = { NULL };
struct bch_dev *ca;
unsigned dev_idx;
int ret;
down_write(&c->state_lock);
ret = bch2_read_super(path, &opts, &sb);
if (ret) {
up_write(&c->state_lock);
return ret;
}
dev_idx = sb.sb->dev_idx;
ret = bch2_dev_in_fs(&c->disk_sb, &sb);
bch_err_msg(c, ret, "bringing %s online", path);
if (ret)
goto err;
ret = bch2_dev_attach_bdev(c, &sb);
if (ret)
goto err;
ca = bch_dev_locked(c, dev_idx);
ret = bch2_trans_mark_dev_sb(c, ca);
bch_err_msg(c, ret, "bringing %s online: error from bch2_trans_mark_dev_sb", path);
if (ret)
goto err;
if (ca->mi.state == BCH_MEMBER_STATE_rw)
__bch2_dev_read_write(c, ca);
if (!ca->mi.freespace_initialized) {
ret = bch2_dev_freespace_init(c, ca, 0, ca->mi.nbuckets);
bch_err_msg(ca, ret, "initializing free space");
if (ret)
goto err;
}
if (!ca->journal.nr) {
ret = bch2_dev_journal_alloc(ca);
bch_err_msg(ca, ret, "allocating journal");
if (ret)
goto err;
}
mutex_lock(&c->sb_lock);
bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount =
cpu_to_le64(ktime_get_real_seconds());
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
up_write(&c->state_lock);
return 0;
err:
up_write(&c->state_lock);
bch2_free_super(&sb);
return ret;
}
int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags)
{
down_write(&c->state_lock);
if (!bch2_dev_is_online(ca)) {
bch_err(ca, "Already offline");
up_write(&c->state_lock);
return 0;
}
if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) {
bch_err(ca, "Cannot offline required disk");
up_write(&c->state_lock);
return -BCH_ERR_device_state_not_allowed;
}
__bch2_dev_offline(c, ca);
up_write(&c->state_lock);
return 0;
}
int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets)
{
struct bch_member *m;
u64 old_nbuckets;
int ret = 0;
down_write(&c->state_lock);
old_nbuckets = ca->mi.nbuckets;
if (nbuckets < ca->mi.nbuckets) {
bch_err(ca, "Cannot shrink yet");
ret = -EINVAL;
goto err;
}
if (bch2_dev_is_online(ca) &&
get_capacity(ca->disk_sb.bdev->bd_disk) <
ca->mi.bucket_size * nbuckets) {
bch_err(ca, "New size larger than device");
ret = -BCH_ERR_device_size_too_small;
goto err;
}
ret = bch2_dev_buckets_resize(c, ca, nbuckets);
bch_err_msg(ca, ret, "resizing buckets");
if (ret)
goto err;
ret = bch2_trans_mark_dev_sb(c, ca);
if (ret)
goto err;
mutex_lock(&c->sb_lock);
m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx);
m->nbuckets = cpu_to_le64(nbuckets);
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
if (ca->mi.freespace_initialized) {
ret = bch2_dev_freespace_init(c, ca, old_nbuckets, nbuckets);
if (ret)
goto err;
/*
* XXX: this is all wrong transactionally - we'll be able to do
* this correctly after the disk space accounting rewrite
*/
ca->usage_base->d[BCH_DATA_free].buckets += nbuckets - old_nbuckets;
}
bch2_recalc_capacity(c);
err:
up_write(&c->state_lock);
return ret;
}
/* return with ref on ca->ref: */
struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *name)
{
rcu_read_lock();
for_each_member_device_rcu(c, ca, NULL)
if (!strcmp(name, ca->name)) {
rcu_read_unlock();
return ca;
}
rcu_read_unlock();
return ERR_PTR(-BCH_ERR_ENOENT_dev_not_found);
}
/* Filesystem open: */
static inline int sb_cmp(struct bch_sb *l, struct bch_sb *r)
{
return cmp_int(le64_to_cpu(l->seq), le64_to_cpu(r->seq)) ?:
cmp_int(le64_to_cpu(l->write_time), le64_to_cpu(r->write_time));
}
struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices,
struct bch_opts opts)
{
DARRAY(struct bch_sb_handle) sbs = { 0 };
struct bch_fs *c = NULL;
struct bch_sb_handle *best = NULL;
struct printbuf errbuf = PRINTBUF;
int ret = 0;
if (!try_module_get(THIS_MODULE))
return ERR_PTR(-ENODEV);
if (!nr_devices) {
ret = -EINVAL;
goto err;
}
ret = darray_make_room(&sbs, nr_devices);
if (ret)
goto err;
for (unsigned i = 0; i < nr_devices; i++) {
struct bch_sb_handle sb = { NULL };
ret = bch2_read_super(devices[i], &opts, &sb);
if (ret)
goto err;
BUG_ON(darray_push(&sbs, sb));
}
if (opts.nochanges && !opts.read_only) {
ret = -BCH_ERR_erofs_nochanges;
goto err_print;
}
darray_for_each(sbs, sb)
if (!best || sb_cmp(sb->sb, best->sb) > 0)
best = sb;
darray_for_each_reverse(sbs, sb) {
ret = bch2_dev_in_fs(best, sb);
if (ret == -BCH_ERR_device_has_been_removed ||
ret == -BCH_ERR_device_splitbrain) {
bch2_free_super(sb);
darray_remove_item(&sbs, sb);
best -= best > sb;
ret = 0;
continue;
}
if (ret)
goto err_print;
}
c = bch2_fs_alloc(best->sb, opts);
ret = PTR_ERR_OR_ZERO(c);
if (ret)
goto err;
down_write(&c->state_lock);
darray_for_each(sbs, sb) {
ret = bch2_dev_attach_bdev(c, sb);
if (ret) {
up_write(&c->state_lock);
goto err;
}
}
up_write(&c->state_lock);
if (!bch2_fs_may_start(c)) {
ret = -BCH_ERR_insufficient_devices_to_start;
goto err_print;
}
if (!c->opts.nostart) {
ret = bch2_fs_start(c);
if (ret)
goto err;
}
out:
darray_for_each(sbs, sb)
bch2_free_super(sb);
darray_exit(&sbs);
printbuf_exit(&errbuf);
module_put(THIS_MODULE);
return c;
err_print:
pr_err("bch_fs_open err opening %s: %s",
devices[0], bch2_err_str(ret));
err:
if (!IS_ERR_OR_NULL(c))
bch2_fs_stop(c);
c = ERR_PTR(ret);
goto out;
}
/* Global interfaces/init */
static void bcachefs_exit(void)
{
bch2_debug_exit();
bch2_vfs_exit();
bch2_chardev_exit();
bch2_btree_key_cache_exit();
if (bcachefs_kset)
kset_unregister(bcachefs_kset);
}
static int __init bcachefs_init(void)
{
bch2_bkey_pack_test();
if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) ||
bch2_btree_key_cache_init() ||
bch2_chardev_init() ||
bch2_vfs_init() ||
bch2_debug_init())
goto err;
return 0;
err:
bcachefs_exit();
return -ENOMEM;
}
#define BCH_DEBUG_PARAM(name, description) \
bool bch2_##name; \
module_param_named(name, bch2_##name, bool, 0644); \
MODULE_PARM_DESC(name, description);
BCH_DEBUG_PARAMS()
#undef BCH_DEBUG_PARAM
__maybe_unused
static unsigned bch2_metadata_version = bcachefs_metadata_version_current;
module_param_named(version, bch2_metadata_version, uint, 0400);
module_exit(bcachefs_exit);
module_init(bcachefs_init);