Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
// SPDX-License-Identifier: GPL-2.0-only
/*
 * BU27034 ROHM Ambient Light Sensor
 *
 * Copyright (c) 2023, ROHM Semiconductor.
 * https://fscdn.rohm.com/en/products/databook/datasheet/ic/sensor/light/bu27034nuc-e.pdf
 */

#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/device.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/units.h>

#include <linux/iio/buffer.h>
#include <linux/iio/iio.h>
#include <linux/iio/iio-gts-helper.h>
#include <linux/iio/kfifo_buf.h>

#define BU27034_REG_SYSTEM_CONTROL	0x40
#define BU27034_MASK_SW_RESET		BIT(7)
#define BU27034_MASK_PART_ID		GENMASK(5, 0)
#define BU27034_ID			0x19
#define BU27034_REG_MODE_CONTROL1	0x41
#define BU27034_MASK_MEAS_MODE		GENMASK(2, 0)

#define BU27034_REG_MODE_CONTROL2	0x42
#define BU27034_MASK_D01_GAIN		GENMASK(7, 3)
#define BU27034_MASK_D2_GAIN_HI		GENMASK(7, 6)
#define BU27034_MASK_D2_GAIN_LO		GENMASK(2, 0)

#define BU27034_REG_MODE_CONTROL3	0x43
#define BU27034_REG_MODE_CONTROL4	0x44
#define BU27034_MASK_MEAS_EN		BIT(0)
#define BU27034_MASK_VALID		BIT(7)
#define BU27034_REG_DATA0_LO		0x50
#define BU27034_REG_DATA1_LO		0x52
#define BU27034_REG_DATA2_LO		0x54
#define BU27034_REG_DATA2_HI		0x55
#define BU27034_REG_MANUFACTURER_ID	0x92
#define BU27034_REG_MAX BU27034_REG_MANUFACTURER_ID

/*
 * The BU27034 does not have interrupt to trigger the data read when a
 * measurement has finished. Hence we poll the VALID bit in a thread. We will
 * try to wake the thread BU27034_MEAS_WAIT_PREMATURE_MS milliseconds before
 * the expected sampling time to prevent the drifting.
 *
 * If we constantly wake up a bit too late we would eventually skip a sample.
 * And because the sleep can't wake up _exactly_ at given time this would be
 * inevitable even if the sensor clock would be perfectly phase-locked to CPU
 * clock - which we can't say is the case.
 *
 * This is still fragile. No matter how big advance do we have, we will still
 * risk of losing a sample because things can in a rainy-day scenario be
 * delayed a lot. Yet, more we reserve the time for polling, more we also lose
 * the performance by spending cycles polling the register. So, selecting this
 * value is a balancing dance between severity of wasting CPU time and severity
 * of losing samples.
 *
 * In most cases losing the samples is not _that_ crucial because light levels
 * tend to change slowly.
 *
 * Other option that was pointed to me would be always sleeping 1/2 of the
 * measurement time, checking the VALID bit and just sleeping again if the bit
 * was not set. That should be pretty tolerant against missing samples due to
 * the scheduling delays while also not wasting much of cycles for polling.
 * Downside is that the time-stamps would be very inaccurate as the wake-up
 * would not really be tied to the sensor toggling the valid bit. This would also
 * result 'jumps' in the time-stamps when the delay drifted so that wake-up was
 * performed during the consecutive wake-ups (Or, when sensor and CPU clocks
 * were very different and scheduling the wake-ups was very close to given
 * timeout - and when the time-outs were very close to the actual sensor
 * sampling, Eg. once in a blue moon, two consecutive time-outs would occur
 * without having a sample ready).
 */
#define BU27034_MEAS_WAIT_PREMATURE_MS	5
#define BU27034_DATA_WAIT_TIME_US	1000
#define BU27034_TOTAL_DATA_WAIT_TIME_US (BU27034_MEAS_WAIT_PREMATURE_MS * 1000)

#define BU27034_RETRY_LIMIT 18

enum {
	BU27034_CHAN_ALS,
	BU27034_CHAN_DATA0,
	BU27034_CHAN_DATA1,
	BU27034_CHAN_DATA2,
	BU27034_NUM_CHANS
};

static const unsigned long bu27034_scan_masks[] = {
	GENMASK(BU27034_CHAN_DATA2, BU27034_CHAN_ALS), 0
};

/*
 * Available scales with gain 1x - 4096x, timings 55, 100, 200, 400 mS
 * Time impacts to gain: 1x, 2x, 4x, 8x.
 *
 * => Max total gain is HWGAIN * gain by integration time (8 * 4096) = 32768
 *
 * Using NANO precision for scale we must use scale 64x corresponding gain 1x
 * to avoid precision loss. (32x would result scale 976 562.5(nanos).
 */
#define BU27034_SCALE_1X	64

/* See the data sheet for the "Gain Setting" table */
#define BU27034_GSEL_1X		0x00 /* 00000 */
#define BU27034_GSEL_4X		0x08 /* 01000 */
#define BU27034_GSEL_16X	0x0a /* 01010 */
#define BU27034_GSEL_32X	0x0b /* 01011 */
#define BU27034_GSEL_64X	0x0c /* 01100 */
#define BU27034_GSEL_256X	0x18 /* 11000 */
#define BU27034_GSEL_512X	0x19 /* 11001 */
#define BU27034_GSEL_1024X	0x1a /* 11010 */
#define BU27034_GSEL_2048X	0x1b /* 11011 */
#define BU27034_GSEL_4096X	0x1c /* 11100 */

/* Available gain settings */
static const struct iio_gain_sel_pair bu27034_gains[] = {
	GAIN_SCALE_GAIN(1, BU27034_GSEL_1X),
	GAIN_SCALE_GAIN(4, BU27034_GSEL_4X),
	GAIN_SCALE_GAIN(16, BU27034_GSEL_16X),
	GAIN_SCALE_GAIN(32, BU27034_GSEL_32X),
	GAIN_SCALE_GAIN(64, BU27034_GSEL_64X),
	GAIN_SCALE_GAIN(256, BU27034_GSEL_256X),
	GAIN_SCALE_GAIN(512, BU27034_GSEL_512X),
	GAIN_SCALE_GAIN(1024, BU27034_GSEL_1024X),
	GAIN_SCALE_GAIN(2048, BU27034_GSEL_2048X),
	GAIN_SCALE_GAIN(4096, BU27034_GSEL_4096X),
};

/*
 * The IC has 5 modes for sampling time. 5 mS mode is exceptional as it limits
 * the data collection to data0-channel only and cuts the supported range to
 * 10 bit. It is not supported by the driver.
 *
 * "normal" modes are 55, 100, 200 and 400 mS modes - which do have direct
 * multiplying impact to the register values (similar to gain).
 *
 * This means that if meas-mode is changed for example from 400 => 200,
 * the scale is doubled. Eg, time impact to total gain is x1, x2, x4, x8.
 */
#define BU27034_MEAS_MODE_100MS		0
#define BU27034_MEAS_MODE_55MS		1
#define BU27034_MEAS_MODE_200MS		2
#define BU27034_MEAS_MODE_400MS		4

static const struct iio_itime_sel_mul bu27034_itimes[] = {
	GAIN_SCALE_ITIME_US(400000, BU27034_MEAS_MODE_400MS, 8),
	GAIN_SCALE_ITIME_US(200000, BU27034_MEAS_MODE_200MS, 4),
	GAIN_SCALE_ITIME_US(100000, BU27034_MEAS_MODE_100MS, 2),
	GAIN_SCALE_ITIME_US(55000, BU27034_MEAS_MODE_55MS, 1),
};

#define BU27034_CHAN_DATA(_name, _ch2)					\
{									\
	.type = IIO_INTENSITY,						\
	.channel = BU27034_CHAN_##_name,				\
	.channel2 = (_ch2),						\
	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
			      BIT(IIO_CHAN_INFO_SCALE),			\
	.info_mask_separate_available = BIT(IIO_CHAN_INFO_SCALE),	\
	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_INT_TIME),		\
	.info_mask_shared_by_all_available =				\
					BIT(IIO_CHAN_INFO_INT_TIME),	\
	.address = BU27034_REG_##_name##_LO,				\
	.scan_index = BU27034_CHAN_##_name,				\
	.scan_type = {							\
		.sign = 'u',						\
		.realbits = 16,						\
		.storagebits = 16,					\
		.endianness = IIO_LE,					\
	},								\
	.indexed = 1,							\
}

static const struct iio_chan_spec bu27034_channels[] = {
	{
		.type = IIO_LIGHT,
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
				      BIT(IIO_CHAN_INFO_SCALE),
		.channel = BU27034_CHAN_ALS,
		.scan_index = BU27034_CHAN_ALS,
		.scan_type = {
			.sign = 'u',
			.realbits = 32,
			.storagebits = 32,
			.endianness = IIO_CPU,
		},
	},
	/*
	 * The BU27034 DATA0 and DATA1 channels are both on the visible light
	 * area (mostly). The data0 sensitivity peaks at 500nm, DATA1 at 600nm.
	 * These wave lengths are pretty much on the border of colours making
	 * these a poor candidates for R/G/B standardization. Hence they're both
	 * marked as clear channels
	 */
	BU27034_CHAN_DATA(DATA0, IIO_MOD_LIGHT_CLEAR),
	BU27034_CHAN_DATA(DATA1, IIO_MOD_LIGHT_CLEAR),
	BU27034_CHAN_DATA(DATA2, IIO_MOD_LIGHT_IR),
	IIO_CHAN_SOFT_TIMESTAMP(4),
};

struct bu27034_data {
	struct regmap *regmap;
	struct device *dev;
	/*
	 * Protect gain and time during scale adjustment and data reading.
	 * Protect measurement enabling/disabling.
	 */
	struct mutex mutex;
	struct iio_gts gts;
	struct task_struct *task;
	__le16 raw[3];
	struct {
		u32 mlux;
		__le16 channels[3];
		s64 ts __aligned(8);
	} scan;
};

struct bu27034_result {
	u16 ch0;
	u16 ch1;
	u16 ch2;
};

static const struct regmap_range bu27034_volatile_ranges[] = {
	{
		.range_min = BU27034_REG_SYSTEM_CONTROL,
		.range_max = BU27034_REG_SYSTEM_CONTROL,
	}, {
		.range_min = BU27034_REG_MODE_CONTROL4,
		.range_max = BU27034_REG_MODE_CONTROL4,
	}, {
		.range_min = BU27034_REG_DATA0_LO,
		.range_max = BU27034_REG_DATA2_HI,
	},
};

static const struct regmap_access_table bu27034_volatile_regs = {
	.yes_ranges = &bu27034_volatile_ranges[0],
	.n_yes_ranges = ARRAY_SIZE(bu27034_volatile_ranges),
};

static const struct regmap_range bu27034_read_only_ranges[] = {
	{
		.range_min = BU27034_REG_DATA0_LO,
		.range_max = BU27034_REG_DATA2_HI,
	}, {
		.range_min = BU27034_REG_MANUFACTURER_ID,
		.range_max = BU27034_REG_MANUFACTURER_ID,
	}
};

static const struct regmap_access_table bu27034_ro_regs = {
	.no_ranges = &bu27034_read_only_ranges[0],
	.n_no_ranges = ARRAY_SIZE(bu27034_read_only_ranges),
};

static const struct regmap_config bu27034_regmap = {
	.reg_bits = 8,
	.val_bits = 8,
	.max_register = BU27034_REG_MAX,
	.cache_type = REGCACHE_RBTREE,
	.volatile_table = &bu27034_volatile_regs,
	.wr_table = &bu27034_ro_regs,
};

struct bu27034_gain_check {
	int old_gain;
	int new_gain;
	int chan;
};

static int bu27034_get_gain_sel(struct bu27034_data *data, int chan)
{
	int ret, val;

	switch (chan) {
	case BU27034_CHAN_DATA0:
	case BU27034_CHAN_DATA1:
	{
		int reg[] = {
			[BU27034_CHAN_DATA0] = BU27034_REG_MODE_CONTROL2,
			[BU27034_CHAN_DATA1] = BU27034_REG_MODE_CONTROL3,
		};
		ret = regmap_read(data->regmap, reg[chan], &val);
		if (ret)
			return ret;

		return FIELD_GET(BU27034_MASK_D01_GAIN, val);
	}
	case BU27034_CHAN_DATA2:
	{
		int d2_lo_bits = fls(BU27034_MASK_D2_GAIN_LO);

		ret = regmap_read(data->regmap, BU27034_REG_MODE_CONTROL2, &val);
		if (ret)
			return ret;

		/*
		 * The data2 channel gain is composed by 5 non continuous bits
		 * [7:6], [2:0]. Thus when we combine the 5-bit 'selector'
		 * from register value we must right shift the high bits by 3.
		 */
		return FIELD_GET(BU27034_MASK_D2_GAIN_HI, val) << d2_lo_bits |
		       FIELD_GET(BU27034_MASK_D2_GAIN_LO, val);
	}
	default:
		return -EINVAL;
	}
}

static int bu27034_get_gain(struct bu27034_data *data, int chan, int *gain)
{
	int ret, sel;

	ret = bu27034_get_gain_sel(data, chan);
	if (ret < 0)
		return ret;

	sel = ret;

	ret = iio_gts_find_gain_by_sel(&data->gts, sel);
	if (ret < 0) {
		dev_err(data->dev, "chan %u: unknown gain value 0x%x\n", chan,
			sel);

		return ret;
	}

	*gain = ret;

	return 0;
}

static int bu27034_get_int_time(struct bu27034_data *data)
{
	int ret, sel;

	ret = regmap_read(data->regmap, BU27034_REG_MODE_CONTROL1, &sel);
	if (ret)
		return ret;

	return iio_gts_find_int_time_by_sel(&data->gts,
					    sel & BU27034_MASK_MEAS_MODE);
}

static int _bu27034_get_scale(struct bu27034_data *data, int channel, int *val,
			      int *val2)
{
	int gain, ret;

	ret = bu27034_get_gain(data, channel, &gain);
	if (ret)
		return ret;

	ret = bu27034_get_int_time(data);
	if (ret < 0)
		return ret;

	return iio_gts_get_scale(&data->gts, gain, ret, val, val2);
}

static int bu27034_get_scale(struct bu27034_data *data, int channel, int *val,
			      int *val2)
{
	int ret;

	if (channel == BU27034_CHAN_ALS) {
		*val = 0;
		*val2 = 1000;
		return IIO_VAL_INT_PLUS_MICRO;
	}

	mutex_lock(&data->mutex);
	ret = _bu27034_get_scale(data, channel, val, val2);
	mutex_unlock(&data->mutex);
	if (ret)
		return ret;

	return IIO_VAL_INT_PLUS_NANO;
}

/* Caller should hold the lock to protect lux reading */
static int bu27034_write_gain_sel(struct bu27034_data *data, int chan, int sel)
{
	static const int reg[] = {
		[BU27034_CHAN_DATA0] = BU27034_REG_MODE_CONTROL2,
		[BU27034_CHAN_DATA1] = BU27034_REG_MODE_CONTROL3,
	};
	int mask, val;

	if (chan != BU27034_CHAN_DATA0 && chan != BU27034_CHAN_DATA1)
		return -EINVAL;

	val = FIELD_PREP(BU27034_MASK_D01_GAIN, sel);

	mask = BU27034_MASK_D01_GAIN;

	if (chan == BU27034_CHAN_DATA0) {
		/*
		 * We keep the same gain for channel 2 as we set for channel 0
		 * We can't allow them to be individually controlled because
		 * setting one will impact also the other. Also, if we don't
		 * always update both gains we may result unsupported bit
		 * combinations.
		 *
		 * This is not nice but this is yet another place where the
		 * user space must be prepared to surprizes. Namely, see chan 2
		 * gain changed when chan 0 gain is changed.
		 *
		 * This is not fatal for most users though. I don't expect the
		 * channel 2 to be used in any generic cases - the intensity
		 * values provided by the sensor for IR area are not openly
		 * documented. Also, channel 2 is not used for visible light.
		 *
		 * So, if there is application which is written to utilize the
		 * channel 2 - then it is probably specifically targeted to this
		 * sensor and knows how to utilize those values. It is safe to
		 * hope such user can also cope with the gain changes.
		 */
		mask |=  BU27034_MASK_D2_GAIN_LO;

		/*
		 * The D2 gain bits are directly the lowest bits of selector.
		 * Just do add those bits to the value
		 */
		val |= sel & BU27034_MASK_D2_GAIN_LO;
	}

	return regmap_update_bits(data->regmap, reg[chan], mask, val);
}

static int bu27034_set_gain(struct bu27034_data *data, int chan, int gain)
{
	int ret;

	/*
	 * We don't allow setting channel 2 gain as it messes up the
	 * gain for channel 0 - which shares the high bits
	 */
	if (chan != BU27034_CHAN_DATA0 && chan != BU27034_CHAN_DATA1)
		return -EINVAL;

	ret = iio_gts_find_sel_by_gain(&data->gts, gain);
	if (ret < 0)
		return ret;

	return bu27034_write_gain_sel(data, chan, ret);
}

/* Caller should hold the lock to protect data->int_time */
static int bu27034_set_int_time(struct bu27034_data *data, int time)
{
	int ret;

	ret = iio_gts_find_sel_by_int_time(&data->gts, time);
	if (ret < 0)
		return ret;

	return regmap_update_bits(data->regmap, BU27034_REG_MODE_CONTROL1,
				 BU27034_MASK_MEAS_MODE, ret);
}

/*
 * We try to change the time in such way that the scale is maintained for
 * given channels by adjusting gain so that it compensates the time change.
 */
static int bu27034_try_set_int_time(struct bu27034_data *data, int time_us)
{
	struct bu27034_gain_check gains[] = {
		{ .chan = BU27034_CHAN_DATA0 },
		{ .chan = BU27034_CHAN_DATA1 },
	};
	int numg = ARRAY_SIZE(gains);
	int ret, int_time_old, i;

	mutex_lock(&data->mutex);
	ret = bu27034_get_int_time(data);
	if (ret < 0)
		goto unlock_out;

	int_time_old = ret;

	if (!iio_gts_valid_time(&data->gts, time_us)) {
		dev_err(data->dev, "Unsupported integration time %u\n",
			time_us);
		ret = -EINVAL;

		goto unlock_out;
	}

	if (time_us == int_time_old) {
		ret = 0;
		goto unlock_out;
	}

	for (i = 0; i < numg; i++) {
		ret = bu27034_get_gain(data, gains[i].chan, &gains[i].old_gain);
		if (ret)
			goto unlock_out;

		ret = iio_gts_find_new_gain_by_old_gain_time(&data->gts,
							     gains[i].old_gain,
							     int_time_old, time_us,
							     &gains[i].new_gain);
		if (ret) {
			int scale1, scale2;
			bool ok;

			_bu27034_get_scale(data, gains[i].chan, &scale1, &scale2);
			dev_dbg(data->dev,
				"chan %u, can't support time %u with scale %u %u\n",
				gains[i].chan, time_us, scale1, scale2);

			if (gains[i].new_gain < 0)
				goto unlock_out;

			/*
			 * If caller requests for integration time change and we
			 * can't support the scale - then the caller should be
			 * prepared to 'pick up the pieces and deal with the
			 * fact that the scale changed'.
			 */
			ret = iio_find_closest_gain_low(&data->gts,
							gains[i].new_gain, &ok);

			if (!ok)
				dev_dbg(data->dev,
					"optimal gain out of range for chan %u\n",
					gains[i].chan);

			if (ret < 0) {
				dev_dbg(data->dev,
					 "Total gain increase. Risk of saturation");
				ret = iio_gts_get_min_gain(&data->gts);
				if (ret < 0)
					goto unlock_out;
			}
			dev_dbg(data->dev, "chan %u scale changed\n",
				 gains[i].chan);
			gains[i].new_gain = ret;
			dev_dbg(data->dev, "chan %u new gain %u\n",
				gains[i].chan, gains[i].new_gain);
		}
	}

	for (i = 0; i < numg; i++) {
		ret = bu27034_set_gain(data, gains[i].chan, gains[i].new_gain);
		if (ret)
			goto unlock_out;
	}

	ret = bu27034_set_int_time(data, time_us);

unlock_out:
	mutex_unlock(&data->mutex);

	return ret;
}

static int bu27034_set_scale(struct bu27034_data *data, int chan,
			    int val, int val2)
{
	int ret, time_sel, gain_sel, i;
	bool found = false;

	if (chan == BU27034_CHAN_DATA2)
		return -EINVAL;

	if (chan == BU27034_CHAN_ALS) {
		if (val == 0 && val2 == 1000000)
			return 0;

		return -EINVAL;
	}

	mutex_lock(&data->mutex);
	ret = regmap_read(data->regmap, BU27034_REG_MODE_CONTROL1, &time_sel);
	if (ret)
		goto unlock_out;

	ret = iio_gts_find_gain_sel_for_scale_using_time(&data->gts, time_sel,
						val, val2, &gain_sel);
	if (ret) {
		/*
		 * Could not support scale with given time. Need to change time.
		 * We still want to maintain the scale for all channels
		 */
		struct bu27034_gain_check gain;
		int new_time_sel;

		/*
		 * Populate information for the other channel which should also
		 * maintain the scale. (Due to the HW limitations the chan2
		 * gets the same gain as chan0, so we only need to explicitly
		 * set the chan 0 and 1).
		 */
		if (chan == BU27034_CHAN_DATA0)
			gain.chan = BU27034_CHAN_DATA1;
		else if (chan == BU27034_CHAN_DATA1)
			gain.chan = BU27034_CHAN_DATA0;

		ret = bu27034_get_gain(data, gain.chan, &gain.old_gain);
		if (ret)
			goto unlock_out;

		/*
		 * Iterate through all the times to see if we find one which
		 * can support requested scale for requested channel, while
		 * maintaining the scale for other channels
		 */
		for (i = 0; i < data->gts.num_itime; i++) {
			new_time_sel = data->gts.itime_table[i].sel;

			if (new_time_sel == time_sel)
				continue;

			/* Can we provide requested scale with this time? */
			ret = iio_gts_find_gain_sel_for_scale_using_time(
				&data->gts, new_time_sel, val, val2,
				&gain_sel);
			if (ret)
				continue;

			/* Can the other channel(s) maintain scale? */
			ret = iio_gts_find_new_gain_sel_by_old_gain_time(
				&data->gts, gain.old_gain, time_sel,
				new_time_sel, &gain.new_gain);
			if (!ret) {
				/* Yes - we found suitable time */
				found = true;
				break;
			}
		}
		if (!found) {
			dev_dbg(data->dev,
				"Can't set scale maintaining other channels\n");
			ret = -EINVAL;

			goto unlock_out;
		}

		ret = bu27034_set_gain(data, gain.chan, gain.new_gain);
		if (ret)
			goto unlock_out;

		ret = regmap_update_bits(data->regmap, BU27034_REG_MODE_CONTROL1,
				  BU27034_MASK_MEAS_MODE, new_time_sel);
		if (ret)
			goto unlock_out;
	}

	ret = bu27034_write_gain_sel(data, chan, gain_sel);
unlock_out:
	mutex_unlock(&data->mutex);

	return ret;
}

/*
 * for (D1/D0 < 0.87):
 * lx = 0.004521097 * D1 - 0.002663996 * D0 +
 *	0.00012213 * D1 * D1 / D0
 *
 * =>	115.7400832 * ch1 / gain1 / mt -
 *	68.1982976 * ch0 / gain0 / mt +
 *	0.00012213 * 25600 * (ch1 / gain1 / mt) * 25600 *
 *	(ch1 /gain1 / mt) / (25600 * ch0 / gain0 / mt)
 *
 * A =	0.00012213 * 25600 * (ch1 /gain1 / mt) * 25600 *
 *	(ch1 /gain1 / mt) / (25600 * ch0 / gain0 / mt)
 * =>	0.00012213 * 25600 * (ch1 /gain1 / mt) *
 *	(ch1 /gain1 / mt) / (ch0 / gain0 / mt)
 * =>	0.00012213 * 25600 * (ch1 / gain1) * (ch1 /gain1 / mt) /
 *	(ch0 / gain0)
 * =>	0.00012213 * 25600 * (ch1 / gain1) * (ch1 /gain1 / mt) *
 *	gain0 / ch0
 * =>	3.126528 * ch1 * ch1 * gain0 / gain1 / gain1 / mt /ch0
 *
 * lx = (115.7400832 * ch1 / gain1 - 68.1982976 * ch0 / gain0) /
 *	mt + A
 * =>	(115.7400832 * ch1 / gain1 - 68.1982976 * ch0 / gain0) /
 *	mt + 3.126528 * ch1 * ch1 * gain0 / gain1 / gain1 / mt /
 *	ch0
 *
 * =>	(115.7400832 * ch1 / gain1 - 68.1982976 * ch0 / gain0 +
 *	  3.126528 * ch1 * ch1 * gain0 / gain1 / gain1 / ch0) /
 *	  mt
 *
 * For (0.87 <= D1/D0 < 1.00)
 * lx = (0.001331* D0 + 0.0000354 * D1) * ((D1/D0 – 0.87) * (0.385) + 1)
 * =>	(0.001331 * 256 * 100 * ch0 / gain0 / mt + 0.0000354 * 256 *
 *	100 * ch1 / gain1 / mt) * ((D1/D0 -  0.87) * (0.385) + 1)
 * =>	(34.0736 * ch0 / gain0 / mt + 0.90624 * ch1 / gain1 / mt) *
 *	((D1/D0 -  0.87) * (0.385) + 1)
 * =>	(34.0736 * ch0 / gain0 / mt + 0.90624 * ch1 / gain1 / mt) *
 *	(0.385 * D1/D0 - 0.66505)
 * =>	(34.0736 * ch0 / gain0 / mt + 0.90624 * ch1 / gain1 / mt) *
 *	(0.385 * 256 * 100 * ch1 / gain1 / mt / (256 * 100 * ch0 / gain0 / mt) - 0.66505)
 * =>	(34.0736 * ch0 / gain0 / mt + 0.90624 * ch1 / gain1 / mt) *
 *	(9856 * ch1 / gain1 / mt / (25600 * ch0 / gain0 / mt) + 0.66505)
 * =>	13.118336 * ch1 / (gain1 * mt)
 *	+ 22.66064768 * ch0 / (gain0 * mt)
 *	+ 8931.90144 * ch1 * ch1 * gain0 /
 *	  (25600 * ch0 * gain1 * gain1 * mt)
 *	+ 0.602694912 * ch1 / (gain1 * mt)
 *
 * =>	[0.3489024 * ch1 * ch1 * gain0 / (ch0 * gain1 * gain1)
 *	 + 22.66064768 * ch0 / gain0
 *	 + 13.721030912 * ch1 / gain1
 *	] / mt
 *
 * For (D1/D0 >= 1.00)
 *
 * lx	= (0.001331* D0 + 0.0000354 * D1) * ((D1/D0 – 2.0) * (-0.05) + 1)
 *	=> (0.001331* D0 + 0.0000354 * D1) * (-0.05D1/D0 + 1.1)
 *	=> (0.001331 * 256 * 100 * ch0 / gain0 / mt + 0.0000354 * 256 *
 *	   100 * ch1 / gain1 / mt) * (-0.05D1/D0 + 1.1)
 *	=> (34.0736 * ch0 / gain0 / mt + 0.90624 * ch1 / gain1 / mt) *
 *	   (-0.05 * 256 * 100 * ch1 / gain1 / mt / (256 * 100 * ch0 / gain0 / mt) + 1.1)
 *	=> (34.0736 * ch0 / gain0 / mt + 0.90624 * ch1 / gain1 / mt) *
 *	   (-1280 * ch1 / (gain1 * mt * 25600 * ch0 / gain0 / mt) + 1.1)
 *	=> (34.0736 * ch0 * -1280 * ch1 * gain0 * mt /( gain0 * mt * gain1 * mt * 25600 * ch0)
 *	    + 34.0736 * 1.1 * ch0 / (gain0 * mt)
 *	    + 0.90624 * ch1 * -1280 * ch1 *gain0 * mt / (gain1 * mt *gain1 * mt * 25600 * ch0)
 *	    + 1.1 * 0.90624 * ch1 / (gain1 * mt)
 *	=> -43614.208 * ch1 / (gain1 * mt * 25600)
 *	    + 37.48096  ch0 / (gain0 * mt)
 *	    - 1159.9872 * ch1 * ch1 * gain0 / (gain1 * gain1 * mt * 25600 * ch0)
 *	    + 0.996864 ch1 / (gain1 * mt)
 *	=> [
 *		- 0.045312 * ch1 * ch1 * gain0 / (gain1 * gain1 * ch0)
 *		- 0.706816 * ch1 / gain1
 *		+ 37.48096  ch0 /gain0
 *	   ] * mt
 *
 *
 * So, the first case (D1/D0 < 0.87) can be computed to a form:
 *
 * lx = (3.126528 * ch1 * ch1 * gain0 / (ch0 * gain1 * gain1) +
 *	 115.7400832 * ch1 / gain1 +
 *	-68.1982976 * ch0 / gain0
 *	 / mt
 *
 * Second case (0.87 <= D1/D0 < 1.00) goes to form:
 *
 *	=> [0.3489024 * ch1 * ch1 * gain0 / (ch0 * gain1 * gain1) +
 *	    13.721030912 * ch1 / gain1 +
 *	    22.66064768 * ch0 / gain0
 *	   ] / mt
 *
 * Third case (D1/D0 >= 1.00) goes to form:
 *	=> [-0.045312 * ch1 * ch1 * gain0 / (ch0 * gain1 * gain1) +
 *	    -0.706816 * ch1 / gain1 +
 *	    37.48096  ch0 /(gain0
 *	   ] / mt
 *
 * This can be unified to format:
 * lx = [
 *	 A * ch1 * ch1 * gain0 / (ch0 * gain1 * gain1) +
 *	 B * ch1 / gain1 +
 *	 C * ch0 / gain0
 *	] / mt
 *
 * For case 1:
 * A = 3.126528,
 * B = 115.7400832
 * C = -68.1982976
 *
 * For case 2:
 * A = 0.3489024
 * B = 13.721030912
 * C = 22.66064768
 *
 * For case 3:
 * A = -0.045312
 * B = -0.706816
 * C = 37.48096
 */

struct bu27034_lx_coeff {
	unsigned int A;
	unsigned int B;
	unsigned int C;
	/* Indicate which of the coefficients above are negative */
	bool is_neg[3];
};

static inline u64 gain_mul_div_helper(u64 val, unsigned int gain,
				      unsigned int div)
{
	/*
	 * Max gain for a channel is 4096. The max u64 (0xffffffffffffffffULL)
	 * divided by 4096 is 0xFFFFFFFFFFFFF (GENMASK_ULL(51, 0)) (floored).
	 * Thus, the 0xFFFFFFFFFFFFF is the largest value we can safely multiply
	 * with the gain, no matter what gain is set.
	 *
	 * So, multiplication with max gain may overflow if val is greater than
	 * 0xFFFFFFFFFFFFF (52 bits set)..
	 *
	 * If this is the case we divide first.
	 */
	if (val < GENMASK_ULL(51, 0)) {
		val *= gain;
		do_div(val, div);
	} else {
		do_div(val, div);
		val *= gain;
	}

	return val;
}

static u64 bu27034_fixp_calc_t1_64bit(unsigned int coeff, unsigned int ch0,
				      unsigned int ch1, unsigned int gain0,
				      unsigned int gain1)
{
	unsigned int helper;
	u64 helper64;

	helper64 = (u64)coeff * (u64)ch1 * (u64)ch1;

	helper = gain1 * gain1;
	if (helper > ch0) {
		do_div(helper64, helper);

		return gain_mul_div_helper(helper64, gain0, ch0);
	}

	do_div(helper64, ch0);

	return gain_mul_div_helper(helper64, gain0, helper);

}

static u64 bu27034_fixp_calc_t1(unsigned int coeff, unsigned int ch0,
				unsigned int ch1, unsigned int gain0,
				unsigned int gain1)
{
	unsigned int helper, tmp;

	/*
	 * Here we could overflow even the 64bit value. Hence we
	 * multiply with gain0 only after the divisions - even though
	 * it may result loss of accuracy
	 */
	helper = coeff * ch1 * ch1;
	tmp = helper * gain0;

	helper = ch1 * ch1;

	if (check_mul_overflow(helper, coeff, &helper))
		return bu27034_fixp_calc_t1_64bit(coeff, ch0, ch1, gain0, gain1);

	if (check_mul_overflow(helper, gain0, &tmp))
		return bu27034_fixp_calc_t1_64bit(coeff, ch0, ch1, gain0, gain1);

	return tmp / (gain1 * gain1) / ch0;

}

static u64 bu27034_fixp_calc_t23(unsigned int coeff, unsigned int ch,
				 unsigned int gain)
{
	unsigned int helper;
	u64 helper64;

	if (!check_mul_overflow(coeff, ch, &helper))
		return helper / gain;

	helper64 = (u64)coeff * (u64)ch;
	do_div(helper64, gain);

	return helper64;
}

static int bu27034_fixp_calc_lx(unsigned int ch0, unsigned int ch1,
				unsigned int gain0, unsigned int gain1,
				unsigned int meastime, int coeff_idx)
{
	static const struct bu27034_lx_coeff coeff[] = {
		{
			.A = 31265280,		/* 3.126528 */
			.B = 1157400832,	/*115.7400832 */
			.C = 681982976,		/* -68.1982976 */
			.is_neg = {false, false, true},
		}, {
			.A = 3489024,		/* 0.3489024 */
			.B = 137210309,		/* 13.721030912 */
			.C = 226606476,		/* 22.66064768 */
			/* All terms positive */
		}, {
			.A = 453120,		/* -0.045312 */
			.B = 7068160,		/* -0.706816 */
			.C = 374809600,		/* 37.48096 */
			.is_neg = {true, true, false},
		}
	};
	const struct bu27034_lx_coeff *c = &coeff[coeff_idx];
	u64 res = 0, terms[3];
	int i;

	if (coeff_idx >= ARRAY_SIZE(coeff))
		return -EINVAL;

	terms[0] = bu27034_fixp_calc_t1(c->A, ch0, ch1, gain0, gain1);
	terms[1] = bu27034_fixp_calc_t23(c->B, ch1, gain1);
	terms[2] = bu27034_fixp_calc_t23(c->C, ch0, gain0);

	/* First, add positive terms */
	for (i = 0; i < 3; i++)
		if (!c->is_neg[i])
			res += terms[i];

	/* No positive term => zero lux */
	if (!res)
		return 0;

	/* Then, subtract negative terms (if any) */
	for (i = 0; i < 3; i++)
		if (c->is_neg[i]) {
			/*
			 * If the negative term is greater than positive - then
			 * the darkness has taken over and we are all doomed! Eh,
			 * I mean, then we can just return 0 lx and go out
			 */
			if (terms[i] >= res)
				return 0;

			res -= terms[i];
		}

	meastime *= 10;
	do_div(res, meastime);

	return (int) res;
}

static bool bu27034_has_valid_sample(struct bu27034_data *data)
{
	int ret, val;

	ret = regmap_read(data->regmap, BU27034_REG_MODE_CONTROL4, &val);
	if (ret) {
		dev_err(data->dev, "Read failed %d\n", ret);

		return false;
	}

	return val & BU27034_MASK_VALID;
}

/*
 * Reading the register where VALID bit is clears this bit. (So does changing
 * any gain / integration time configuration registers) The bit gets
 * set when we have acquired new data. We use this bit to indicate data
 * validity.
 */
static void bu27034_invalidate_read_data(struct bu27034_data *data)
{
	bu27034_has_valid_sample(data);
}

static int bu27034_read_result(struct bu27034_data *data, int chan, int *res)
{
	int reg[] = {
		[BU27034_CHAN_DATA0] = BU27034_REG_DATA0_LO,
		[BU27034_CHAN_DATA1] = BU27034_REG_DATA1_LO,
		[BU27034_CHAN_DATA2] = BU27034_REG_DATA2_LO,
	};
	int valid, ret;
	__le16 val;

	ret = regmap_read_poll_timeout(data->regmap, BU27034_REG_MODE_CONTROL4,
				       valid, (valid & BU27034_MASK_VALID),
				       BU27034_DATA_WAIT_TIME_US, 0);
	if (ret)
		return ret;

	ret = regmap_bulk_read(data->regmap, reg[chan], &val, sizeof(val));
	if (ret)
		return ret;

	*res = le16_to_cpu(val);

	return 0;
}

static int bu27034_get_result_unlocked(struct bu27034_data *data, __le16 *res,
				       int size)
{
	int ret = 0, retry_cnt = 0;

retry:
	/* Get new value from sensor if data is ready */
	if (bu27034_has_valid_sample(data)) {
		ret = regmap_bulk_read(data->regmap, BU27034_REG_DATA0_LO,
				       res, size);
		if (ret)
			return ret;

		bu27034_invalidate_read_data(data);
	} else {
		/* No new data in sensor. Wait and retry */
		retry_cnt++;

		if (retry_cnt > BU27034_RETRY_LIMIT) {
			dev_err(data->dev, "No data from sensor\n");

			return -ETIMEDOUT;
		}

		msleep(25);

		goto retry;
	}

	return ret;
}

static int bu27034_meas_set(struct bu27034_data *data, bool en)
{
	if (en)
		return regmap_set_bits(data->regmap, BU27034_REG_MODE_CONTROL4,
				       BU27034_MASK_MEAS_EN);

	return regmap_clear_bits(data->regmap, BU27034_REG_MODE_CONTROL4,
				 BU27034_MASK_MEAS_EN);
}

static int bu27034_get_single_result(struct bu27034_data *data, int chan,
				     int *val)
{
	int ret;

	if (chan < BU27034_CHAN_DATA0 || chan > BU27034_CHAN_DATA2)
		return -EINVAL;

	ret = bu27034_meas_set(data, true);
	if (ret)
		return ret;

	ret = bu27034_get_int_time(data);
	if (ret < 0)
		return ret;

	msleep(ret / 1000);

	return bu27034_read_result(data, chan, val);
}

/*
 * The formula given by vendor for computing luxes out of data0 and data1
 * (in open air) is as follows:
 *
 * Let's mark:
 * D0 = data0/ch0_gain/meas_time_ms * 25600
 * D1 = data1/ch1_gain/meas_time_ms * 25600
 *
 * Then:
 * if (D1/D0 < 0.87)
 *	lx = (0.001331 * D0 + 0.0000354 * D1) * ((D1 / D0 - 0.87) * 3.45 + 1)
 * else if (D1/D0 < 1)
 *	lx = (0.001331 * D0 + 0.0000354 * D1) * ((D1 / D0 - 0.87) * 0.385 + 1)
 * else
 *	lx = (0.001331 * D0 + 0.0000354 * D1) * ((D1 / D0 - 2) * -0.05 + 1)
 *
 * We use it here. Users who have for example some colored lens
 * need to modify the calculation but I hope this gives a starting point for
 * those working with such devices.
 */

static int bu27034_calc_mlux(struct bu27034_data *data, __le16 *res, int *val)
{
	unsigned int gain0, gain1, meastime;
	unsigned int d1_d0_ratio_scaled;
	u16 ch0, ch1;
	u64 helper64;
	int ret;

	/*
	 * We return 0 lux if calculation fails. This should be reasonably
	 * easy to spot from the buffers especially if raw-data channels show
	 * valid values
	 */
	*val = 0;

	ch0 = max_t(u16, 1, le16_to_cpu(res[0]));
	ch1 = max_t(u16, 1, le16_to_cpu(res[1]));

	ret = bu27034_get_gain(data, BU27034_CHAN_DATA0, &gain0);
	if (ret)
		return ret;

	ret = bu27034_get_gain(data, BU27034_CHAN_DATA1, &gain1);
	if (ret)
		return ret;

	ret = bu27034_get_int_time(data);
	if (ret < 0)
		return ret;

	meastime = ret;

	d1_d0_ratio_scaled = (unsigned int)ch1 * (unsigned int)gain0 * 100;
	helper64 = (u64)ch1 * (u64)gain0 * 100LLU;

	if (helper64 != d1_d0_ratio_scaled) {
		unsigned int div = (unsigned int)ch0 * gain1;

		do_div(helper64, div);
		d1_d0_ratio_scaled = helper64;
	} else {
		d1_d0_ratio_scaled /= ch0 * gain1;
	}

	if (d1_d0_ratio_scaled < 87)
		ret = bu27034_fixp_calc_lx(ch0, ch1, gain0, gain1, meastime, 0);
	else if (d1_d0_ratio_scaled < 100)
		ret = bu27034_fixp_calc_lx(ch0, ch1, gain0, gain1, meastime, 1);
	else
		ret = bu27034_fixp_calc_lx(ch0, ch1, gain0, gain1, meastime, 2);

	if (ret < 0)
		return ret;

	*val = ret;

	return 0;

}

static int bu27034_get_mlux(struct bu27034_data *data, int chan, int *val)
{
	__le16 res[3];
	int ret;

	ret = bu27034_meas_set(data, true);
	if (ret)
		return ret;

	ret = bu27034_get_result_unlocked(data, &res[0], sizeof(res));
	if (ret)
		return ret;

	ret = bu27034_calc_mlux(data, res, val);
	if (ret)
		return ret;

	ret = bu27034_meas_set(data, false);
	if (ret)
		dev_err(data->dev, "failed to disable measurement\n");

	return 0;
}

static int bu27034_read_raw(struct iio_dev *idev,
			   struct iio_chan_spec const *chan,
			   int *val, int *val2, long mask)
{
	struct bu27034_data *data = iio_priv(idev);
	int ret;

	switch (mask) {
	case IIO_CHAN_INFO_INT_TIME:
		*val = 0;
		*val2 = bu27034_get_int_time(data);
		if (*val2 < 0)
			return *val2;

		return IIO_VAL_INT_PLUS_MICRO;

	case IIO_CHAN_INFO_SCALE:
		return bu27034_get_scale(data, chan->channel, val, val2);

	case IIO_CHAN_INFO_RAW:
	{
		int (*result_get)(struct bu27034_data *data, int chan, int *val);

		if (chan->type == IIO_INTENSITY)
			result_get = bu27034_get_single_result;
		else if (chan->type == IIO_LIGHT)
			result_get = bu27034_get_mlux;
		else
			return -EINVAL;

		/* Don't mess with measurement enabling while buffering */
		ret = iio_device_claim_direct_mode(idev);
		if (ret)
			return ret;

		mutex_lock(&data->mutex);
		/*
		 * Reading one channel at a time is inefficient but we
		 * don't care here. Buffered version should be used if
		 * performance is an issue.
		 */
		ret = result_get(data, chan->channel, val);

		mutex_unlock(&data->mutex);
		iio_device_release_direct_mode(idev);

		if (ret)
			return ret;

		return IIO_VAL_INT;
	}
	default:
		return -EINVAL;
	}
}

static int bu27034_write_raw_get_fmt(struct iio_dev *indio_dev,
				     struct iio_chan_spec const *chan,
				     long mask)
{

	switch (mask) {
	case IIO_CHAN_INFO_SCALE:
		return IIO_VAL_INT_PLUS_NANO;
	case IIO_CHAN_INFO_INT_TIME:
		return IIO_VAL_INT_PLUS_MICRO;
	default:
		return -EINVAL;
	}
}

static int bu27034_write_raw(struct iio_dev *idev,
			     struct iio_chan_spec const *chan,
			     int val, int val2, long mask)
{
	struct bu27034_data *data = iio_priv(idev);
	int ret;

	ret = iio_device_claim_direct_mode(idev);
	if (ret)
		return ret;

	switch (mask) {
	case IIO_CHAN_INFO_SCALE:
		ret = bu27034_set_scale(data, chan->channel, val, val2);
		break;
	case IIO_CHAN_INFO_INT_TIME:
		if (!val)
			ret = bu27034_try_set_int_time(data, val2);
		else
			ret = -EINVAL;
		break;
	default:
		ret = -EINVAL;
		break;
	}

	iio_device_release_direct_mode(idev);

	return ret;
}

static int bu27034_read_avail(struct iio_dev *idev,
			      struct iio_chan_spec const *chan, const int **vals,
			      int *type, int *length, long mask)
{
	struct bu27034_data *data = iio_priv(idev);

	switch (mask) {
	case IIO_CHAN_INFO_INT_TIME:
		return iio_gts_avail_times(&data->gts, vals, type, length);
	case IIO_CHAN_INFO_SCALE:
		return iio_gts_all_avail_scales(&data->gts, vals, type, length);
	default:
		return -EINVAL;
	}
}

static const struct iio_info bu27034_info = {
	.read_raw = &bu27034_read_raw,
	.write_raw = &bu27034_write_raw,
	.write_raw_get_fmt = &bu27034_write_raw_get_fmt,
	.read_avail = &bu27034_read_avail,
};

static int bu27034_chip_init(struct bu27034_data *data)
{
	int ret, sel;

	/* Reset */
	ret = regmap_write_bits(data->regmap, BU27034_REG_SYSTEM_CONTROL,
			   BU27034_MASK_SW_RESET, BU27034_MASK_SW_RESET);
	if (ret)
		return dev_err_probe(data->dev, ret, "Sensor reset failed\n");

	msleep(1);

	ret = regmap_reinit_cache(data->regmap, &bu27034_regmap);
	if (ret) {
		dev_err(data->dev, "Failed to reinit reg cache\n");
		return ret;
	}

	/*
	 * Read integration time here to ensure it is in regmap cache. We do
	 * this to speed-up the int-time acquisition in the start of the buffer
	 * handling thread where longer delays could make it more likely we end
	 * up skipping a sample, and where the longer delays make timestamps
	 * less accurate.
	 */
	ret = regmap_read(data->regmap, BU27034_REG_MODE_CONTROL1, &sel);
	if (ret)
		dev_err(data->dev, "reading integration time failed\n");

	return 0;
}

static int bu27034_wait_for_data(struct bu27034_data *data)
{
	int ret, val;

	ret = regmap_read_poll_timeout(data->regmap, BU27034_REG_MODE_CONTROL4,
				       val, val & BU27034_MASK_VALID,
				       BU27034_DATA_WAIT_TIME_US,
				       BU27034_TOTAL_DATA_WAIT_TIME_US);
	if (ret) {
		dev_err(data->dev, "data polling %s\n",
			!(val & BU27034_MASK_VALID) ? "timeout" : "fail");

		return ret;
	}

	ret = regmap_bulk_read(data->regmap, BU27034_REG_DATA0_LO,
			       &data->scan.channels[0],
			       sizeof(data->scan.channels));
	if (ret)
		return ret;

	bu27034_invalidate_read_data(data);

	return 0;
}

static int bu27034_buffer_thread(void *arg)
{
	struct iio_dev *idev = arg;
	struct bu27034_data *data;
	int wait_ms;

	data = iio_priv(idev);

	wait_ms = bu27034_get_int_time(data);
	wait_ms /= 1000;

	wait_ms -= BU27034_MEAS_WAIT_PREMATURE_MS;

	while (!kthread_should_stop()) {
		int ret;
		int64_t tstamp;

		msleep(wait_ms);
		ret = bu27034_wait_for_data(data);
		if (ret)
			continue;

		tstamp = iio_get_time_ns(idev);

		if (test_bit(BU27034_CHAN_ALS, idev->active_scan_mask)) {
			int mlux;

			ret = bu27034_calc_mlux(data, &data->scan.channels[0],
					       &mlux);
			if (ret)
				dev_err(data->dev, "failed to calculate lux\n");

			/*
			 * The maximum Milli lux value we get with gain 1x time
			 * 55mS data ch0 = 0xffff ch1 = 0xffff fits in 26 bits
			 * so there should be no problem returning int from
			 * computations and casting it to u32
			 */
			data->scan.mlux = (u32)mlux;
		}
		iio_push_to_buffers_with_timestamp(idev, &data->scan, tstamp);
	}

	return 0;
}

static int bu27034_buffer_enable(struct iio_dev *idev)
{
	struct bu27034_data *data = iio_priv(idev);
	struct task_struct *task;
	int ret;

	mutex_lock(&data->mutex);
	ret = bu27034_meas_set(data, true);
	if (ret)
		goto unlock_out;

	task = kthread_run(bu27034_buffer_thread, idev,
				 "bu27034-buffering-%u",
				 iio_device_id(idev));
	if (IS_ERR(task)) {
		ret = PTR_ERR(task);
		goto unlock_out;
	}

	data->task = task;

unlock_out:
	mutex_unlock(&data->mutex);

	return ret;
}

static int bu27034_buffer_disable(struct iio_dev *idev)
{
	struct bu27034_data *data = iio_priv(idev);
	int ret;

	mutex_lock(&data->mutex);
	if (data->task) {
		kthread_stop(data->task);
		data->task = NULL;
	}

	ret = bu27034_meas_set(data, false);
	mutex_unlock(&data->mutex);

	return ret;
}

static const struct iio_buffer_setup_ops bu27034_buffer_ops = {
	.postenable = &bu27034_buffer_enable,
	.predisable = &bu27034_buffer_disable,
};

static int bu27034_probe(struct i2c_client *i2c)
{
	struct device *dev = &i2c->dev;
	struct bu27034_data *data;
	struct regmap *regmap;
	struct iio_dev *idev;
	unsigned int part_id, reg;
	int ret;

	regmap = devm_regmap_init_i2c(i2c, &bu27034_regmap);
	if (IS_ERR(regmap))
		return dev_err_probe(dev, PTR_ERR(regmap),
				     "Failed to initialize Regmap\n");

	idev = devm_iio_device_alloc(dev, sizeof(*data));
	if (!idev)
		return -ENOMEM;

	ret = devm_regulator_get_enable(dev, "vdd");
	if (ret)
		return dev_err_probe(dev, ret, "Failed to get regulator\n");

	data = iio_priv(idev);

	ret = regmap_read(regmap, BU27034_REG_SYSTEM_CONTROL, &reg);
	if (ret)
		return dev_err_probe(dev, ret, "Failed to access sensor\n");

	part_id = FIELD_GET(BU27034_MASK_PART_ID, reg);

	if (part_id != BU27034_ID)
		dev_warn(dev, "unknown device 0x%x\n", part_id);

	ret = devm_iio_init_iio_gts(dev, BU27034_SCALE_1X, 0, bu27034_gains,
				    ARRAY_SIZE(bu27034_gains), bu27034_itimes,
				    ARRAY_SIZE(bu27034_itimes), &data->gts);
	if (ret)
		return ret;

	mutex_init(&data->mutex);
	data->regmap = regmap;
	data->dev = dev;

	idev->channels = bu27034_channels;
	idev->num_channels = ARRAY_SIZE(bu27034_channels);
	idev->name = "bu27034";
	idev->info = &bu27034_info;

	idev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;
	idev->available_scan_masks = bu27034_scan_masks;

	ret = bu27034_chip_init(data);
	if (ret)
		return ret;

	ret = devm_iio_kfifo_buffer_setup(dev, idev, &bu27034_buffer_ops);
	if (ret)
		return dev_err_probe(dev, ret, "buffer setup failed\n");

	ret = devm_iio_device_register(dev, idev);
	if (ret < 0)
		return dev_err_probe(dev, ret,
				     "Unable to register iio device\n");

	return ret;
}

static const struct of_device_id bu27034_of_match[] = {
	{ .compatible = "rohm,bu27034" },
	{ }
};
MODULE_DEVICE_TABLE(of, bu27034_of_match);

static struct i2c_driver bu27034_i2c_driver = {
	.driver = {
		.name = "bu27034-als",
		.of_match_table = bu27034_of_match,
		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
	},
	.probe = bu27034_probe,
};
module_i2c_driver(bu27034_i2c_driver);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com>");
MODULE_DESCRIPTION("ROHM BU27034 ambient light sensor driver");
MODULE_IMPORT_NS(IIO_GTS_HELPER);