Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 | // SPDX-License-Identifier: GPL-2.0 /* * hal.c - DIM2 HAL implementation * (MediaLB, Device Interface Macro IP, OS62420) * * Copyright (C) 2015-2016, Microchip Technology Germany II GmbH & Co. KG */ /* Author: Andrey Shvetsov <andrey.shvetsov@k2l.de> */ #include "hal.h" #include "errors.h" #include "reg.h" #include <linux/stddef.h> #include <linux/kernel.h> #include <linux/io.h> /* * Size factor for isochronous DBR buffer. * Minimal value is 3. */ #define ISOC_DBR_FACTOR 3u /* * Number of 32-bit units for DBR map. * * 1: block size is 512, max allocation is 16K * 2: block size is 256, max allocation is 8K * 4: block size is 128, max allocation is 4K * 8: block size is 64, max allocation is 2K * * Min allocated space is block size. * Max possible allocated space is 32 blocks. */ #define DBR_MAP_SIZE 2 /* -------------------------------------------------------------------------- */ /* not configurable area */ #define CDT 0x00 #define ADT 0x40 #define MLB_CAT 0x80 #define AHB_CAT 0x88 #define DBR_SIZE (16 * 1024) /* specified by IP */ #define DBR_BLOCK_SIZE (DBR_SIZE / 32 / DBR_MAP_SIZE) #define ROUND_UP_TO(x, d) (DIV_ROUND_UP(x, (d)) * (d)) /* -------------------------------------------------------------------------- */ /* generic helper functions and macros */ static inline u32 bit_mask(u8 position) { return (u32)1 << position; } static inline bool dim_on_error(u8 error_id, const char *error_message) { dimcb_on_error(error_id, error_message); return false; } /* -------------------------------------------------------------------------- */ /* types and local variables */ struct async_tx_dbr { u8 ch_addr; u16 rpc; u16 wpc; u16 rest_size; u16 sz_queue[CDT0_RPC_MASK + 1]; }; struct lld_global_vars_t { bool dim_is_initialized; bool mcm_is_initialized; struct dim2_regs __iomem *dim2; /* DIM2 core base address */ struct async_tx_dbr atx_dbr; u32 fcnt; u32 dbr_map[DBR_MAP_SIZE]; }; static struct lld_global_vars_t g = { false }; /* -------------------------------------------------------------------------- */ static int dbr_get_mask_size(u16 size) { int i; for (i = 0; i < 6; i++) if (size <= (DBR_BLOCK_SIZE << i)) return 1 << i; return 0; } /** * alloc_dbr() - Allocates DBR memory. * @size: Allocating memory size. * Returns: Offset in DBR memory by success or DBR_SIZE if out of memory. */ static int alloc_dbr(u16 size) { int mask_size; int i, block_idx = 0; if (size <= 0) return DBR_SIZE; /* out of memory */ mask_size = dbr_get_mask_size(size); if (mask_size == 0) return DBR_SIZE; /* out of memory */ for (i = 0; i < DBR_MAP_SIZE; i++) { u32 const blocks = DIV_ROUND_UP(size, DBR_BLOCK_SIZE); u32 mask = ~((~(u32)0) << blocks); do { if ((g.dbr_map[i] & mask) == 0) { g.dbr_map[i] |= mask; return block_idx * DBR_BLOCK_SIZE; } block_idx += mask_size; /* do shift left with 2 steps in case mask_size == 32 */ mask <<= mask_size - 1; } while ((mask <<= 1) != 0); } return DBR_SIZE; /* out of memory */ } static void free_dbr(int offs, int size) { int block_idx = offs / DBR_BLOCK_SIZE; u32 const blocks = DIV_ROUND_UP(size, DBR_BLOCK_SIZE); u32 mask = ~((~(u32)0) << blocks); mask <<= block_idx % 32; g.dbr_map[block_idx / 32] &= ~mask; } /* -------------------------------------------------------------------------- */ static void dim2_transfer_madr(u32 val) { writel(val, &g.dim2->MADR); /* wait for transfer completion */ while ((readl(&g.dim2->MCTL) & 1) != 1) continue; writel(0, &g.dim2->MCTL); /* clear transfer complete */ } static void dim2_clear_dbr(u16 addr, u16 size) { enum { MADR_TB_BIT = 30, MADR_WNR_BIT = 31 }; u16 const end_addr = addr + size; u32 const cmd = bit_mask(MADR_WNR_BIT) | bit_mask(MADR_TB_BIT); writel(0, &g.dim2->MCTL); /* clear transfer complete */ writel(0, &g.dim2->MDAT0); for (; addr < end_addr; addr++) dim2_transfer_madr(cmd | addr); } static u32 dim2_read_ctr(u32 ctr_addr, u16 mdat_idx) { dim2_transfer_madr(ctr_addr); return readl((&g.dim2->MDAT0) + mdat_idx); } static void dim2_write_ctr_mask(u32 ctr_addr, const u32 *mask, const u32 *value) { enum { MADR_WNR_BIT = 31 }; writel(0, &g.dim2->MCTL); /* clear transfer complete */ if (mask[0] != 0) writel(value[0], &g.dim2->MDAT0); if (mask[1] != 0) writel(value[1], &g.dim2->MDAT1); if (mask[2] != 0) writel(value[2], &g.dim2->MDAT2); if (mask[3] != 0) writel(value[3], &g.dim2->MDAT3); writel(mask[0], &g.dim2->MDWE0); writel(mask[1], &g.dim2->MDWE1); writel(mask[2], &g.dim2->MDWE2); writel(mask[3], &g.dim2->MDWE3); dim2_transfer_madr(bit_mask(MADR_WNR_BIT) | ctr_addr); } static inline void dim2_write_ctr(u32 ctr_addr, const u32 *value) { u32 const mask[4] = { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }; dim2_write_ctr_mask(ctr_addr, mask, value); } static inline void dim2_clear_ctr(u32 ctr_addr) { u32 const value[4] = { 0, 0, 0, 0 }; dim2_write_ctr(ctr_addr, value); } static void dim2_configure_cat(u8 cat_base, u8 ch_addr, u8 ch_type, bool read_not_write) { bool isoc_fce = ch_type == CAT_CT_VAL_ISOC; bool sync_mfe = ch_type == CAT_CT_VAL_SYNC; u16 const cat = (read_not_write << CAT_RNW_BIT) | (ch_type << CAT_CT_SHIFT) | (ch_addr << CAT_CL_SHIFT) | (isoc_fce << CAT_FCE_BIT) | (sync_mfe << CAT_MFE_BIT) | (false << CAT_MT_BIT) | (true << CAT_CE_BIT); u8 const ctr_addr = cat_base + ch_addr / 8; u8 const idx = (ch_addr % 8) / 2; u8 const shift = (ch_addr % 2) * 16; u32 mask[4] = { 0, 0, 0, 0 }; u32 value[4] = { 0, 0, 0, 0 }; mask[idx] = (u32)0xFFFF << shift; value[idx] = cat << shift; dim2_write_ctr_mask(ctr_addr, mask, value); } static void dim2_clear_cat(u8 cat_base, u8 ch_addr) { u8 const ctr_addr = cat_base + ch_addr / 8; u8 const idx = (ch_addr % 8) / 2; u8 const shift = (ch_addr % 2) * 16; u32 mask[4] = { 0, 0, 0, 0 }; u32 value[4] = { 0, 0, 0, 0 }; mask[idx] = (u32)0xFFFF << shift; dim2_write_ctr_mask(ctr_addr, mask, value); } static void dim2_configure_cdt(u8 ch_addr, u16 dbr_address, u16 hw_buffer_size, u16 packet_length) { u32 cdt[4] = { 0, 0, 0, 0 }; if (packet_length) cdt[1] = ((packet_length - 1) << CDT1_BS_ISOC_SHIFT); cdt[3] = ((hw_buffer_size - 1) << CDT3_BD_SHIFT) | (dbr_address << CDT3_BA_SHIFT); dim2_write_ctr(CDT + ch_addr, cdt); } static u16 dim2_rpc(u8 ch_addr) { u32 cdt0 = dim2_read_ctr(CDT + ch_addr, 0); return (cdt0 >> CDT0_RPC_SHIFT) & CDT0_RPC_MASK; } static void dim2_clear_cdt(u8 ch_addr) { u32 cdt[4] = { 0, 0, 0, 0 }; dim2_write_ctr(CDT + ch_addr, cdt); } static void dim2_configure_adt(u8 ch_addr) { u32 adt[4] = { 0, 0, 0, 0 }; adt[0] = (true << ADT0_CE_BIT) | (true << ADT0_LE_BIT) | (0 << ADT0_PG_BIT); dim2_write_ctr(ADT + ch_addr, adt); } static void dim2_clear_adt(u8 ch_addr) { u32 adt[4] = { 0, 0, 0, 0 }; dim2_write_ctr(ADT + ch_addr, adt); } static void dim2_start_ctrl_async(u8 ch_addr, u8 idx, u32 buf_addr, u16 buffer_size) { u8 const shift = idx * 16; u32 mask[4] = { 0, 0, 0, 0 }; u32 adt[4] = { 0, 0, 0, 0 }; mask[1] = bit_mask(ADT1_PS_BIT + shift) | bit_mask(ADT1_RDY_BIT + shift) | (ADT1_CTRL_ASYNC_BD_MASK << (ADT1_BD_SHIFT + shift)); adt[1] = (true << (ADT1_PS_BIT + shift)) | (true << (ADT1_RDY_BIT + shift)) | ((buffer_size - 1) << (ADT1_BD_SHIFT + shift)); mask[idx + 2] = 0xFFFFFFFF; adt[idx + 2] = buf_addr; dim2_write_ctr_mask(ADT + ch_addr, mask, adt); } static void dim2_start_isoc_sync(u8 ch_addr, u8 idx, u32 buf_addr, u16 buffer_size) { u8 const shift = idx * 16; u32 mask[4] = { 0, 0, 0, 0 }; u32 adt[4] = { 0, 0, 0, 0 }; mask[1] = bit_mask(ADT1_RDY_BIT + shift) | (ADT1_ISOC_SYNC_BD_MASK << (ADT1_BD_SHIFT + shift)); adt[1] = (true << (ADT1_RDY_BIT + shift)) | ((buffer_size - 1) << (ADT1_BD_SHIFT + shift)); mask[idx + 2] = 0xFFFFFFFF; adt[idx + 2] = buf_addr; dim2_write_ctr_mask(ADT + ch_addr, mask, adt); } static void dim2_clear_ctram(void) { u32 ctr_addr; for (ctr_addr = 0; ctr_addr < 0x90; ctr_addr++) dim2_clear_ctr(ctr_addr); } static void dim2_configure_channel(u8 ch_addr, u8 type, u8 is_tx, u16 dbr_address, u16 hw_buffer_size, u16 packet_length) { dim2_configure_cdt(ch_addr, dbr_address, hw_buffer_size, packet_length); dim2_configure_cat(MLB_CAT, ch_addr, type, is_tx ? 1 : 0); dim2_configure_adt(ch_addr); dim2_configure_cat(AHB_CAT, ch_addr, type, is_tx ? 0 : 1); /* unmask interrupt for used channel, enable mlb_sys_int[0] interrupt */ writel(readl(&g.dim2->ACMR0) | bit_mask(ch_addr), &g.dim2->ACMR0); } static void dim2_clear_channel(u8 ch_addr) { /* mask interrupt for used channel, disable mlb_sys_int[0] interrupt */ writel(readl(&g.dim2->ACMR0) & ~bit_mask(ch_addr), &g.dim2->ACMR0); dim2_clear_cat(AHB_CAT, ch_addr); dim2_clear_adt(ch_addr); dim2_clear_cat(MLB_CAT, ch_addr); dim2_clear_cdt(ch_addr); /* clear channel status bit */ writel(bit_mask(ch_addr), &g.dim2->ACSR0); } /* -------------------------------------------------------------------------- */ /* trace async tx dbr fill state */ static inline u16 norm_pc(u16 pc) { return pc & CDT0_RPC_MASK; } static void dbrcnt_init(u8 ch_addr, u16 dbr_size) { g.atx_dbr.rest_size = dbr_size; g.atx_dbr.rpc = dim2_rpc(ch_addr); g.atx_dbr.wpc = g.atx_dbr.rpc; } static void dbrcnt_enq(int buf_sz) { g.atx_dbr.rest_size -= buf_sz; g.atx_dbr.sz_queue[norm_pc(g.atx_dbr.wpc)] = buf_sz; g.atx_dbr.wpc++; } u16 dim_dbr_space(struct dim_channel *ch) { u16 cur_rpc; struct async_tx_dbr *dbr = &g.atx_dbr; if (ch->addr != dbr->ch_addr) return 0xFFFF; cur_rpc = dim2_rpc(ch->addr); while (norm_pc(dbr->rpc) != cur_rpc) { dbr->rest_size += dbr->sz_queue[norm_pc(dbr->rpc)]; dbr->rpc++; } if ((u16)(dbr->wpc - dbr->rpc) >= CDT0_RPC_MASK) return 0; return dbr->rest_size; } /* -------------------------------------------------------------------------- */ /* channel state helpers */ static void state_init(struct int_ch_state *state) { state->request_counter = 0; state->service_counter = 0; state->idx1 = 0; state->idx2 = 0; state->level = 0; } /* -------------------------------------------------------------------------- */ /* macro helper functions */ static inline bool check_channel_address(u32 ch_address) { return ch_address > 0 && (ch_address % 2) == 0 && (ch_address / 2) <= (u32)CAT_CL_MASK; } static inline bool check_packet_length(u32 packet_length) { u16 const max_size = ((u16)CDT3_BD_ISOC_MASK + 1u) / ISOC_DBR_FACTOR; if (packet_length <= 0) return false; /* too small */ if (packet_length > max_size) return false; /* too big */ if (packet_length - 1u > (u32)CDT1_BS_ISOC_MASK) return false; /* too big */ return true; } static inline bool check_bytes_per_frame(u32 bytes_per_frame) { u16 const bd_factor = g.fcnt + 2; u16 const max_size = ((u16)CDT3_BD_MASK + 1u) >> bd_factor; if (bytes_per_frame <= 0) return false; /* too small */ if (bytes_per_frame > max_size) return false; /* too big */ return true; } u16 dim_norm_ctrl_async_buffer_size(u16 buf_size) { u16 const max_size = (u16)ADT1_CTRL_ASYNC_BD_MASK + 1u; if (buf_size > max_size) return max_size; return buf_size; } static inline u16 norm_isoc_buffer_size(u16 buf_size, u16 packet_length) { u16 n; u16 const max_size = (u16)ADT1_ISOC_SYNC_BD_MASK + 1u; if (buf_size > max_size) buf_size = max_size; n = buf_size / packet_length; if (n < 2u) return 0; /* too small buffer for given packet_length */ return packet_length * n; } static inline u16 norm_sync_buffer_size(u16 buf_size, u16 bytes_per_frame) { u16 n; u16 const max_size = (u16)ADT1_ISOC_SYNC_BD_MASK + 1u; u32 const unit = bytes_per_frame << g.fcnt; if (buf_size > max_size) buf_size = max_size; n = buf_size / unit; if (n < 1u) return 0; /* too small buffer for given bytes_per_frame */ return unit * n; } static void dim2_cleanup(void) { /* disable MediaLB */ writel(false << MLBC0_MLBEN_BIT, &g.dim2->MLBC0); dim2_clear_ctram(); /* disable mlb_int interrupt */ writel(0, &g.dim2->MIEN); /* clear status for all dma channels */ writel(0xFFFFFFFF, &g.dim2->ACSR0); writel(0xFFFFFFFF, &g.dim2->ACSR1); /* mask interrupts for all channels */ writel(0, &g.dim2->ACMR0); writel(0, &g.dim2->ACMR1); } static void dim2_initialize(bool enable_6pin, u8 mlb_clock) { dim2_cleanup(); /* configure and enable MediaLB */ writel(enable_6pin << MLBC0_MLBPEN_BIT | mlb_clock << MLBC0_MLBCLK_SHIFT | g.fcnt << MLBC0_FCNT_SHIFT | true << MLBC0_MLBEN_BIT, &g.dim2->MLBC0); /* activate all HBI channels */ writel(0xFFFFFFFF, &g.dim2->HCMR0); writel(0xFFFFFFFF, &g.dim2->HCMR1); /* enable HBI */ writel(bit_mask(HCTL_EN_BIT), &g.dim2->HCTL); /* configure DMA */ writel(ACTL_DMA_MODE_VAL_DMA_MODE_1 << ACTL_DMA_MODE_BIT | true << ACTL_SCE_BIT, &g.dim2->ACTL); } static bool dim2_is_mlb_locked(void) { u32 const mask0 = bit_mask(MLBC0_MLBLK_BIT); u32 const mask1 = bit_mask(MLBC1_CLKMERR_BIT) | bit_mask(MLBC1_LOCKERR_BIT); u32 const c1 = readl(&g.dim2->MLBC1); u32 const nda_mask = (u32)MLBC1_NDA_MASK << MLBC1_NDA_SHIFT; writel(c1 & nda_mask, &g.dim2->MLBC1); return (readl(&g.dim2->MLBC1) & mask1) == 0 && (readl(&g.dim2->MLBC0) & mask0) != 0; } /* -------------------------------------------------------------------------- */ /* channel help routines */ static inline bool service_channel(u8 ch_addr, u8 idx) { u8 const shift = idx * 16; u32 const adt1 = dim2_read_ctr(ADT + ch_addr, 1); u32 mask[4] = { 0, 0, 0, 0 }; u32 adt_w[4] = { 0, 0, 0, 0 }; if (((adt1 >> (ADT1_DNE_BIT + shift)) & 1) == 0) return false; mask[1] = bit_mask(ADT1_DNE_BIT + shift) | bit_mask(ADT1_ERR_BIT + shift) | bit_mask(ADT1_RDY_BIT + shift); dim2_write_ctr_mask(ADT + ch_addr, mask, adt_w); /* clear channel status bit */ writel(bit_mask(ch_addr), &g.dim2->ACSR0); return true; } /* -------------------------------------------------------------------------- */ /* channel init routines */ static void isoc_init(struct dim_channel *ch, u8 ch_addr, u16 packet_length) { state_init(&ch->state); ch->addr = ch_addr; ch->packet_length = packet_length; ch->bytes_per_frame = 0; ch->done_sw_buffers_number = 0; } static void sync_init(struct dim_channel *ch, u8 ch_addr, u16 bytes_per_frame) { state_init(&ch->state); ch->addr = ch_addr; ch->packet_length = 0; ch->bytes_per_frame = bytes_per_frame; ch->done_sw_buffers_number = 0; } static void channel_init(struct dim_channel *ch, u8 ch_addr) { state_init(&ch->state); ch->addr = ch_addr; ch->packet_length = 0; ch->bytes_per_frame = 0; ch->done_sw_buffers_number = 0; } /* returns true if channel interrupt state is cleared */ static bool channel_service_interrupt(struct dim_channel *ch) { struct int_ch_state *const state = &ch->state; if (!service_channel(ch->addr, state->idx2)) return false; state->idx2 ^= 1; state->request_counter++; return true; } static bool channel_start(struct dim_channel *ch, u32 buf_addr, u16 buf_size) { struct int_ch_state *const state = &ch->state; if (buf_size <= 0) return dim_on_error(DIM_ERR_BAD_BUFFER_SIZE, "Bad buffer size"); if (ch->packet_length == 0 && ch->bytes_per_frame == 0 && buf_size != dim_norm_ctrl_async_buffer_size(buf_size)) return dim_on_error(DIM_ERR_BAD_BUFFER_SIZE, "Bad control/async buffer size"); if (ch->packet_length && buf_size != norm_isoc_buffer_size(buf_size, ch->packet_length)) return dim_on_error(DIM_ERR_BAD_BUFFER_SIZE, "Bad isochronous buffer size"); if (ch->bytes_per_frame && buf_size != norm_sync_buffer_size(buf_size, ch->bytes_per_frame)) return dim_on_error(DIM_ERR_BAD_BUFFER_SIZE, "Bad synchronous buffer size"); if (state->level >= 2u) return dim_on_error(DIM_ERR_OVERFLOW, "Channel overflow"); ++state->level; if (ch->addr == g.atx_dbr.ch_addr) dbrcnt_enq(buf_size); if (ch->packet_length || ch->bytes_per_frame) dim2_start_isoc_sync(ch->addr, state->idx1, buf_addr, buf_size); else dim2_start_ctrl_async(ch->addr, state->idx1, buf_addr, buf_size); state->idx1 ^= 1; return true; } static u8 channel_service(struct dim_channel *ch) { struct int_ch_state *const state = &ch->state; if (state->service_counter != state->request_counter) { state->service_counter++; if (state->level == 0) return DIM_ERR_UNDERFLOW; --state->level; ch->done_sw_buffers_number++; } return DIM_NO_ERROR; } static bool channel_detach_buffers(struct dim_channel *ch, u16 buffers_number) { if (buffers_number > ch->done_sw_buffers_number) return dim_on_error(DIM_ERR_UNDERFLOW, "Channel underflow"); ch->done_sw_buffers_number -= buffers_number; return true; } /* -------------------------------------------------------------------------- */ /* API */ u8 dim_startup(struct dim2_regs __iomem *dim_base_address, u32 mlb_clock, u32 fcnt) { g.dim_is_initialized = false; if (!dim_base_address) return DIM_INIT_ERR_DIM_ADDR; /* MediaLB clock: 0 - 256 fs, 1 - 512 fs, 2 - 1024 fs, 3 - 2048 fs */ /* MediaLB clock: 4 - 3072 fs, 5 - 4096 fs, 6 - 6144 fs, 7 - 8192 fs */ if (mlb_clock >= 8) return DIM_INIT_ERR_MLB_CLOCK; if (fcnt > MLBC0_FCNT_MAX_VAL) return DIM_INIT_ERR_MLB_CLOCK; g.dim2 = dim_base_address; g.fcnt = fcnt; g.dbr_map[0] = 0; g.dbr_map[1] = 0; dim2_initialize(mlb_clock >= 3, mlb_clock); g.dim_is_initialized = true; return DIM_NO_ERROR; } void dim_shutdown(void) { g.dim_is_initialized = false; dim2_cleanup(); } bool dim_get_lock_state(void) { return dim2_is_mlb_locked(); } static u8 init_ctrl_async(struct dim_channel *ch, u8 type, u8 is_tx, u16 ch_address, u16 hw_buffer_size) { if (!g.dim_is_initialized || !ch) return DIM_ERR_DRIVER_NOT_INITIALIZED; if (!check_channel_address(ch_address)) return DIM_INIT_ERR_CHANNEL_ADDRESS; if (!ch->dbr_size) ch->dbr_size = ROUND_UP_TO(hw_buffer_size, DBR_BLOCK_SIZE); ch->dbr_addr = alloc_dbr(ch->dbr_size); if (ch->dbr_addr >= DBR_SIZE) return DIM_INIT_ERR_OUT_OF_MEMORY; channel_init(ch, ch_address / 2); dim2_configure_channel(ch->addr, type, is_tx, ch->dbr_addr, ch->dbr_size, 0); return DIM_NO_ERROR; } void dim_service_mlb_int_irq(void) { writel(0, &g.dim2->MS0); writel(0, &g.dim2->MS1); } /* * Retrieves maximal possible correct buffer size for isochronous data type * conform to given packet length and not bigger than given buffer size. * * Returns non-zero correct buffer size or zero by error. */ u16 dim_norm_isoc_buffer_size(u16 buf_size, u16 packet_length) { if (!check_packet_length(packet_length)) return 0; return norm_isoc_buffer_size(buf_size, packet_length); } /* * Retrieves maximal possible correct buffer size for synchronous data type * conform to given bytes per frame and not bigger than given buffer size. * * Returns non-zero correct buffer size or zero by error. */ u16 dim_norm_sync_buffer_size(u16 buf_size, u16 bytes_per_frame) { if (!check_bytes_per_frame(bytes_per_frame)) return 0; return norm_sync_buffer_size(buf_size, bytes_per_frame); } u8 dim_init_control(struct dim_channel *ch, u8 is_tx, u16 ch_address, u16 max_buffer_size) { return init_ctrl_async(ch, CAT_CT_VAL_CONTROL, is_tx, ch_address, max_buffer_size); } u8 dim_init_async(struct dim_channel *ch, u8 is_tx, u16 ch_address, u16 max_buffer_size) { u8 ret = init_ctrl_async(ch, CAT_CT_VAL_ASYNC, is_tx, ch_address, max_buffer_size); if (is_tx && !g.atx_dbr.ch_addr) { g.atx_dbr.ch_addr = ch->addr; dbrcnt_init(ch->addr, ch->dbr_size); writel(bit_mask(20), &g.dim2->MIEN); } return ret; } u8 dim_init_isoc(struct dim_channel *ch, u8 is_tx, u16 ch_address, u16 packet_length) { if (!g.dim_is_initialized || !ch) return DIM_ERR_DRIVER_NOT_INITIALIZED; if (!check_channel_address(ch_address)) return DIM_INIT_ERR_CHANNEL_ADDRESS; if (!check_packet_length(packet_length)) return DIM_ERR_BAD_CONFIG; if (!ch->dbr_size) ch->dbr_size = packet_length * ISOC_DBR_FACTOR; ch->dbr_addr = alloc_dbr(ch->dbr_size); if (ch->dbr_addr >= DBR_SIZE) return DIM_INIT_ERR_OUT_OF_MEMORY; isoc_init(ch, ch_address / 2, packet_length); dim2_configure_channel(ch->addr, CAT_CT_VAL_ISOC, is_tx, ch->dbr_addr, ch->dbr_size, packet_length); return DIM_NO_ERROR; } u8 dim_init_sync(struct dim_channel *ch, u8 is_tx, u16 ch_address, u16 bytes_per_frame) { u16 bd_factor = g.fcnt + 2; if (!g.dim_is_initialized || !ch) return DIM_ERR_DRIVER_NOT_INITIALIZED; if (!check_channel_address(ch_address)) return DIM_INIT_ERR_CHANNEL_ADDRESS; if (!check_bytes_per_frame(bytes_per_frame)) return DIM_ERR_BAD_CONFIG; if (!ch->dbr_size) ch->dbr_size = bytes_per_frame << bd_factor; ch->dbr_addr = alloc_dbr(ch->dbr_size); if (ch->dbr_addr >= DBR_SIZE) return DIM_INIT_ERR_OUT_OF_MEMORY; sync_init(ch, ch_address / 2, bytes_per_frame); dim2_clear_dbr(ch->dbr_addr, ch->dbr_size); dim2_configure_channel(ch->addr, CAT_CT_VAL_SYNC, is_tx, ch->dbr_addr, ch->dbr_size, 0); return DIM_NO_ERROR; } u8 dim_destroy_channel(struct dim_channel *ch) { if (!g.dim_is_initialized || !ch) return DIM_ERR_DRIVER_NOT_INITIALIZED; if (ch->addr == g.atx_dbr.ch_addr) { writel(0, &g.dim2->MIEN); g.atx_dbr.ch_addr = 0; } dim2_clear_channel(ch->addr); if (ch->dbr_addr < DBR_SIZE) free_dbr(ch->dbr_addr, ch->dbr_size); ch->dbr_addr = DBR_SIZE; return DIM_NO_ERROR; } void dim_service_ahb_int_irq(struct dim_channel *const *channels) { bool state_changed; if (!g.dim_is_initialized) { dim_on_error(DIM_ERR_DRIVER_NOT_INITIALIZED, "DIM is not initialized"); return; } if (!channels) { dim_on_error(DIM_ERR_DRIVER_NOT_INITIALIZED, "Bad channels"); return; } /* * Use while-loop and a flag to make sure the age is changed back at * least once, otherwise the interrupt may never come if CPU generates * interrupt on changing age. * This cycle runs not more than number of channels, because * channel_service_interrupt() routine doesn't start the channel again. */ do { struct dim_channel *const *ch = channels; state_changed = false; while (*ch) { state_changed |= channel_service_interrupt(*ch); ++ch; } } while (state_changed); } u8 dim_service_channel(struct dim_channel *ch) { if (!g.dim_is_initialized || !ch) return DIM_ERR_DRIVER_NOT_INITIALIZED; return channel_service(ch); } struct dim_ch_state *dim_get_channel_state(struct dim_channel *ch, struct dim_ch_state *state_ptr) { if (!ch || !state_ptr) return NULL; state_ptr->ready = ch->state.level < 2; state_ptr->done_buffers = ch->done_sw_buffers_number; return state_ptr; } bool dim_enqueue_buffer(struct dim_channel *ch, u32 buffer_addr, u16 buffer_size) { if (!ch) return dim_on_error(DIM_ERR_DRIVER_NOT_INITIALIZED, "Bad channel"); return channel_start(ch, buffer_addr, buffer_size); } bool dim_detach_buffers(struct dim_channel *ch, u16 buffers_number) { if (!ch) return dim_on_error(DIM_ERR_DRIVER_NOT_INITIALIZED, "Bad channel"); return channel_detach_buffers(ch, buffers_number); } |