Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 | // SPDX-License-Identifier: GPL-2.0-or-later /* * cx18 ADEC VBI functions * * Derived from cx25840-vbi.c * * Copyright (C) 2007 Hans Verkuil <hverkuil@xs4all.nl> */ #include "cx18-driver.h" /* * For sliced VBI output, we set up to use VIP-1.1, 8-bit mode, * NN counts 1 byte Dwords, an IDID with the VBI line # in it. * Thus, according to the VIP-2 Spec, our VBI ancillary data lines * (should!) look like: * 4 byte EAV code: 0xff 0x00 0x00 0xRP * unknown number of possible idle bytes * 3 byte Anc data preamble: 0x00 0xff 0xff * 1 byte data identifier: ne010iii (parity bits, 010, DID bits) * 1 byte secondary data id: nessssss (parity bits, SDID bits) * 1 byte data word count: necccccc (parity bits, NN Dword count) * 2 byte Internal DID: VBI-line-# 0x80 * NN data bytes * 1 byte checksum * Fill bytes needed to fil out to 4*NN bytes of payload * * The RP codes for EAVs when in VIP-1.1 mode, not in raw mode, & * in the vertical blanking interval are: * 0xb0 (Task 0 VerticalBlank HorizontalBlank 0 0 0 0) * 0xf0 (Task EvenField VerticalBlank HorizontalBlank 0 0 0 0) * * Since the V bit is only allowed to toggle in the EAV RP code, just * before the first active region line and for active lines, they are: * 0x90 (Task 0 0 HorizontalBlank 0 0 0 0) * 0xd0 (Task EvenField 0 HorizontalBlank 0 0 0 0) * * The user application DID bytes we care about are: * 0x91 (1 0 010 0 !ActiveLine AncDataPresent) * 0x55 (0 1 010 2ndField !ActiveLine AncDataPresent) * */ static const u8 sliced_vbi_did[2] = { 0x91, 0x55 }; struct vbi_anc_data { /* u8 eav[4]; */ /* u8 idle[]; Variable number of idle bytes */ u8 preamble[3]; u8 did; u8 sdid; u8 data_count; u8 idid[2]; u8 payload[]; /* data_count of payload */ /* u8 checksum; */ /* u8 fill[]; Variable number of fill bytes */ }; static int odd_parity(u8 c) { c ^= (c >> 4); c ^= (c >> 2); c ^= (c >> 1); return c & 1; } static int decode_vps(u8 *dst, u8 *p) { static const u8 biphase_tbl[] = { 0xf0, 0x78, 0x70, 0xf0, 0xb4, 0x3c, 0x34, 0xb4, 0xb0, 0x38, 0x30, 0xb0, 0xf0, 0x78, 0x70, 0xf0, 0xd2, 0x5a, 0x52, 0xd2, 0x96, 0x1e, 0x16, 0x96, 0x92, 0x1a, 0x12, 0x92, 0xd2, 0x5a, 0x52, 0xd2, 0xd0, 0x58, 0x50, 0xd0, 0x94, 0x1c, 0x14, 0x94, 0x90, 0x18, 0x10, 0x90, 0xd0, 0x58, 0x50, 0xd0, 0xf0, 0x78, 0x70, 0xf0, 0xb4, 0x3c, 0x34, 0xb4, 0xb0, 0x38, 0x30, 0xb0, 0xf0, 0x78, 0x70, 0xf0, 0xe1, 0x69, 0x61, 0xe1, 0xa5, 0x2d, 0x25, 0xa5, 0xa1, 0x29, 0x21, 0xa1, 0xe1, 0x69, 0x61, 0xe1, 0xc3, 0x4b, 0x43, 0xc3, 0x87, 0x0f, 0x07, 0x87, 0x83, 0x0b, 0x03, 0x83, 0xc3, 0x4b, 0x43, 0xc3, 0xc1, 0x49, 0x41, 0xc1, 0x85, 0x0d, 0x05, 0x85, 0x81, 0x09, 0x01, 0x81, 0xc1, 0x49, 0x41, 0xc1, 0xe1, 0x69, 0x61, 0xe1, 0xa5, 0x2d, 0x25, 0xa5, 0xa1, 0x29, 0x21, 0xa1, 0xe1, 0x69, 0x61, 0xe1, 0xe0, 0x68, 0x60, 0xe0, 0xa4, 0x2c, 0x24, 0xa4, 0xa0, 0x28, 0x20, 0xa0, 0xe0, 0x68, 0x60, 0xe0, 0xc2, 0x4a, 0x42, 0xc2, 0x86, 0x0e, 0x06, 0x86, 0x82, 0x0a, 0x02, 0x82, 0xc2, 0x4a, 0x42, 0xc2, 0xc0, 0x48, 0x40, 0xc0, 0x84, 0x0c, 0x04, 0x84, 0x80, 0x08, 0x00, 0x80, 0xc0, 0x48, 0x40, 0xc0, 0xe0, 0x68, 0x60, 0xe0, 0xa4, 0x2c, 0x24, 0xa4, 0xa0, 0x28, 0x20, 0xa0, 0xe0, 0x68, 0x60, 0xe0, 0xf0, 0x78, 0x70, 0xf0, 0xb4, 0x3c, 0x34, 0xb4, 0xb0, 0x38, 0x30, 0xb0, 0xf0, 0x78, 0x70, 0xf0, 0xd2, 0x5a, 0x52, 0xd2, 0x96, 0x1e, 0x16, 0x96, 0x92, 0x1a, 0x12, 0x92, 0xd2, 0x5a, 0x52, 0xd2, 0xd0, 0x58, 0x50, 0xd0, 0x94, 0x1c, 0x14, 0x94, 0x90, 0x18, 0x10, 0x90, 0xd0, 0x58, 0x50, 0xd0, 0xf0, 0x78, 0x70, 0xf0, 0xb4, 0x3c, 0x34, 0xb4, 0xb0, 0x38, 0x30, 0xb0, 0xf0, 0x78, 0x70, 0xf0, }; u8 c, err = 0; int i; for (i = 0; i < 2 * 13; i += 2) { err |= biphase_tbl[p[i]] | biphase_tbl[p[i + 1]]; c = (biphase_tbl[p[i + 1]] & 0xf) | ((biphase_tbl[p[i]] & 0xf) << 4); dst[i / 2] = c; } return err & 0xf0; } int cx18_av_g_sliced_fmt(struct v4l2_subdev *sd, struct v4l2_sliced_vbi_format *svbi) { struct cx18 *cx = v4l2_get_subdevdata(sd); struct cx18_av_state *state = &cx->av_state; static const u16 lcr2vbi[] = { 0, V4L2_SLICED_TELETEXT_B, 0, /* 1 */ 0, V4L2_SLICED_WSS_625, 0, /* 4 */ V4L2_SLICED_CAPTION_525, /* 6 */ 0, 0, V4L2_SLICED_VPS, 0, 0, /* 9 */ 0, 0, 0, 0 }; int is_pal = !(state->std & V4L2_STD_525_60); int i; memset(svbi->service_lines, 0, sizeof(svbi->service_lines)); svbi->service_set = 0; /* we're done if raw VBI is active */ if ((cx18_av_read(cx, 0x404) & 0x10) == 0) return 0; if (is_pal) { for (i = 7; i <= 23; i++) { u8 v = cx18_av_read(cx, 0x424 + i - 7); svbi->service_lines[0][i] = lcr2vbi[v >> 4]; svbi->service_lines[1][i] = lcr2vbi[v & 0xf]; svbi->service_set |= svbi->service_lines[0][i] | svbi->service_lines[1][i]; } } else { for (i = 10; i <= 21; i++) { u8 v = cx18_av_read(cx, 0x424 + i - 10); svbi->service_lines[0][i] = lcr2vbi[v >> 4]; svbi->service_lines[1][i] = lcr2vbi[v & 0xf]; svbi->service_set |= svbi->service_lines[0][i] | svbi->service_lines[1][i]; } } return 0; } int cx18_av_s_raw_fmt(struct v4l2_subdev *sd, struct v4l2_vbi_format *fmt) { struct cx18 *cx = v4l2_get_subdevdata(sd); struct cx18_av_state *state = &cx->av_state; /* Setup standard */ cx18_av_std_setup(cx); /* VBI Offset */ cx18_av_write(cx, 0x47f, state->slicer_line_delay); cx18_av_write(cx, 0x404, 0x2e); return 0; } int cx18_av_s_sliced_fmt(struct v4l2_subdev *sd, struct v4l2_sliced_vbi_format *svbi) { struct cx18 *cx = v4l2_get_subdevdata(sd); struct cx18_av_state *state = &cx->av_state; int is_pal = !(state->std & V4L2_STD_525_60); int i, x; u8 lcr[24]; for (x = 0; x <= 23; x++) lcr[x] = 0x00; /* Setup standard */ cx18_av_std_setup(cx); /* Sliced VBI */ cx18_av_write(cx, 0x404, 0x32); /* Ancillary data */ cx18_av_write(cx, 0x406, 0x13); cx18_av_write(cx, 0x47f, state->slicer_line_delay); /* Force impossible lines to 0 */ if (is_pal) { for (i = 0; i <= 6; i++) svbi->service_lines[0][i] = svbi->service_lines[1][i] = 0; } else { for (i = 0; i <= 9; i++) svbi->service_lines[0][i] = svbi->service_lines[1][i] = 0; for (i = 22; i <= 23; i++) svbi->service_lines[0][i] = svbi->service_lines[1][i] = 0; } /* Build register values for requested service lines */ for (i = 7; i <= 23; i++) { for (x = 0; x <= 1; x++) { switch (svbi->service_lines[1-x][i]) { case V4L2_SLICED_TELETEXT_B: lcr[i] |= 1 << (4 * x); break; case V4L2_SLICED_WSS_625: lcr[i] |= 4 << (4 * x); break; case V4L2_SLICED_CAPTION_525: lcr[i] |= 6 << (4 * x); break; case V4L2_SLICED_VPS: lcr[i] |= 9 << (4 * x); break; } } } if (is_pal) { for (x = 1, i = 0x424; i <= 0x434; i++, x++) cx18_av_write(cx, i, lcr[6 + x]); } else { for (x = 1, i = 0x424; i <= 0x430; i++, x++) cx18_av_write(cx, i, lcr[9 + x]); for (i = 0x431; i <= 0x434; i++) cx18_av_write(cx, i, 0); } cx18_av_write(cx, 0x43c, 0x16); /* Should match vblank set in cx18_av_std_setup() */ cx18_av_write(cx, 0x474, is_pal ? 38 : 26); return 0; } int cx18_av_decode_vbi_line(struct v4l2_subdev *sd, struct v4l2_decode_vbi_line *vbi) { struct cx18 *cx = v4l2_get_subdevdata(sd); struct cx18_av_state *state = &cx->av_state; struct vbi_anc_data *anc = (struct vbi_anc_data *)vbi->p; u8 *p; int did, sdid, l, err = 0; /* * Check for the ancillary data header for sliced VBI */ if (anc->preamble[0] || anc->preamble[1] != 0xff || anc->preamble[2] != 0xff || (anc->did != sliced_vbi_did[0] && anc->did != sliced_vbi_did[1])) { vbi->line = vbi->type = 0; return 0; } did = anc->did; sdid = anc->sdid & 0xf; l = anc->idid[0] & 0x3f; l += state->slicer_line_offset; p = anc->payload; /* Decode the SDID set by the slicer */ switch (sdid) { case 1: sdid = V4L2_SLICED_TELETEXT_B; break; case 4: sdid = V4L2_SLICED_WSS_625; break; case 6: sdid = V4L2_SLICED_CAPTION_525; err = !odd_parity(p[0]) || !odd_parity(p[1]); break; case 9: sdid = V4L2_SLICED_VPS; if (decode_vps(p, p) != 0) err = 1; break; default: sdid = 0; err = 1; break; } vbi->type = err ? 0 : sdid; vbi->line = err ? 0 : l; vbi->is_second_field = err ? 0 : (did == sliced_vbi_did[1]); vbi->p = p; return 0; } |