Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 | // SPDX-License-Identifier: MIT /* * Copyright © 2014-2019 Intel Corporation * * Authors: * Vinit Azad <vinit.azad@intel.com> * Ben Widawsky <ben@bwidawsk.net> * Dave Gordon <david.s.gordon@intel.com> * Alex Dai <yu.dai@intel.com> */ #include "gt/intel_gt.h" #include "gt/intel_gt_mcr.h" #include "gt/intel_gt_regs.h" #include "gt/intel_rps.h" #include "intel_guc_fw.h" #include "intel_guc_print.h" #include "i915_drv.h" static void guc_prepare_xfer(struct intel_gt *gt) { struct intel_uncore *uncore = gt->uncore; u32 shim_flags = GUC_ENABLE_READ_CACHE_LOGIC | GUC_ENABLE_READ_CACHE_FOR_SRAM_DATA | GUC_ENABLE_READ_CACHE_FOR_WOPCM_DATA | GUC_ENABLE_MIA_CLOCK_GATING; if (GRAPHICS_VER_FULL(uncore->i915) < IP_VER(12, 50)) shim_flags |= GUC_DISABLE_SRAM_INIT_TO_ZEROES | GUC_ENABLE_MIA_CACHING; /* Must program this register before loading the ucode with DMA */ intel_uncore_write(uncore, GUC_SHIM_CONTROL, shim_flags); if (IS_GEN9_LP(uncore->i915)) intel_uncore_write(uncore, GEN9LP_GT_PM_CONFIG, GT_DOORBELL_ENABLE); else intel_uncore_write(uncore, GEN9_GT_PM_CONFIG, GT_DOORBELL_ENABLE); if (GRAPHICS_VER(uncore->i915) == 9) { /* DOP Clock Gating Enable for GuC clocks */ intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 0, GEN8_DOP_CLOCK_GATE_GUC_ENABLE); /* allows for 5us (in 10ns units) before GT can go to RC6 */ intel_uncore_write(uncore, GUC_ARAT_C6DIS, 0x1FF); } } static int guc_xfer_rsa_mmio(struct intel_uc_fw *guc_fw, struct intel_uncore *uncore) { u32 rsa[UOS_RSA_SCRATCH_COUNT]; size_t copied; int i; copied = intel_uc_fw_copy_rsa(guc_fw, rsa, sizeof(rsa)); if (copied < sizeof(rsa)) return -ENOMEM; for (i = 0; i < UOS_RSA_SCRATCH_COUNT; i++) intel_uncore_write(uncore, UOS_RSA_SCRATCH(i), rsa[i]); return 0; } static int guc_xfer_rsa_vma(struct intel_uc_fw *guc_fw, struct intel_uncore *uncore) { struct intel_guc *guc = container_of(guc_fw, struct intel_guc, fw); intel_uncore_write(uncore, UOS_RSA_SCRATCH(0), intel_guc_ggtt_offset(guc, guc_fw->rsa_data)); return 0; } /* Copy RSA signature from the fw image to HW for verification */ static int guc_xfer_rsa(struct intel_uc_fw *guc_fw, struct intel_uncore *uncore) { if (guc_fw->rsa_data) return guc_xfer_rsa_vma(guc_fw, uncore); else return guc_xfer_rsa_mmio(guc_fw, uncore); } /* * Read the GuC status register (GUC_STATUS) and store it in the * specified location; then return a boolean indicating whether * the value matches either completion or a known failure code. * * This is used for polling the GuC status in a wait_for() * loop below. */ static inline bool guc_load_done(struct intel_uncore *uncore, u32 *status, bool *success) { u32 val = intel_uncore_read(uncore, GUC_STATUS); u32 uk_val = REG_FIELD_GET(GS_UKERNEL_MASK, val); u32 br_val = REG_FIELD_GET(GS_BOOTROM_MASK, val); *status = val; switch (uk_val) { case INTEL_GUC_LOAD_STATUS_READY: *success = true; return true; case INTEL_GUC_LOAD_STATUS_ERROR_DEVID_BUILD_MISMATCH: case INTEL_GUC_LOAD_STATUS_GUC_PREPROD_BUILD_MISMATCH: case INTEL_GUC_LOAD_STATUS_ERROR_DEVID_INVALID_GUCTYPE: case INTEL_GUC_LOAD_STATUS_HWCONFIG_ERROR: case INTEL_GUC_LOAD_STATUS_DPC_ERROR: case INTEL_GUC_LOAD_STATUS_EXCEPTION: case INTEL_GUC_LOAD_STATUS_INIT_DATA_INVALID: case INTEL_GUC_LOAD_STATUS_MPU_DATA_INVALID: case INTEL_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID: *success = false; return true; } switch (br_val) { case INTEL_BOOTROM_STATUS_NO_KEY_FOUND: case INTEL_BOOTROM_STATUS_RSA_FAILED: case INTEL_BOOTROM_STATUS_PAVPC_FAILED: case INTEL_BOOTROM_STATUS_WOPCM_FAILED: case INTEL_BOOTROM_STATUS_LOADLOC_FAILED: case INTEL_BOOTROM_STATUS_JUMP_FAILED: case INTEL_BOOTROM_STATUS_RC6CTXCONFIG_FAILED: case INTEL_BOOTROM_STATUS_MPUMAP_INCORRECT: case INTEL_BOOTROM_STATUS_EXCEPTION: case INTEL_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE: *success = false; return true; } return false; } /* * Use a longer timeout for debug builds so that problems can be detected * and analysed. But a shorter timeout for releases so that user's don't * wait forever to find out there is a problem. Note that the only reason * an end user should hit the timeout is in case of extreme thermal throttling. * And a system that is that hot during boot is probably dead anyway! */ #if defined(CONFIG_DRM_I915_DEBUG_GEM) #define GUC_LOAD_RETRY_LIMIT 20 #else #define GUC_LOAD_RETRY_LIMIT 3 #endif static int guc_wait_ucode(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); struct intel_uncore *uncore = gt->uncore; ktime_t before, after, delta; bool success; u32 status; int ret, count; u64 delta_ms; u32 before_freq; /* * Wait for the GuC to start up. * * Measurements indicate this should take no more than 20ms * (assuming the GT clock is at maximum frequency). So, a * timeout here indicates that the GuC has failed and is unusable. * (Higher levels of the driver may decide to reset the GuC and * attempt the ucode load again if this happens.) * * FIXME: There is a known (but exceedingly unlikely) race condition * where the asynchronous frequency management code could reduce * the GT clock while a GuC reload is in progress (during a full * GT reset). A fix is in progress but there are complex locking * issues to be resolved. In the meantime bump the timeout to * 200ms. Even at slowest clock, this should be sufficient. And * in the working case, a larger timeout makes no difference. * * IFWI updates have also been seen to cause sporadic failures due to * the requested frequency not being granted and thus the firmware * load is attempted at minimum frequency. That can lead to load times * in the seconds range. However, there is a limit on how long an * individual wait_for() can wait. So wrap it in a loop. */ before_freq = intel_rps_read_actual_frequency(&uncore->gt->rps); before = ktime_get(); for (count = 0; count < GUC_LOAD_RETRY_LIMIT; count++) { ret = wait_for(guc_load_done(uncore, &status, &success), 1000); if (!ret || !success) break; guc_dbg(guc, "load still in progress, count = %d, freq = %dMHz, status = 0x%08X [0x%02X/%02X]\n", count, intel_rps_read_actual_frequency(&uncore->gt->rps), status, REG_FIELD_GET(GS_BOOTROM_MASK, status), REG_FIELD_GET(GS_UKERNEL_MASK, status)); } after = ktime_get(); delta = ktime_sub(after, before); delta_ms = ktime_to_ms(delta); if (ret || !success) { u32 ukernel = REG_FIELD_GET(GS_UKERNEL_MASK, status); u32 bootrom = REG_FIELD_GET(GS_BOOTROM_MASK, status); guc_info(guc, "load failed: status = 0x%08X, time = %lldms, freq = %dMHz, ret = %d\n", status, delta_ms, intel_rps_read_actual_frequency(&uncore->gt->rps), ret); guc_info(guc, "load failed: status: Reset = %d, BootROM = 0x%02X, UKernel = 0x%02X, MIA = 0x%02X, Auth = 0x%02X\n", REG_FIELD_GET(GS_MIA_IN_RESET, status), bootrom, ukernel, REG_FIELD_GET(GS_MIA_MASK, status), REG_FIELD_GET(GS_AUTH_STATUS_MASK, status)); switch (bootrom) { case INTEL_BOOTROM_STATUS_NO_KEY_FOUND: guc_info(guc, "invalid key requested, header = 0x%08X\n", intel_uncore_read(uncore, GUC_HEADER_INFO)); ret = -ENOEXEC; break; case INTEL_BOOTROM_STATUS_RSA_FAILED: guc_info(guc, "firmware signature verification failed\n"); ret = -ENOEXEC; break; case INTEL_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE: guc_info(guc, "firmware production part check failure\n"); ret = -ENOEXEC; break; } switch (ukernel) { case INTEL_GUC_LOAD_STATUS_EXCEPTION: guc_info(guc, "firmware exception. EIP: %#x\n", intel_uncore_read(uncore, SOFT_SCRATCH(13))); ret = -ENXIO; break; case INTEL_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID: guc_info(guc, "illegal register in save/restore workaround list\n"); ret = -EPERM; break; case INTEL_GUC_LOAD_STATUS_HWCONFIG_START: guc_info(guc, "still extracting hwconfig table.\n"); ret = -ETIMEDOUT; break; } /* Uncommon/unexpected error, see earlier status code print for details */ if (ret == 0) ret = -ENXIO; } else if (delta_ms > 200) { guc_warn(guc, "excessive init time: %lldms! [status = 0x%08X, count = %d, ret = %d]\n", delta_ms, status, count, ret); guc_warn(guc, "excessive init time: [freq = %dMHz, before = %dMHz, perf_limit_reasons = 0x%08X]\n", intel_rps_read_actual_frequency(&uncore->gt->rps), before_freq, intel_uncore_read(uncore, intel_gt_perf_limit_reasons_reg(gt))); } else { guc_dbg(guc, "init took %lldms, freq = %dMHz, before = %dMHz, status = 0x%08X, count = %d, ret = %d\n", delta_ms, intel_rps_read_actual_frequency(&uncore->gt->rps), before_freq, status, count, ret); } return ret; } /** * intel_guc_fw_upload() - load GuC uCode to device * @guc: intel_guc structure * * Called from intel_uc_init_hw() during driver load, resume from sleep and * after a GPU reset. * * The firmware image should have already been fetched into memory, so only * check that fetch succeeded, and then transfer the image to the h/w. * * Return: non-zero code on error */ int intel_guc_fw_upload(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); struct intel_uncore *uncore = gt->uncore; int ret; guc_prepare_xfer(gt); /* * Note that GuC needs the CSS header plus uKernel code to be copied * by the DMA engine in one operation, whereas the RSA signature is * loaded separately, either by copying it to the UOS_RSA_SCRATCH * register (if key size <= 256) or through a ggtt-pinned vma (if key * size > 256). The RSA size and therefore the way we provide it to the * HW is fixed for each platform and hard-coded in the bootrom. */ ret = guc_xfer_rsa(&guc->fw, uncore); if (ret) goto out; /* * Current uCode expects the code to be loaded at 8k; locations below * this are used for the stack. */ ret = intel_uc_fw_upload(&guc->fw, 0x2000, UOS_MOVE); if (ret) goto out; ret = guc_wait_ucode(guc); if (ret) goto out; intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_RUNNING); return 0; out: intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOAD_FAIL); return ret; } |