Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) 2020 Western Digital Corporation or its affiliates.
 */
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/perf_event.h>
#include <linux/irq.h>
#include <linux/stringify.h>

#include <asm/processor.h>
#include <asm/ptrace.h>
#include <asm/csr.h>
#include <asm/entry-common.h>
#include <asm/hwprobe.h>
#include <asm/cpufeature.h>

#define INSN_MATCH_LB			0x3
#define INSN_MASK_LB			0x707f
#define INSN_MATCH_LH			0x1003
#define INSN_MASK_LH			0x707f
#define INSN_MATCH_LW			0x2003
#define INSN_MASK_LW			0x707f
#define INSN_MATCH_LD			0x3003
#define INSN_MASK_LD			0x707f
#define INSN_MATCH_LBU			0x4003
#define INSN_MASK_LBU			0x707f
#define INSN_MATCH_LHU			0x5003
#define INSN_MASK_LHU			0x707f
#define INSN_MATCH_LWU			0x6003
#define INSN_MASK_LWU			0x707f
#define INSN_MATCH_SB			0x23
#define INSN_MASK_SB			0x707f
#define INSN_MATCH_SH			0x1023
#define INSN_MASK_SH			0x707f
#define INSN_MATCH_SW			0x2023
#define INSN_MASK_SW			0x707f
#define INSN_MATCH_SD			0x3023
#define INSN_MASK_SD			0x707f

#define INSN_MATCH_FLW			0x2007
#define INSN_MASK_FLW			0x707f
#define INSN_MATCH_FLD			0x3007
#define INSN_MASK_FLD			0x707f
#define INSN_MATCH_FLQ			0x4007
#define INSN_MASK_FLQ			0x707f
#define INSN_MATCH_FSW			0x2027
#define INSN_MASK_FSW			0x707f
#define INSN_MATCH_FSD			0x3027
#define INSN_MASK_FSD			0x707f
#define INSN_MATCH_FSQ			0x4027
#define INSN_MASK_FSQ			0x707f

#define INSN_MATCH_C_LD			0x6000
#define INSN_MASK_C_LD			0xe003
#define INSN_MATCH_C_SD			0xe000
#define INSN_MASK_C_SD			0xe003
#define INSN_MATCH_C_LW			0x4000
#define INSN_MASK_C_LW			0xe003
#define INSN_MATCH_C_SW			0xc000
#define INSN_MASK_C_SW			0xe003
#define INSN_MATCH_C_LDSP		0x6002
#define INSN_MASK_C_LDSP		0xe003
#define INSN_MATCH_C_SDSP		0xe002
#define INSN_MASK_C_SDSP		0xe003
#define INSN_MATCH_C_LWSP		0x4002
#define INSN_MASK_C_LWSP		0xe003
#define INSN_MATCH_C_SWSP		0xc002
#define INSN_MASK_C_SWSP		0xe003

#define INSN_MATCH_C_FLD		0x2000
#define INSN_MASK_C_FLD			0xe003
#define INSN_MATCH_C_FLW		0x6000
#define INSN_MASK_C_FLW			0xe003
#define INSN_MATCH_C_FSD		0xa000
#define INSN_MASK_C_FSD			0xe003
#define INSN_MATCH_C_FSW		0xe000
#define INSN_MASK_C_FSW			0xe003
#define INSN_MATCH_C_FLDSP		0x2002
#define INSN_MASK_C_FLDSP		0xe003
#define INSN_MATCH_C_FSDSP		0xa002
#define INSN_MASK_C_FSDSP		0xe003
#define INSN_MATCH_C_FLWSP		0x6002
#define INSN_MASK_C_FLWSP		0xe003
#define INSN_MATCH_C_FSWSP		0xe002
#define INSN_MASK_C_FSWSP		0xe003

#define INSN_LEN(insn)			((((insn) & 0x3) < 0x3) ? 2 : 4)

#if defined(CONFIG_64BIT)
#define LOG_REGBYTES			3
#define XLEN				64
#else
#define LOG_REGBYTES			2
#define XLEN				32
#endif
#define REGBYTES			(1 << LOG_REGBYTES)
#define XLEN_MINUS_16			((XLEN) - 16)

#define SH_RD				7
#define SH_RS1				15
#define SH_RS2				20
#define SH_RS2C				2

#define RV_X(x, s, n)			(((x) >> (s)) & ((1 << (n)) - 1))
#define RVC_LW_IMM(x)			((RV_X(x, 6, 1) << 2) | \
					 (RV_X(x, 10, 3) << 3) | \
					 (RV_X(x, 5, 1) << 6))
#define RVC_LD_IMM(x)			((RV_X(x, 10, 3) << 3) | \
					 (RV_X(x, 5, 2) << 6))
#define RVC_LWSP_IMM(x)			((RV_X(x, 4, 3) << 2) | \
					 (RV_X(x, 12, 1) << 5) | \
					 (RV_X(x, 2, 2) << 6))
#define RVC_LDSP_IMM(x)			((RV_X(x, 5, 2) << 3) | \
					 (RV_X(x, 12, 1) << 5) | \
					 (RV_X(x, 2, 3) << 6))
#define RVC_SWSP_IMM(x)			((RV_X(x, 9, 4) << 2) | \
					 (RV_X(x, 7, 2) << 6))
#define RVC_SDSP_IMM(x)			((RV_X(x, 10, 3) << 3) | \
					 (RV_X(x, 7, 3) << 6))
#define RVC_RS1S(insn)			(8 + RV_X(insn, SH_RD, 3))
#define RVC_RS2S(insn)			(8 + RV_X(insn, SH_RS2C, 3))
#define RVC_RS2(insn)			RV_X(insn, SH_RS2C, 5)

#define SHIFT_RIGHT(x, y)		\
	((y) < 0 ? ((x) << -(y)) : ((x) >> (y)))

#define REG_MASK			\
	((1 << (5 + LOG_REGBYTES)) - (1 << LOG_REGBYTES))

#define REG_OFFSET(insn, pos)		\
	(SHIFT_RIGHT((insn), (pos) - LOG_REGBYTES) & REG_MASK)

#define REG_PTR(insn, pos, regs)	\
	(ulong *)((ulong)(regs) + REG_OFFSET(insn, pos))

#define GET_RM(insn)			(((insn) >> 12) & 7)

#define GET_RS1(insn, regs)		(*REG_PTR(insn, SH_RS1, regs))
#define GET_RS2(insn, regs)		(*REG_PTR(insn, SH_RS2, regs))
#define GET_RS1S(insn, regs)		(*REG_PTR(RVC_RS1S(insn), 0, regs))
#define GET_RS2S(insn, regs)		(*REG_PTR(RVC_RS2S(insn), 0, regs))
#define GET_RS2C(insn, regs)		(*REG_PTR(insn, SH_RS2C, regs))
#define GET_SP(regs)			(*REG_PTR(2, 0, regs))
#define SET_RD(insn, regs, val)		(*REG_PTR(insn, SH_RD, regs) = (val))
#define IMM_I(insn)			((s32)(insn) >> 20)
#define IMM_S(insn)			(((s32)(insn) >> 25 << 5) | \
					 (s32)(((insn) >> 7) & 0x1f))
#define MASK_FUNCT3			0x7000

#define GET_PRECISION(insn) (((insn) >> 25) & 3)
#define GET_RM(insn) (((insn) >> 12) & 7)
#define PRECISION_S 0
#define PRECISION_D 1

#ifdef CONFIG_FPU

#define FP_GET_RD(insn)		(insn >> 7 & 0x1F)

extern void put_f32_reg(unsigned long fp_reg, unsigned long value);

static int set_f32_rd(unsigned long insn, struct pt_regs *regs,
		      unsigned long val)
{
	unsigned long fp_reg = FP_GET_RD(insn);

	put_f32_reg(fp_reg, val);
	regs->status |= SR_FS_DIRTY;

	return 0;
}

extern void put_f64_reg(unsigned long fp_reg, unsigned long value);

static int set_f64_rd(unsigned long insn, struct pt_regs *regs, u64 val)
{
	unsigned long fp_reg = FP_GET_RD(insn);
	unsigned long value;

#if __riscv_xlen == 32
	value = (unsigned long) &val;
#else
	value = val;
#endif
	put_f64_reg(fp_reg, value);
	regs->status |= SR_FS_DIRTY;

	return 0;
}

#if __riscv_xlen == 32
extern void get_f64_reg(unsigned long fp_reg, u64 *value);

static u64 get_f64_rs(unsigned long insn, u8 fp_reg_offset,
		      struct pt_regs *regs)
{
	unsigned long fp_reg = (insn >> fp_reg_offset) & 0x1F;
	u64 val;

	get_f64_reg(fp_reg, &val);
	regs->status |= SR_FS_DIRTY;

	return val;
}
#else

extern unsigned long get_f64_reg(unsigned long fp_reg);

static unsigned long get_f64_rs(unsigned long insn, u8 fp_reg_offset,
				struct pt_regs *regs)
{
	unsigned long fp_reg = (insn >> fp_reg_offset) & 0x1F;
	unsigned long val;

	val = get_f64_reg(fp_reg);
	regs->status |= SR_FS_DIRTY;

	return val;
}

#endif

extern unsigned long get_f32_reg(unsigned long fp_reg);

static unsigned long get_f32_rs(unsigned long insn, u8 fp_reg_offset,
				struct pt_regs *regs)
{
	unsigned long fp_reg = (insn >> fp_reg_offset) & 0x1F;
	unsigned long val;

	val = get_f32_reg(fp_reg);
	regs->status |= SR_FS_DIRTY;

	return val;
}

#else /* CONFIG_FPU */
static void set_f32_rd(unsigned long insn, struct pt_regs *regs,
		       unsigned long val) {}

static void set_f64_rd(unsigned long insn, struct pt_regs *regs, u64 val) {}

static unsigned long get_f64_rs(unsigned long insn, u8 fp_reg_offset,
				struct pt_regs *regs)
{
	return 0;
}

static unsigned long get_f32_rs(unsigned long insn, u8 fp_reg_offset,
				struct pt_regs *regs)
{
	return 0;
}

#endif

#define GET_F64_RS2(insn, regs) (get_f64_rs(insn, 20, regs))
#define GET_F64_RS2C(insn, regs) (get_f64_rs(insn, 2, regs))
#define GET_F64_RS2S(insn, regs) (get_f64_rs(RVC_RS2S(insn), 0, regs))

#define GET_F32_RS2(insn, regs) (get_f32_rs(insn, 20, regs))
#define GET_F32_RS2C(insn, regs) (get_f32_rs(insn, 2, regs))
#define GET_F32_RS2S(insn, regs) (get_f32_rs(RVC_RS2S(insn), 0, regs))

#ifdef CONFIG_RISCV_M_MODE
static inline int load_u8(struct pt_regs *regs, const u8 *addr, u8 *r_val)
{
	u8 val;

	asm volatile("lbu %0, %1" : "=&r" (val) : "m" (*addr));
	*r_val = val;

	return 0;
}

static inline int store_u8(struct pt_regs *regs, u8 *addr, u8 val)
{
	asm volatile ("sb %0, %1\n" : : "r" (val), "m" (*addr));

	return 0;
}

static inline int get_insn(struct pt_regs *regs, ulong mepc, ulong *r_insn)
{
	register ulong __mepc asm ("a2") = mepc;
	ulong val, rvc_mask = 3, tmp;

	asm ("and %[tmp], %[addr], 2\n"
		"bnez %[tmp], 1f\n"
#if defined(CONFIG_64BIT)
		__stringify(LWU) " %[insn], (%[addr])\n"
#else
		__stringify(LW) " %[insn], (%[addr])\n"
#endif
		"and %[tmp], %[insn], %[rvc_mask]\n"
		"beq %[tmp], %[rvc_mask], 2f\n"
		"sll %[insn], %[insn], %[xlen_minus_16]\n"
		"srl %[insn], %[insn], %[xlen_minus_16]\n"
		"j 2f\n"
		"1:\n"
		"lhu %[insn], (%[addr])\n"
		"and %[tmp], %[insn], %[rvc_mask]\n"
		"bne %[tmp], %[rvc_mask], 2f\n"
		"lhu %[tmp], 2(%[addr])\n"
		"sll %[tmp], %[tmp], 16\n"
		"add %[insn], %[insn], %[tmp]\n"
		"2:"
	: [insn] "=&r" (val), [tmp] "=&r" (tmp)
	: [addr] "r" (__mepc), [rvc_mask] "r" (rvc_mask),
	  [xlen_minus_16] "i" (XLEN_MINUS_16));

	*r_insn = val;

	return 0;
}
#else
static inline int load_u8(struct pt_regs *regs, const u8 *addr, u8 *r_val)
{
	if (user_mode(regs)) {
		return __get_user(*r_val, (u8 __user *)addr);
	} else {
		*r_val = *addr;
		return 0;
	}
}

static inline int store_u8(struct pt_regs *regs, u8 *addr, u8 val)
{
	if (user_mode(regs)) {
		return __put_user(val, (u8 __user *)addr);
	} else {
		*addr = val;
		return 0;
	}
}

#define __read_insn(regs, insn, insn_addr)		\
({							\
	int __ret;					\
							\
	if (user_mode(regs)) {				\
		__ret = __get_user(insn, insn_addr);	\
	} else {					\
		insn = *(__force u16 *)insn_addr;	\
		__ret = 0;				\
	}						\
							\
	__ret;						\
})

static inline int get_insn(struct pt_regs *regs, ulong epc, ulong *r_insn)
{
	ulong insn = 0;

	if (epc & 0x2) {
		ulong tmp = 0;
		u16 __user *insn_addr = (u16 __user *)epc;

		if (__read_insn(regs, insn, insn_addr))
			return -EFAULT;
		/* __get_user() uses regular "lw" which sign extend the loaded
		 * value make sure to clear higher order bits in case we "or" it
		 * below with the upper 16 bits half.
		 */
		insn &= GENMASK(15, 0);
		if ((insn & __INSN_LENGTH_MASK) != __INSN_LENGTH_32) {
			*r_insn = insn;
			return 0;
		}
		insn_addr++;
		if (__read_insn(regs, tmp, insn_addr))
			return -EFAULT;
		*r_insn = (tmp << 16) | insn;

		return 0;
	} else {
		u32 __user *insn_addr = (u32 __user *)epc;

		if (__read_insn(regs, insn, insn_addr))
			return -EFAULT;
		if ((insn & __INSN_LENGTH_MASK) == __INSN_LENGTH_32) {
			*r_insn = insn;
			return 0;
		}
		insn &= GENMASK(15, 0);
		*r_insn = insn;

		return 0;
	}
}
#endif

union reg_data {
	u8 data_bytes[8];
	ulong data_ulong;
	u64 data_u64;
};

static bool unaligned_ctl __read_mostly;

/* sysctl hooks */
int unaligned_enabled __read_mostly = 1;	/* Enabled by default */

int handle_misaligned_load(struct pt_regs *regs)
{
	union reg_data val;
	unsigned long epc = regs->epc;
	unsigned long insn;
	unsigned long addr = regs->badaddr;
	int i, fp = 0, shift = 0, len = 0;

	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, addr);

	*this_cpu_ptr(&misaligned_access_speed) = RISCV_HWPROBE_MISALIGNED_EMULATED;

	if (!unaligned_enabled)
		return -1;

	if (user_mode(regs) && (current->thread.align_ctl & PR_UNALIGN_SIGBUS))
		return -1;

	if (get_insn(regs, epc, &insn))
		return -1;

	regs->epc = 0;

	if ((insn & INSN_MASK_LW) == INSN_MATCH_LW) {
		len = 4;
		shift = 8 * (sizeof(unsigned long) - len);
#if defined(CONFIG_64BIT)
	} else if ((insn & INSN_MASK_LD) == INSN_MATCH_LD) {
		len = 8;
		shift = 8 * (sizeof(unsigned long) - len);
	} else if ((insn & INSN_MASK_LWU) == INSN_MATCH_LWU) {
		len = 4;
#endif
	} else if ((insn & INSN_MASK_FLD) == INSN_MATCH_FLD) {
		fp = 1;
		len = 8;
	} else if ((insn & INSN_MASK_FLW) == INSN_MATCH_FLW) {
		fp = 1;
		len = 4;
	} else if ((insn & INSN_MASK_LH) == INSN_MATCH_LH) {
		len = 2;
		shift = 8 * (sizeof(unsigned long) - len);
	} else if ((insn & INSN_MASK_LHU) == INSN_MATCH_LHU) {
		len = 2;
#if defined(CONFIG_64BIT)
	} else if ((insn & INSN_MASK_C_LD) == INSN_MATCH_C_LD) {
		len = 8;
		shift = 8 * (sizeof(unsigned long) - len);
		insn = RVC_RS2S(insn) << SH_RD;
	} else if ((insn & INSN_MASK_C_LDSP) == INSN_MATCH_C_LDSP &&
		   ((insn >> SH_RD) & 0x1f)) {
		len = 8;
		shift = 8 * (sizeof(unsigned long) - len);
#endif
	} else if ((insn & INSN_MASK_C_LW) == INSN_MATCH_C_LW) {
		len = 4;
		shift = 8 * (sizeof(unsigned long) - len);
		insn = RVC_RS2S(insn) << SH_RD;
	} else if ((insn & INSN_MASK_C_LWSP) == INSN_MATCH_C_LWSP &&
		   ((insn >> SH_RD) & 0x1f)) {
		len = 4;
		shift = 8 * (sizeof(unsigned long) - len);
	} else if ((insn & INSN_MASK_C_FLD) == INSN_MATCH_C_FLD) {
		fp = 1;
		len = 8;
		insn = RVC_RS2S(insn) << SH_RD;
	} else if ((insn & INSN_MASK_C_FLDSP) == INSN_MATCH_C_FLDSP) {
		fp = 1;
		len = 8;
#if defined(CONFIG_32BIT)
	} else if ((insn & INSN_MASK_C_FLW) == INSN_MATCH_C_FLW) {
		fp = 1;
		len = 4;
		insn = RVC_RS2S(insn) << SH_RD;
	} else if ((insn & INSN_MASK_C_FLWSP) == INSN_MATCH_C_FLWSP) {
		fp = 1;
		len = 4;
#endif
	} else {
		regs->epc = epc;
		return -1;
	}

	if (!IS_ENABLED(CONFIG_FPU) && fp)
		return -EOPNOTSUPP;

	val.data_u64 = 0;
	for (i = 0; i < len; i++) {
		if (load_u8(regs, (void *)(addr + i), &val.data_bytes[i]))
			return -1;
	}

	if (!fp)
		SET_RD(insn, regs, val.data_ulong << shift >> shift);
	else if (len == 8)
		set_f64_rd(insn, regs, val.data_u64);
	else
		set_f32_rd(insn, regs, val.data_ulong);

	regs->epc = epc + INSN_LEN(insn);

	return 0;
}

int handle_misaligned_store(struct pt_regs *regs)
{
	union reg_data val;
	unsigned long epc = regs->epc;
	unsigned long insn;
	unsigned long addr = regs->badaddr;
	int i, len = 0, fp = 0;

	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, addr);

	if (!unaligned_enabled)
		return -1;

	if (user_mode(regs) && (current->thread.align_ctl & PR_UNALIGN_SIGBUS))
		return -1;

	if (get_insn(regs, epc, &insn))
		return -1;

	regs->epc = 0;

	val.data_ulong = GET_RS2(insn, regs);

	if ((insn & INSN_MASK_SW) == INSN_MATCH_SW) {
		len = 4;
#if defined(CONFIG_64BIT)
	} else if ((insn & INSN_MASK_SD) == INSN_MATCH_SD) {
		len = 8;
#endif
	} else if ((insn & INSN_MASK_FSD) == INSN_MATCH_FSD) {
		fp = 1;
		len = 8;
		val.data_u64 = GET_F64_RS2(insn, regs);
	} else if ((insn & INSN_MASK_FSW) == INSN_MATCH_FSW) {
		fp = 1;
		len = 4;
		val.data_ulong = GET_F32_RS2(insn, regs);
	} else if ((insn & INSN_MASK_SH) == INSN_MATCH_SH) {
		len = 2;
#if defined(CONFIG_64BIT)
	} else if ((insn & INSN_MASK_C_SD) == INSN_MATCH_C_SD) {
		len = 8;
		val.data_ulong = GET_RS2S(insn, regs);
	} else if ((insn & INSN_MASK_C_SDSP) == INSN_MATCH_C_SDSP) {
		len = 8;
		val.data_ulong = GET_RS2C(insn, regs);
#endif
	} else if ((insn & INSN_MASK_C_SW) == INSN_MATCH_C_SW) {
		len = 4;
		val.data_ulong = GET_RS2S(insn, regs);
	} else if ((insn & INSN_MASK_C_SWSP) == INSN_MATCH_C_SWSP) {
		len = 4;
		val.data_ulong = GET_RS2C(insn, regs);
	} else if ((insn & INSN_MASK_C_FSD) == INSN_MATCH_C_FSD) {
		fp = 1;
		len = 8;
		val.data_u64 = GET_F64_RS2S(insn, regs);
	} else if ((insn & INSN_MASK_C_FSDSP) == INSN_MATCH_C_FSDSP) {
		fp = 1;
		len = 8;
		val.data_u64 = GET_F64_RS2C(insn, regs);
#if !defined(CONFIG_64BIT)
	} else if ((insn & INSN_MASK_C_FSW) == INSN_MATCH_C_FSW) {
		fp = 1;
		len = 4;
		val.data_ulong = GET_F32_RS2S(insn, regs);
	} else if ((insn & INSN_MASK_C_FSWSP) == INSN_MATCH_C_FSWSP) {
		fp = 1;
		len = 4;
		val.data_ulong = GET_F32_RS2C(insn, regs);
#endif
	} else {
		regs->epc = epc;
		return -1;
	}

	if (!IS_ENABLED(CONFIG_FPU) && fp)
		return -EOPNOTSUPP;

	for (i = 0; i < len; i++) {
		if (store_u8(regs, (void *)(addr + i), val.data_bytes[i]))
			return -1;
	}

	regs->epc = epc + INSN_LEN(insn);

	return 0;
}

bool check_unaligned_access_emulated(int cpu)
{
	long *mas_ptr = per_cpu_ptr(&misaligned_access_speed, cpu);
	unsigned long tmp_var, tmp_val;
	bool misaligned_emu_detected;

	*mas_ptr = RISCV_HWPROBE_MISALIGNED_UNKNOWN;

	__asm__ __volatile__ (
		"       "REG_L" %[tmp], 1(%[ptr])\n"
		: [tmp] "=r" (tmp_val) : [ptr] "r" (&tmp_var) : "memory");

	misaligned_emu_detected = (*mas_ptr == RISCV_HWPROBE_MISALIGNED_EMULATED);
	/*
	 * If unaligned_ctl is already set, this means that we detected that all
	 * CPUS uses emulated misaligned access at boot time. If that changed
	 * when hotplugging the new cpu, this is something we don't handle.
	 */
	if (unlikely(unaligned_ctl && !misaligned_emu_detected)) {
		pr_crit("CPU misaligned accesses non homogeneous (expected all emulated)\n");
		while (true)
			cpu_relax();
	}

	return misaligned_emu_detected;
}

void unaligned_emulation_finish(void)
{
	int cpu;

	/*
	 * We can only support PR_UNALIGN controls if all CPUs have misaligned
	 * accesses emulated since tasks requesting such control can run on any
	 * CPU.
	 */
	for_each_online_cpu(cpu) {
		if (per_cpu(misaligned_access_speed, cpu) !=
					RISCV_HWPROBE_MISALIGNED_EMULATED) {
			return;
		}
	}
	unaligned_ctl = true;
}

bool unaligned_ctl_available(void)
{
	return unaligned_ctl;
}