Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. * All Rights Reserved. */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_mount.h" #include "xfs_inode.h" #include "xfs_trans.h" #include "xfs_inode_item.h" #include "xfs_trace.h" #include "xfs_trans_priv.h" #include "xfs_buf_item.h" #include "xfs_log.h" #include "xfs_log_priv.h" #include "xfs_error.h" #include "xfs_rtbitmap.h" #include <linux/iversion.h> struct kmem_cache *xfs_ili_cache; /* inode log item */ static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) { return container_of(lip, struct xfs_inode_log_item, ili_item); } static uint64_t xfs_inode_item_sort( struct xfs_log_item *lip) { return INODE_ITEM(lip)->ili_inode->i_ino; } /* * Prior to finally logging the inode, we have to ensure that all the * per-modification inode state changes are applied. This includes VFS inode * state updates, format conversions, verifier state synchronisation and * ensuring the inode buffer remains in memory whilst the inode is dirty. * * We have to be careful when we grab the inode cluster buffer due to lock * ordering constraints. The unlinked inode modifications (xfs_iunlink_item) * require AGI -> inode cluster buffer lock order. The inode cluster buffer is * not locked until ->precommit, so it happens after everything else has been * modified. * * Further, we have AGI -> AGF lock ordering, and with O_TMPFILE handling we * have AGI -> AGF -> iunlink item -> inode cluster buffer lock order. Hence we * cannot safely lock the inode cluster buffer in xfs_trans_log_inode() because * it can be called on a inode (e.g. via bumplink/droplink) before we take the * AGF lock modifying directory blocks. * * Rather than force a complete rework of all the transactions to call * xfs_trans_log_inode() once and once only at the end of every transaction, we * move the pinning of the inode cluster buffer to a ->precommit operation. This * matches how the xfs_iunlink_item locks the inode cluster buffer, and it * ensures that the inode cluster buffer locking is always done last in a * transaction. i.e. we ensure the lock order is always AGI -> AGF -> inode * cluster buffer. * * If we return the inode number as the precommit sort key then we'll also * guarantee that the order all inode cluster buffer locking is the same all the * inodes and unlink items in the transaction. */ static int xfs_inode_item_precommit( struct xfs_trans *tp, struct xfs_log_item *lip) { struct xfs_inode_log_item *iip = INODE_ITEM(lip); struct xfs_inode *ip = iip->ili_inode; struct inode *inode = VFS_I(ip); unsigned int flags = iip->ili_dirty_flags; /* * Don't bother with i_lock for the I_DIRTY_TIME check here, as races * don't matter - we either will need an extra transaction in 24 hours * to log the timestamps, or will clear already cleared fields in the * worst case. */ if (inode->i_state & I_DIRTY_TIME) { spin_lock(&inode->i_lock); inode->i_state &= ~I_DIRTY_TIME; spin_unlock(&inode->i_lock); } /* * If we're updating the inode core or the timestamps and it's possible * to upgrade this inode to bigtime format, do so now. */ if ((flags & (XFS_ILOG_CORE | XFS_ILOG_TIMESTAMP)) && xfs_has_bigtime(ip->i_mount) && !xfs_inode_has_bigtime(ip)) { ip->i_diflags2 |= XFS_DIFLAG2_BIGTIME; flags |= XFS_ILOG_CORE; } /* * Inode verifiers do not check that the extent size hint is an integer * multiple of the rt extent size on a directory with both rtinherit * and extszinherit flags set. If we're logging a directory that is * misconfigured in this way, clear the hint. */ if ((ip->i_diflags & XFS_DIFLAG_RTINHERIT) && (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) && xfs_extlen_to_rtxmod(ip->i_mount, ip->i_extsize) > 0) { ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE | XFS_DIFLAG_EXTSZINHERIT); ip->i_extsize = 0; flags |= XFS_ILOG_CORE; } /* * Record the specific change for fdatasync optimisation. This allows * fdatasync to skip log forces for inodes that are only timestamp * dirty. Once we've processed the XFS_ILOG_IVERSION flag, convert it * to XFS_ILOG_CORE so that the actual on-disk dirty tracking * (ili_fields) correctly tracks that the version has changed. */ spin_lock(&iip->ili_lock); iip->ili_fsync_fields |= (flags & ~XFS_ILOG_IVERSION); if (flags & XFS_ILOG_IVERSION) flags = ((flags & ~XFS_ILOG_IVERSION) | XFS_ILOG_CORE); if (!iip->ili_item.li_buf) { struct xfs_buf *bp; int error; /* * We hold the ILOCK here, so this inode is not going to be * flushed while we are here. Further, because there is no * buffer attached to the item, we know that there is no IO in * progress, so nothing will clear the ili_fields while we read * in the buffer. Hence we can safely drop the spin lock and * read the buffer knowing that the state will not change from * here. */ spin_unlock(&iip->ili_lock); error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &bp); if (error) return error; /* * We need an explicit buffer reference for the log item but * don't want the buffer to remain attached to the transaction. * Hold the buffer but release the transaction reference once * we've attached the inode log item to the buffer log item * list. */ xfs_buf_hold(bp); spin_lock(&iip->ili_lock); iip->ili_item.li_buf = bp; bp->b_flags |= _XBF_INODES; list_add_tail(&iip->ili_item.li_bio_list, &bp->b_li_list); xfs_trans_brelse(tp, bp); } /* * Always OR in the bits from the ili_last_fields field. This is to * coordinate with the xfs_iflush() and xfs_buf_inode_iodone() routines * in the eventual clearing of the ili_fields bits. See the big comment * in xfs_iflush() for an explanation of this coordination mechanism. */ iip->ili_fields |= (flags | iip->ili_last_fields); spin_unlock(&iip->ili_lock); /* * We are done with the log item transaction dirty state, so clear it so * that it doesn't pollute future transactions. */ iip->ili_dirty_flags = 0; return 0; } /* * The logged size of an inode fork is always the current size of the inode * fork. This means that when an inode fork is relogged, the size of the logged * region is determined by the current state, not the combination of the * previously logged state + the current state. This is different relogging * behaviour to most other log items which will retain the size of the * previously logged changes when smaller regions are relogged. * * Hence operations that remove data from the inode fork (e.g. shortform * dir/attr remove, extent form extent removal, etc), the size of the relogged * inode gets -smaller- rather than stays the same size as the previously logged * size and this can result in the committing transaction reducing the amount of * space being consumed by the CIL. */ STATIC void xfs_inode_item_data_fork_size( struct xfs_inode_log_item *iip, int *nvecs, int *nbytes) { struct xfs_inode *ip = iip->ili_inode; switch (ip->i_df.if_format) { case XFS_DINODE_FMT_EXTENTS: if ((iip->ili_fields & XFS_ILOG_DEXT) && ip->i_df.if_nextents > 0 && ip->i_df.if_bytes > 0) { /* worst case, doesn't subtract delalloc extents */ *nbytes += xfs_inode_data_fork_size(ip); *nvecs += 1; } break; case XFS_DINODE_FMT_BTREE: if ((iip->ili_fields & XFS_ILOG_DBROOT) && ip->i_df.if_broot_bytes > 0) { *nbytes += ip->i_df.if_broot_bytes; *nvecs += 1; } break; case XFS_DINODE_FMT_LOCAL: if ((iip->ili_fields & XFS_ILOG_DDATA) && ip->i_df.if_bytes > 0) { *nbytes += xlog_calc_iovec_len(ip->i_df.if_bytes); *nvecs += 1; } break; case XFS_DINODE_FMT_DEV: break; default: ASSERT(0); break; } } STATIC void xfs_inode_item_attr_fork_size( struct xfs_inode_log_item *iip, int *nvecs, int *nbytes) { struct xfs_inode *ip = iip->ili_inode; switch (ip->i_af.if_format) { case XFS_DINODE_FMT_EXTENTS: if ((iip->ili_fields & XFS_ILOG_AEXT) && ip->i_af.if_nextents > 0 && ip->i_af.if_bytes > 0) { /* worst case, doesn't subtract unused space */ *nbytes += xfs_inode_attr_fork_size(ip); *nvecs += 1; } break; case XFS_DINODE_FMT_BTREE: if ((iip->ili_fields & XFS_ILOG_ABROOT) && ip->i_af.if_broot_bytes > 0) { *nbytes += ip->i_af.if_broot_bytes; *nvecs += 1; } break; case XFS_DINODE_FMT_LOCAL: if ((iip->ili_fields & XFS_ILOG_ADATA) && ip->i_af.if_bytes > 0) { *nbytes += xlog_calc_iovec_len(ip->i_af.if_bytes); *nvecs += 1; } break; default: ASSERT(0); break; } } /* * This returns the number of iovecs needed to log the given inode item. * * We need one iovec for the inode log format structure, one for the * inode core, and possibly one for the inode data/extents/b-tree root * and one for the inode attribute data/extents/b-tree root. */ STATIC void xfs_inode_item_size( struct xfs_log_item *lip, int *nvecs, int *nbytes) { struct xfs_inode_log_item *iip = INODE_ITEM(lip); struct xfs_inode *ip = iip->ili_inode; *nvecs += 2; *nbytes += sizeof(struct xfs_inode_log_format) + xfs_log_dinode_size(ip->i_mount); xfs_inode_item_data_fork_size(iip, nvecs, nbytes); if (xfs_inode_has_attr_fork(ip)) xfs_inode_item_attr_fork_size(iip, nvecs, nbytes); } STATIC void xfs_inode_item_format_data_fork( struct xfs_inode_log_item *iip, struct xfs_inode_log_format *ilf, struct xfs_log_vec *lv, struct xfs_log_iovec **vecp) { struct xfs_inode *ip = iip->ili_inode; size_t data_bytes; switch (ip->i_df.if_format) { case XFS_DINODE_FMT_EXTENTS: iip->ili_fields &= ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV); if ((iip->ili_fields & XFS_ILOG_DEXT) && ip->i_df.if_nextents > 0 && ip->i_df.if_bytes > 0) { struct xfs_bmbt_rec *p; ASSERT(xfs_iext_count(&ip->i_df) > 0); p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT); data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK); xlog_finish_iovec(lv, *vecp, data_bytes); ASSERT(data_bytes <= ip->i_df.if_bytes); ilf->ilf_dsize = data_bytes; ilf->ilf_size++; } else { iip->ili_fields &= ~XFS_ILOG_DEXT; } break; case XFS_DINODE_FMT_BTREE: iip->ili_fields &= ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV); if ((iip->ili_fields & XFS_ILOG_DBROOT) && ip->i_df.if_broot_bytes > 0) { ASSERT(ip->i_df.if_broot != NULL); xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT, ip->i_df.if_broot, ip->i_df.if_broot_bytes); ilf->ilf_dsize = ip->i_df.if_broot_bytes; ilf->ilf_size++; } else { ASSERT(!(iip->ili_fields & XFS_ILOG_DBROOT)); iip->ili_fields &= ~XFS_ILOG_DBROOT; } break; case XFS_DINODE_FMT_LOCAL: iip->ili_fields &= ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV); if ((iip->ili_fields & XFS_ILOG_DDATA) && ip->i_df.if_bytes > 0) { ASSERT(ip->i_df.if_data != NULL); ASSERT(ip->i_disk_size > 0); xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL, ip->i_df.if_data, ip->i_df.if_bytes); ilf->ilf_dsize = (unsigned)ip->i_df.if_bytes; ilf->ilf_size++; } else { iip->ili_fields &= ~XFS_ILOG_DDATA; } break; case XFS_DINODE_FMT_DEV: iip->ili_fields &= ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT); if (iip->ili_fields & XFS_ILOG_DEV) ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev); break; default: ASSERT(0); break; } } STATIC void xfs_inode_item_format_attr_fork( struct xfs_inode_log_item *iip, struct xfs_inode_log_format *ilf, struct xfs_log_vec *lv, struct xfs_log_iovec **vecp) { struct xfs_inode *ip = iip->ili_inode; size_t data_bytes; switch (ip->i_af.if_format) { case XFS_DINODE_FMT_EXTENTS: iip->ili_fields &= ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); if ((iip->ili_fields & XFS_ILOG_AEXT) && ip->i_af.if_nextents > 0 && ip->i_af.if_bytes > 0) { struct xfs_bmbt_rec *p; ASSERT(xfs_iext_count(&ip->i_af) == ip->i_af.if_nextents); p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT); data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK); xlog_finish_iovec(lv, *vecp, data_bytes); ilf->ilf_asize = data_bytes; ilf->ilf_size++; } else { iip->ili_fields &= ~XFS_ILOG_AEXT; } break; case XFS_DINODE_FMT_BTREE: iip->ili_fields &= ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); if ((iip->ili_fields & XFS_ILOG_ABROOT) && ip->i_af.if_broot_bytes > 0) { ASSERT(ip->i_af.if_broot != NULL); xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT, ip->i_af.if_broot, ip->i_af.if_broot_bytes); ilf->ilf_asize = ip->i_af.if_broot_bytes; ilf->ilf_size++; } else { iip->ili_fields &= ~XFS_ILOG_ABROOT; } break; case XFS_DINODE_FMT_LOCAL: iip->ili_fields &= ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); if ((iip->ili_fields & XFS_ILOG_ADATA) && ip->i_af.if_bytes > 0) { ASSERT(ip->i_af.if_data != NULL); xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL, ip->i_af.if_data, ip->i_af.if_bytes); ilf->ilf_asize = (unsigned)ip->i_af.if_bytes; ilf->ilf_size++; } else { iip->ili_fields &= ~XFS_ILOG_ADATA; } break; default: ASSERT(0); break; } } /* * Convert an incore timestamp to a log timestamp. Note that the log format * specifies host endian format! */ static inline xfs_log_timestamp_t xfs_inode_to_log_dinode_ts( struct xfs_inode *ip, const struct timespec64 tv) { struct xfs_log_legacy_timestamp *lits; xfs_log_timestamp_t its; if (xfs_inode_has_bigtime(ip)) return xfs_inode_encode_bigtime(tv); lits = (struct xfs_log_legacy_timestamp *)&its; lits->t_sec = tv.tv_sec; lits->t_nsec = tv.tv_nsec; return its; } /* * The legacy DMAPI fields are only present in the on-disk and in-log inodes, * but not in the in-memory one. But we are guaranteed to have an inode buffer * in memory when logging an inode, so we can just copy it from the on-disk * inode to the in-log inode here so that recovery of file system with these * fields set to non-zero values doesn't lose them. For all other cases we zero * the fields. */ static void xfs_copy_dm_fields_to_log_dinode( struct xfs_inode *ip, struct xfs_log_dinode *to) { struct xfs_dinode *dip; dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf, ip->i_imap.im_boffset); if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) { to->di_dmevmask = be32_to_cpu(dip->di_dmevmask); to->di_dmstate = be16_to_cpu(dip->di_dmstate); } else { to->di_dmevmask = 0; to->di_dmstate = 0; } } static inline void xfs_inode_to_log_dinode_iext_counters( struct xfs_inode *ip, struct xfs_log_dinode *to) { if (xfs_inode_has_large_extent_counts(ip)) { to->di_big_nextents = xfs_ifork_nextents(&ip->i_df); to->di_big_anextents = xfs_ifork_nextents(&ip->i_af); to->di_nrext64_pad = 0; } else { to->di_nextents = xfs_ifork_nextents(&ip->i_df); to->di_anextents = xfs_ifork_nextents(&ip->i_af); } } static void xfs_inode_to_log_dinode( struct xfs_inode *ip, struct xfs_log_dinode *to, xfs_lsn_t lsn) { struct inode *inode = VFS_I(ip); to->di_magic = XFS_DINODE_MAGIC; to->di_format = xfs_ifork_format(&ip->i_df); to->di_uid = i_uid_read(inode); to->di_gid = i_gid_read(inode); to->di_projid_lo = ip->i_projid & 0xffff; to->di_projid_hi = ip->i_projid >> 16; memset(to->di_pad3, 0, sizeof(to->di_pad3)); to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode_get_atime(inode)); to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode_get_mtime(inode)); to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode_get_ctime(inode)); to->di_nlink = inode->i_nlink; to->di_gen = inode->i_generation; to->di_mode = inode->i_mode; to->di_size = ip->i_disk_size; to->di_nblocks = ip->i_nblocks; to->di_extsize = ip->i_extsize; to->di_forkoff = ip->i_forkoff; to->di_aformat = xfs_ifork_format(&ip->i_af); to->di_flags = ip->i_diflags; xfs_copy_dm_fields_to_log_dinode(ip, to); /* log a dummy value to ensure log structure is fully initialised */ to->di_next_unlinked = NULLAGINO; if (xfs_has_v3inodes(ip->i_mount)) { to->di_version = 3; to->di_changecount = inode_peek_iversion(inode); to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime); to->di_flags2 = ip->i_diflags2; to->di_cowextsize = ip->i_cowextsize; to->di_ino = ip->i_ino; to->di_lsn = lsn; memset(to->di_pad2, 0, sizeof(to->di_pad2)); uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid); to->di_v3_pad = 0; /* dummy value for initialisation */ to->di_crc = 0; } else { to->di_version = 2; to->di_flushiter = ip->i_flushiter; memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad)); } xfs_inode_to_log_dinode_iext_counters(ip, to); } /* * Format the inode core. Current timestamp data is only in the VFS inode * fields, so we need to grab them from there. Hence rather than just copying * the XFS inode core structure, format the fields directly into the iovec. */ static void xfs_inode_item_format_core( struct xfs_inode *ip, struct xfs_log_vec *lv, struct xfs_log_iovec **vecp) { struct xfs_log_dinode *dic; dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE); xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn); xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount)); } /* * This is called to fill in the vector of log iovecs for the given inode * log item. It fills the first item with an inode log format structure, * the second with the on-disk inode structure, and a possible third and/or * fourth with the inode data/extents/b-tree root and inode attributes * data/extents/b-tree root. * * Note: Always use the 64 bit inode log format structure so we don't * leave an uninitialised hole in the format item on 64 bit systems. Log * recovery on 32 bit systems handles this just fine, so there's no reason * for not using an initialising the properly padded structure all the time. */ STATIC void xfs_inode_item_format( struct xfs_log_item *lip, struct xfs_log_vec *lv) { struct xfs_inode_log_item *iip = INODE_ITEM(lip); struct xfs_inode *ip = iip->ili_inode; struct xfs_log_iovec *vecp = NULL; struct xfs_inode_log_format *ilf; ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT); ilf->ilf_type = XFS_LI_INODE; ilf->ilf_ino = ip->i_ino; ilf->ilf_blkno = ip->i_imap.im_blkno; ilf->ilf_len = ip->i_imap.im_len; ilf->ilf_boffset = ip->i_imap.im_boffset; ilf->ilf_fields = XFS_ILOG_CORE; ilf->ilf_size = 2; /* format + core */ /* * make sure we don't leak uninitialised data into the log in the case * when we don't log every field in the inode. */ ilf->ilf_dsize = 0; ilf->ilf_asize = 0; ilf->ilf_pad = 0; memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u)); xlog_finish_iovec(lv, vecp, sizeof(*ilf)); xfs_inode_item_format_core(ip, lv, &vecp); xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp); if (xfs_inode_has_attr_fork(ip)) { xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp); } else { iip->ili_fields &= ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); } /* update the format with the exact fields we actually logged */ ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP); } /* * This is called to pin the inode associated with the inode log * item in memory so it cannot be written out. */ STATIC void xfs_inode_item_pin( struct xfs_log_item *lip) { struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); ASSERT(lip->li_buf); trace_xfs_inode_pin(ip, _RET_IP_); atomic_inc(&ip->i_pincount); } /* * This is called to unpin the inode associated with the inode log * item which was previously pinned with a call to xfs_inode_item_pin(). * * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. * * Note that unpin can race with inode cluster buffer freeing marking the buffer * stale. In that case, flush completions are run from the buffer unpin call, * which may happen before the inode is unpinned. If we lose the race, there * will be no buffer attached to the log item, but the inode will be marked * XFS_ISTALE. */ STATIC void xfs_inode_item_unpin( struct xfs_log_item *lip, int remove) { struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; trace_xfs_inode_unpin(ip, _RET_IP_); ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE)); ASSERT(atomic_read(&ip->i_pincount) > 0); if (atomic_dec_and_test(&ip->i_pincount)) wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); } STATIC uint xfs_inode_item_push( struct xfs_log_item *lip, struct list_head *buffer_list) __releases(&lip->li_ailp->ail_lock) __acquires(&lip->li_ailp->ail_lock) { struct xfs_inode_log_item *iip = INODE_ITEM(lip); struct xfs_inode *ip = iip->ili_inode; struct xfs_buf *bp = lip->li_buf; uint rval = XFS_ITEM_SUCCESS; int error; if (!bp || (ip->i_flags & XFS_ISTALE)) { /* * Inode item/buffer is being aborted due to cluster * buffer deletion. Trigger a log force to have that operation * completed and items removed from the AIL before the next push * attempt. */ return XFS_ITEM_PINNED; } if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp)) return XFS_ITEM_PINNED; if (xfs_iflags_test(ip, XFS_IFLUSHING)) return XFS_ITEM_FLUSHING; if (!xfs_buf_trylock(bp)) return XFS_ITEM_LOCKED; spin_unlock(&lip->li_ailp->ail_lock); /* * We need to hold a reference for flushing the cluster buffer as it may * fail the buffer without IO submission. In which case, we better get a * reference for that completion because otherwise we don't get a * reference for IO until we queue the buffer for delwri submission. */ xfs_buf_hold(bp); error = xfs_iflush_cluster(bp); if (!error) { if (!xfs_buf_delwri_queue(bp, buffer_list)) rval = XFS_ITEM_FLUSHING; xfs_buf_relse(bp); } else { /* * Release the buffer if we were unable to flush anything. On * any other error, the buffer has already been released. */ if (error == -EAGAIN) xfs_buf_relse(bp); rval = XFS_ITEM_LOCKED; } spin_lock(&lip->li_ailp->ail_lock); return rval; } /* * Unlock the inode associated with the inode log item. */ STATIC void xfs_inode_item_release( struct xfs_log_item *lip) { struct xfs_inode_log_item *iip = INODE_ITEM(lip); struct xfs_inode *ip = iip->ili_inode; unsigned short lock_flags; ASSERT(ip->i_itemp != NULL); ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); lock_flags = iip->ili_lock_flags; iip->ili_lock_flags = 0; if (lock_flags) xfs_iunlock(ip, lock_flags); } /* * This is called to find out where the oldest active copy of the inode log * item in the on disk log resides now that the last log write of it completed * at the given lsn. Since we always re-log all dirty data in an inode, the * latest copy in the on disk log is the only one that matters. Therefore, * simply return the given lsn. * * If the inode has been marked stale because the cluster is being freed, we * don't want to (re-)insert this inode into the AIL. There is a race condition * where the cluster buffer may be unpinned before the inode is inserted into * the AIL during transaction committed processing. If the buffer is unpinned * before the inode item has been committed and inserted, then it is possible * for the buffer to be written and IO completes before the inode is inserted * into the AIL. In that case, we'd be inserting a clean, stale inode into the * AIL which will never get removed. It will, however, get reclaimed which * triggers an assert in xfs_inode_free() complaining about freein an inode * still in the AIL. * * To avoid this, just unpin the inode directly and return a LSN of -1 so the * transaction committed code knows that it does not need to do any further * processing on the item. */ STATIC xfs_lsn_t xfs_inode_item_committed( struct xfs_log_item *lip, xfs_lsn_t lsn) { struct xfs_inode_log_item *iip = INODE_ITEM(lip); struct xfs_inode *ip = iip->ili_inode; if (xfs_iflags_test(ip, XFS_ISTALE)) { xfs_inode_item_unpin(lip, 0); return -1; } return lsn; } STATIC void xfs_inode_item_committing( struct xfs_log_item *lip, xfs_csn_t seq) { INODE_ITEM(lip)->ili_commit_seq = seq; return xfs_inode_item_release(lip); } static const struct xfs_item_ops xfs_inode_item_ops = { .iop_sort = xfs_inode_item_sort, .iop_precommit = xfs_inode_item_precommit, .iop_size = xfs_inode_item_size, .iop_format = xfs_inode_item_format, .iop_pin = xfs_inode_item_pin, .iop_unpin = xfs_inode_item_unpin, .iop_release = xfs_inode_item_release, .iop_committed = xfs_inode_item_committed, .iop_push = xfs_inode_item_push, .iop_committing = xfs_inode_item_committing, }; /* * Initialize the inode log item for a newly allocated (in-core) inode. */ void xfs_inode_item_init( struct xfs_inode *ip, struct xfs_mount *mp) { struct xfs_inode_log_item *iip; ASSERT(ip->i_itemp == NULL); iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache, GFP_KERNEL | __GFP_NOFAIL); iip->ili_inode = ip; spin_lock_init(&iip->ili_lock); xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, &xfs_inode_item_ops); } /* * Free the inode log item and any memory hanging off of it. */ void xfs_inode_item_destroy( struct xfs_inode *ip) { struct xfs_inode_log_item *iip = ip->i_itemp; ASSERT(iip->ili_item.li_buf == NULL); ip->i_itemp = NULL; kmem_free(iip->ili_item.li_lv_shadow); kmem_cache_free(xfs_ili_cache, iip); } /* * We only want to pull the item from the AIL if it is actually there * and its location in the log has not changed since we started the * flush. Thus, we only bother if the inode's lsn has not changed. */ static void xfs_iflush_ail_updates( struct xfs_ail *ailp, struct list_head *list) { struct xfs_log_item *lip; xfs_lsn_t tail_lsn = 0; /* this is an opencoded batch version of xfs_trans_ail_delete */ spin_lock(&ailp->ail_lock); list_for_each_entry(lip, list, li_bio_list) { xfs_lsn_t lsn; clear_bit(XFS_LI_FAILED, &lip->li_flags); if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn) continue; /* * dgc: Not sure how this happens, but it happens very * occassionaly via generic/388. xfs_iflush_abort() also * silently handles this same "under writeback but not in AIL at * shutdown" condition via xfs_trans_ail_delete(). */ if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) { ASSERT(xlog_is_shutdown(lip->li_log)); continue; } lsn = xfs_ail_delete_one(ailp, lip); if (!tail_lsn && lsn) tail_lsn = lsn; } xfs_ail_update_finish(ailp, tail_lsn); } /* * Walk the list of inodes that have completed their IOs. If they are clean * remove them from the list and dissociate them from the buffer. Buffers that * are still dirty remain linked to the buffer and on the list. Caller must * handle them appropriately. */ static void xfs_iflush_finish( struct xfs_buf *bp, struct list_head *list) { struct xfs_log_item *lip, *n; list_for_each_entry_safe(lip, n, list, li_bio_list) { struct xfs_inode_log_item *iip = INODE_ITEM(lip); bool drop_buffer = false; spin_lock(&iip->ili_lock); /* * Remove the reference to the cluster buffer if the inode is * clean in memory and drop the buffer reference once we've * dropped the locks we hold. */ ASSERT(iip->ili_item.li_buf == bp); if (!iip->ili_fields) { iip->ili_item.li_buf = NULL; list_del_init(&lip->li_bio_list); drop_buffer = true; } iip->ili_last_fields = 0; iip->ili_flush_lsn = 0; spin_unlock(&iip->ili_lock); xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING); if (drop_buffer) xfs_buf_rele(bp); } } /* * Inode buffer IO completion routine. It is responsible for removing inodes * attached to the buffer from the AIL if they have not been re-logged and * completing the inode flush. */ void xfs_buf_inode_iodone( struct xfs_buf *bp) { struct xfs_log_item *lip, *n; LIST_HEAD(flushed_inodes); LIST_HEAD(ail_updates); /* * Pull the attached inodes from the buffer one at a time and take the * appropriate action on them. */ list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { struct xfs_inode_log_item *iip = INODE_ITEM(lip); if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) { xfs_iflush_abort(iip->ili_inode); continue; } if (!iip->ili_last_fields) continue; /* Do an unlocked check for needing the AIL lock. */ if (iip->ili_flush_lsn == lip->li_lsn || test_bit(XFS_LI_FAILED, &lip->li_flags)) list_move_tail(&lip->li_bio_list, &ail_updates); else list_move_tail(&lip->li_bio_list, &flushed_inodes); } if (!list_empty(&ail_updates)) { xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates); list_splice_tail(&ail_updates, &flushed_inodes); } xfs_iflush_finish(bp, &flushed_inodes); if (!list_empty(&flushed_inodes)) list_splice_tail(&flushed_inodes, &bp->b_li_list); } void xfs_buf_inode_io_fail( struct xfs_buf *bp) { struct xfs_log_item *lip; list_for_each_entry(lip, &bp->b_li_list, li_bio_list) set_bit(XFS_LI_FAILED, &lip->li_flags); } /* * Clear the inode logging fields so no more flushes are attempted. If we are * on a buffer list, it is now safe to remove it because the buffer is * guaranteed to be locked. The caller will drop the reference to the buffer * the log item held. */ static void xfs_iflush_abort_clean( struct xfs_inode_log_item *iip) { iip->ili_last_fields = 0; iip->ili_fields = 0; iip->ili_fsync_fields = 0; iip->ili_flush_lsn = 0; iip->ili_item.li_buf = NULL; list_del_init(&iip->ili_item.li_bio_list); } /* * Abort flushing the inode from a context holding the cluster buffer locked. * * This is the normal runtime method of aborting writeback of an inode that is * attached to a cluster buffer. It occurs when the inode and the backing * cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster * flushing or buffer IO completion encounters a log shutdown situation. * * If we need to abort inode writeback and we don't already hold the buffer * locked, call xfs_iflush_shutdown_abort() instead as this should only ever be * necessary in a shutdown situation. */ void xfs_iflush_abort( struct xfs_inode *ip) { struct xfs_inode_log_item *iip = ip->i_itemp; struct xfs_buf *bp; if (!iip) { /* clean inode, nothing to do */ xfs_iflags_clear(ip, XFS_IFLUSHING); return; } /* * Remove the inode item from the AIL before we clear its internal * state. Whilst the inode is in the AIL, it should have a valid buffer * pointer for push operations to access - it is only safe to remove the * inode from the buffer once it has been removed from the AIL. * * We also clear the failed bit before removing the item from the AIL * as xfs_trans_ail_delete()->xfs_clear_li_failed() will release buffer * references the inode item owns and needs to hold until we've fully * aborted the inode log item and detached it from the buffer. */ clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags); xfs_trans_ail_delete(&iip->ili_item, 0); /* * Grab the inode buffer so can we release the reference the inode log * item holds on it. */ spin_lock(&iip->ili_lock); bp = iip->ili_item.li_buf; xfs_iflush_abort_clean(iip); spin_unlock(&iip->ili_lock); xfs_iflags_clear(ip, XFS_IFLUSHING); if (bp) xfs_buf_rele(bp); } /* * Abort an inode flush in the case of a shutdown filesystem. This can be called * from anywhere with just an inode reference and does not require holding the * inode cluster buffer locked. If the inode is attached to a cluster buffer, * it will grab and lock it safely, then abort the inode flush. */ void xfs_iflush_shutdown_abort( struct xfs_inode *ip) { struct xfs_inode_log_item *iip = ip->i_itemp; struct xfs_buf *bp; if (!iip) { /* clean inode, nothing to do */ xfs_iflags_clear(ip, XFS_IFLUSHING); return; } spin_lock(&iip->ili_lock); bp = iip->ili_item.li_buf; if (!bp) { spin_unlock(&iip->ili_lock); xfs_iflush_abort(ip); return; } /* * We have to take a reference to the buffer so that it doesn't get * freed when we drop the ili_lock and then wait to lock the buffer. * We'll clean up the extra reference after we pick up the ili_lock * again. */ xfs_buf_hold(bp); spin_unlock(&iip->ili_lock); xfs_buf_lock(bp); spin_lock(&iip->ili_lock); if (!iip->ili_item.li_buf) { /* * Raced with another removal, hold the only reference * to bp now. Inode should not be in the AIL now, so just clean * up and return; */ ASSERT(list_empty(&iip->ili_item.li_bio_list)); ASSERT(!test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags)); xfs_iflush_abort_clean(iip); spin_unlock(&iip->ili_lock); xfs_iflags_clear(ip, XFS_IFLUSHING); xfs_buf_relse(bp); return; } /* * Got two references to bp. The first will get dropped by * xfs_iflush_abort() when the item is removed from the buffer list, but * we can't drop our reference until _abort() returns because we have to * unlock the buffer as well. Hence we abort and then unlock and release * our reference to the buffer. */ ASSERT(iip->ili_item.li_buf == bp); spin_unlock(&iip->ili_lock); xfs_iflush_abort(ip); xfs_buf_relse(bp); } /* * convert an xfs_inode_log_format struct from the old 32 bit version * (which can have different field alignments) to the native 64 bit version */ int xfs_inode_item_format_convert( struct xfs_log_iovec *buf, struct xfs_inode_log_format *in_f) { struct xfs_inode_log_format_32 *in_f32 = buf->i_addr; if (buf->i_len != sizeof(*in_f32)) { XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); return -EFSCORRUPTED; } in_f->ilf_type = in_f32->ilf_type; in_f->ilf_size = in_f32->ilf_size; in_f->ilf_fields = in_f32->ilf_fields; in_f->ilf_asize = in_f32->ilf_asize; in_f->ilf_dsize = in_f32->ilf_dsize; in_f->ilf_ino = in_f32->ilf_ino; memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u)); in_f->ilf_blkno = in_f32->ilf_blkno; in_f->ilf_len = in_f32->ilf_len; in_f->ilf_boffset = in_f32->ilf_boffset; return 0; } |