Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 | // SPDX-License-Identifier: GPL-2.0-only /* * OMAP Voltage Controller (VC) interface * * Copyright (C) 2011 Texas Instruments, Inc. */ #include <linux/kernel.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/bug.h> #include <linux/io.h> #include <asm/div64.h> #include "iomap.h" #include "soc.h" #include "voltage.h" #include "vc.h" #include "prm-regbits-34xx.h" #include "prm-regbits-44xx.h" #include "prm44xx.h" #include "pm.h" #include "scrm44xx.h" #include "control.h" #define OMAP4430_VDD_IVA_I2C_DISABLE BIT(14) #define OMAP4430_VDD_MPU_I2C_DISABLE BIT(13) #define OMAP4430_VDD_CORE_I2C_DISABLE BIT(12) #define OMAP4430_VDD_IVA_PRESENCE BIT(9) #define OMAP4430_VDD_MPU_PRESENCE BIT(8) #define OMAP4430_AUTO_CTRL_VDD_IVA(x) ((x) << 4) #define OMAP4430_AUTO_CTRL_VDD_MPU(x) ((x) << 2) #define OMAP4430_AUTO_CTRL_VDD_CORE(x) ((x) << 0) #define OMAP4430_AUTO_CTRL_VDD_RET 2 #define OMAP4430_VDD_I2C_DISABLE_MASK \ (OMAP4430_VDD_IVA_I2C_DISABLE | \ OMAP4430_VDD_MPU_I2C_DISABLE | \ OMAP4430_VDD_CORE_I2C_DISABLE) #define OMAP4_VDD_DEFAULT_VAL \ (OMAP4430_VDD_I2C_DISABLE_MASK | \ OMAP4430_VDD_IVA_PRESENCE | OMAP4430_VDD_MPU_PRESENCE | \ OMAP4430_AUTO_CTRL_VDD_IVA(OMAP4430_AUTO_CTRL_VDD_RET) | \ OMAP4430_AUTO_CTRL_VDD_MPU(OMAP4430_AUTO_CTRL_VDD_RET) | \ OMAP4430_AUTO_CTRL_VDD_CORE(OMAP4430_AUTO_CTRL_VDD_RET)) #define OMAP4_VDD_RET_VAL \ (OMAP4_VDD_DEFAULT_VAL & ~OMAP4430_VDD_I2C_DISABLE_MASK) /** * struct omap_vc_channel_cfg - describe the cfg_channel bitfield * @sa: bit for slave address * @rav: bit for voltage configuration register * @rac: bit for command configuration register * @racen: enable bit for RAC * @cmd: bit for command value set selection * * Channel configuration bits, common for OMAP3+ * OMAP3 register: PRM_VC_CH_CONF * OMAP4 register: PRM_VC_CFG_CHANNEL * OMAP5 register: PRM_VC_SMPS_<voltdm>_CONFIG */ struct omap_vc_channel_cfg { u8 sa; u8 rav; u8 rac; u8 racen; u8 cmd; }; static struct omap_vc_channel_cfg vc_default_channel_cfg = { .sa = BIT(0), .rav = BIT(1), .rac = BIT(2), .racen = BIT(3), .cmd = BIT(4), }; /* * On OMAP3+, all VC channels have the above default bitfield * configuration, except the OMAP4 MPU channel. This appears * to be a freak accident as every other VC channel has the * default configuration, thus creating a mutant channel config. */ static struct omap_vc_channel_cfg vc_mutant_channel_cfg = { .sa = BIT(0), .rav = BIT(2), .rac = BIT(3), .racen = BIT(4), .cmd = BIT(1), }; static struct omap_vc_channel_cfg *vc_cfg_bits; /* Default I2C trace length on pcb, 6.3cm. Used for capacitance calculations. */ static u32 sr_i2c_pcb_length = 63; #define CFG_CHANNEL_MASK 0x1f /** * omap_vc_config_channel - configure VC channel to PMIC mappings * @voltdm: pointer to voltagdomain defining the desired VC channel * * Configures the VC channel to PMIC mappings for the following * PMIC settings * - i2c slave address (SA) * - voltage configuration address (RAV) * - command configuration address (RAC) and enable bit (RACEN) * - command values for ON, ONLP, RET and OFF (CMD) * * This function currently only allows flexible configuration of the * non-default channel. Starting with OMAP4, there are more than 2 * channels, with one defined as the default (on OMAP4, it's MPU.) * Only the non-default channel can be configured. */ static int omap_vc_config_channel(struct voltagedomain *voltdm) { struct omap_vc_channel *vc = voltdm->vc; /* * For default channel, the only configurable bit is RACEN. * All others must stay at zero (see function comment above.) */ if (vc->flags & OMAP_VC_CHANNEL_DEFAULT) vc->cfg_channel &= vc_cfg_bits->racen; voltdm->rmw(CFG_CHANNEL_MASK << vc->cfg_channel_sa_shift, vc->cfg_channel << vc->cfg_channel_sa_shift, vc->cfg_channel_reg); return 0; } /* Voltage scale and accessory APIs */ int omap_vc_pre_scale(struct voltagedomain *voltdm, unsigned long target_volt, u8 *target_vsel, u8 *current_vsel) { struct omap_vc_channel *vc = voltdm->vc; u32 vc_cmdval; /* Check if sufficient pmic info is available for this vdd */ if (!voltdm->pmic) { pr_err("%s: Insufficient pmic info to scale the vdd_%s\n", __func__, voltdm->name); return -EINVAL; } if (!voltdm->pmic->uv_to_vsel) { pr_err("%s: PMIC function to convert voltage in uV to vsel not registered. Hence unable to scale voltage for vdd_%s\n", __func__, voltdm->name); return -ENODATA; } if (!voltdm->read || !voltdm->write) { pr_err("%s: No read/write API for accessing vdd_%s regs\n", __func__, voltdm->name); return -EINVAL; } *target_vsel = voltdm->pmic->uv_to_vsel(target_volt); *current_vsel = voltdm->pmic->uv_to_vsel(voltdm->nominal_volt); /* Setting the ON voltage to the new target voltage */ vc_cmdval = voltdm->read(vc->cmdval_reg); vc_cmdval &= ~vc->common->cmd_on_mask; vc_cmdval |= (*target_vsel << vc->common->cmd_on_shift); voltdm->write(vc_cmdval, vc->cmdval_reg); voltdm->vc_param->on = target_volt; omap_vp_update_errorgain(voltdm, target_volt); return 0; } void omap_vc_post_scale(struct voltagedomain *voltdm, unsigned long target_volt, u8 target_vsel, u8 current_vsel) { u32 smps_steps = 0, smps_delay = 0; smps_steps = abs(target_vsel - current_vsel); /* SMPS slew rate / step size. 2us added as buffer. */ smps_delay = ((smps_steps * voltdm->pmic->step_size) / voltdm->pmic->slew_rate) + 2; udelay(smps_delay); } /* vc_bypass_scale - VC bypass method of voltage scaling */ int omap_vc_bypass_scale(struct voltagedomain *voltdm, unsigned long target_volt) { struct omap_vc_channel *vc = voltdm->vc; u32 loop_cnt = 0, retries_cnt = 0; u32 vc_valid, vc_bypass_val_reg, vc_bypass_value; u8 target_vsel, current_vsel; int ret; ret = omap_vc_pre_scale(voltdm, target_volt, &target_vsel, ¤t_vsel); if (ret) return ret; vc_valid = vc->common->valid; vc_bypass_val_reg = vc->common->bypass_val_reg; vc_bypass_value = (target_vsel << vc->common->data_shift) | (vc->volt_reg_addr << vc->common->regaddr_shift) | (vc->i2c_slave_addr << vc->common->slaveaddr_shift); voltdm->write(vc_bypass_value, vc_bypass_val_reg); voltdm->write(vc_bypass_value | vc_valid, vc_bypass_val_reg); vc_bypass_value = voltdm->read(vc_bypass_val_reg); /* * Loop till the bypass command is acknowledged from the SMPS. * NOTE: This is legacy code. The loop count and retry count needs * to be revisited. */ while (!(vc_bypass_value & vc_valid)) { loop_cnt++; if (retries_cnt > 10) { pr_warn("%s: Retry count exceeded\n", __func__); return -ETIMEDOUT; } if (loop_cnt > 50) { retries_cnt++; loop_cnt = 0; udelay(10); } vc_bypass_value = voltdm->read(vc_bypass_val_reg); } omap_vc_post_scale(voltdm, target_volt, target_vsel, current_vsel); return 0; } /* Convert microsecond value to number of 32kHz clock cycles */ static inline u32 omap_usec_to_32k(u32 usec) { return DIV_ROUND_UP_ULL(32768ULL * (u64)usec, 1000000ULL); } struct omap3_vc_timings { u32 voltsetup1; u32 voltsetup2; }; struct omap3_vc { struct voltagedomain *vd; u32 voltctrl; u32 voltsetup1; u32 voltsetup2; struct omap3_vc_timings timings[2]; }; static struct omap3_vc vc; void omap3_vc_set_pmic_signaling(int core_next_state) { struct voltagedomain *vd = vc.vd; struct omap3_vc_timings *c = vc.timings; u32 voltctrl, voltsetup1, voltsetup2; voltctrl = vc.voltctrl; voltsetup1 = vc.voltsetup1; voltsetup2 = vc.voltsetup2; switch (core_next_state) { case PWRDM_POWER_OFF: voltctrl &= ~(OMAP3430_PRM_VOLTCTRL_AUTO_RET | OMAP3430_PRM_VOLTCTRL_AUTO_SLEEP); voltctrl |= OMAP3430_PRM_VOLTCTRL_AUTO_OFF; if (voltctrl & OMAP3430_PRM_VOLTCTRL_SEL_OFF) voltsetup2 = c->voltsetup2; else voltsetup1 = c->voltsetup1; break; case PWRDM_POWER_RET: default: c++; voltctrl &= ~(OMAP3430_PRM_VOLTCTRL_AUTO_OFF | OMAP3430_PRM_VOLTCTRL_AUTO_SLEEP); voltctrl |= OMAP3430_PRM_VOLTCTRL_AUTO_RET; voltsetup1 = c->voltsetup1; break; } if (voltctrl != vc.voltctrl) { vd->write(voltctrl, OMAP3_PRM_VOLTCTRL_OFFSET); vc.voltctrl = voltctrl; } if (voltsetup1 != vc.voltsetup1) { vd->write(c->voltsetup1, OMAP3_PRM_VOLTSETUP1_OFFSET); vc.voltsetup1 = voltsetup1; } if (voltsetup2 != vc.voltsetup2) { vd->write(c->voltsetup2, OMAP3_PRM_VOLTSETUP2_OFFSET); vc.voltsetup2 = voltsetup2; } } void omap4_vc_set_pmic_signaling(int core_next_state) { struct voltagedomain *vd = vc.vd; u32 val; if (!vd) return; switch (core_next_state) { case PWRDM_POWER_RET: val = OMAP4_VDD_RET_VAL; break; default: val = OMAP4_VDD_DEFAULT_VAL; break; } vd->write(val, OMAP4_PRM_VOLTCTRL_OFFSET); } /* * Configure signal polarity for sys_clkreq and sys_off_mode pins * as the default values are wrong and can cause the system to hang * if any twl4030 scripts are loaded. */ static void __init omap3_vc_init_pmic_signaling(struct voltagedomain *voltdm) { u32 val; if (vc.vd) return; vc.vd = voltdm; val = voltdm->read(OMAP3_PRM_POLCTRL_OFFSET); if (!(val & OMAP3430_PRM_POLCTRL_CLKREQ_POL) || (val & OMAP3430_PRM_POLCTRL_OFFMODE_POL)) { val |= OMAP3430_PRM_POLCTRL_CLKREQ_POL; val &= ~OMAP3430_PRM_POLCTRL_OFFMODE_POL; pr_debug("PM: fixing sys_clkreq and sys_off_mode polarity to 0x%x\n", val); voltdm->write(val, OMAP3_PRM_POLCTRL_OFFSET); } /* * By default let's use I2C4 signaling for retention idle * and sys_off_mode pin signaling for off idle. This way we * have sys_clk_req pin go down for retention and both * sys_clk_req and sys_off_mode pins will go down for off * idle. And we can also scale voltages to zero for off-idle. * Note that no actual voltage scaling during off-idle will * happen unless the board specific twl4030 PMIC scripts are * loaded. See also omap_vc_i2c_init for comments regarding * erratum i531. */ val = voltdm->read(OMAP3_PRM_VOLTCTRL_OFFSET); if (!(val & OMAP3430_PRM_VOLTCTRL_SEL_OFF)) { val |= OMAP3430_PRM_VOLTCTRL_SEL_OFF; pr_debug("PM: setting voltctrl sys_off_mode signaling to 0x%x\n", val); voltdm->write(val, OMAP3_PRM_VOLTCTRL_OFFSET); } vc.voltctrl = val; omap3_vc_set_pmic_signaling(PWRDM_POWER_ON); } static void omap3_init_voltsetup1(struct voltagedomain *voltdm, struct omap3_vc_timings *c, u32 idle) { unsigned long val; val = (voltdm->vc_param->on - idle) / voltdm->pmic->slew_rate; val *= voltdm->sys_clk.rate / 8 / 1000000 + 1; val <<= __ffs(voltdm->vfsm->voltsetup_mask); c->voltsetup1 &= ~voltdm->vfsm->voltsetup_mask; c->voltsetup1 |= val; } /** * omap3_set_i2c_timings - sets i2c sleep timings for a channel * @voltdm: channel to configure * @off_mode: select whether retention or off mode values used * * Calculates and sets up voltage controller to use I2C based * voltage scaling for sleep modes. This can be used for either off mode * or retention. Off mode has additionally an option to use sys_off_mode * pad, which uses a global signal to program the whole power IC to * off-mode. * * Note that pmic is not controlling the voltage scaling during * retention signaled over I2C4, so we can keep voltsetup2 as 0. * And the oscillator is not shut off over I2C4, so no need to * set clksetup. */ static void omap3_set_i2c_timings(struct voltagedomain *voltdm) { struct omap3_vc_timings *c = vc.timings; /* Configure PRWDM_POWER_OFF over I2C4 */ omap3_init_voltsetup1(voltdm, c, voltdm->vc_param->off); c++; /* Configure PRWDM_POWER_RET over I2C4 */ omap3_init_voltsetup1(voltdm, c, voltdm->vc_param->ret); } /** * omap3_set_off_timings - sets off-mode timings for a channel * @voltdm: channel to configure * * Calculates and sets up off-mode timings for a channel. Off-mode * can use either I2C based voltage scaling, or alternatively * sys_off_mode pad can be used to send a global command to power IC.n, * sys_off_mode has the additional benefit that voltages can be * scaled to zero volt level with TWL4030 / TWL5030, I2C can only * scale to 600mV. * * Note that omap is not controlling the voltage scaling during * off idle signaled by sys_off_mode, so we can keep voltsetup1 * as 0. */ static void omap3_set_off_timings(struct voltagedomain *voltdm) { struct omap3_vc_timings *c = vc.timings; u32 tstart, tshut, clksetup, voltoffset; if (c->voltsetup2) return; omap_pm_get_oscillator(&tstart, &tshut); if (tstart == ULONG_MAX) { pr_debug("PM: oscillator start-up time not initialized, using 10ms\n"); clksetup = omap_usec_to_32k(10000); } else { clksetup = omap_usec_to_32k(tstart); } /* * For twl4030 errata 27, we need to allow minimum ~488.32 us wait to * switch from HFCLKIN to internal oscillator. That means timings * have voltoffset fixed to 0xa in rounded up 32 KiHz cycles. And * that means we can calculate the value based on the oscillator * start-up time since voltoffset2 = clksetup - voltoffset. */ voltoffset = omap_usec_to_32k(488); c->voltsetup2 = clksetup - voltoffset; voltdm->write(clksetup, OMAP3_PRM_CLKSETUP_OFFSET); voltdm->write(voltoffset, OMAP3_PRM_VOLTOFFSET_OFFSET); } static void __init omap3_vc_init_channel(struct voltagedomain *voltdm) { omap3_vc_init_pmic_signaling(voltdm); omap3_set_off_timings(voltdm); omap3_set_i2c_timings(voltdm); } /** * omap4_calc_volt_ramp - calculates voltage ramping delays on omap4 * @voltdm: channel to calculate values for * @voltage_diff: voltage difference in microvolts * * Calculates voltage ramp prescaler + counter values for a voltage * difference on omap4. Returns a field value suitable for writing to * VOLTSETUP register for a channel in following format: * bits[8:9] prescaler ... bits[0:5] counter. See OMAP4 TRM for reference. */ static u32 omap4_calc_volt_ramp(struct voltagedomain *voltdm, u32 voltage_diff) { u32 prescaler; u32 cycles; u32 time; time = voltage_diff / voltdm->pmic->slew_rate; cycles = voltdm->sys_clk.rate / 1000 * time / 1000; cycles /= 64; prescaler = 0; /* shift to next prescaler until no overflow */ /* scale for div 256 = 64 * 4 */ if (cycles > 63) { cycles /= 4; prescaler++; } /* scale for div 512 = 256 * 2 */ if (cycles > 63) { cycles /= 2; prescaler++; } /* scale for div 2048 = 512 * 4 */ if (cycles > 63) { cycles /= 4; prescaler++; } /* check for overflow => invalid ramp time */ if (cycles > 63) { pr_warn("%s: invalid setuptime for vdd_%s\n", __func__, voltdm->name); return 0; } cycles++; return (prescaler << OMAP4430_RAMP_UP_PRESCAL_SHIFT) | (cycles << OMAP4430_RAMP_UP_COUNT_SHIFT); } /** * omap4_usec_to_val_scrm - convert microsecond value to SCRM module bitfield * @usec: microseconds * @shift: number of bits to shift left * @mask: bitfield mask * * Converts microsecond value to OMAP4 SCRM bitfield. Bitfield is * shifted to requested position, and checked agains the mask value. * If larger, forced to the max value of the field (i.e. the mask itself.) * Returns the SCRM bitfield value. */ static u32 omap4_usec_to_val_scrm(u32 usec, int shift, u32 mask) { u32 val; val = omap_usec_to_32k(usec) << shift; /* Check for overflow, if yes, force to max value */ if (val > mask) val = mask; return val; } /** * omap4_set_timings - set voltage ramp timings for a channel * @voltdm: channel to configure * @off_mode: whether off-mode values are used * * Calculates and sets the voltage ramp up / down values for a channel. */ static void omap4_set_timings(struct voltagedomain *voltdm, bool off_mode) { u32 val; u32 ramp; int offset; u32 tstart, tshut; if (off_mode) { ramp = omap4_calc_volt_ramp(voltdm, voltdm->vc_param->on - voltdm->vc_param->off); offset = voltdm->vfsm->voltsetup_off_reg; } else { ramp = omap4_calc_volt_ramp(voltdm, voltdm->vc_param->on - voltdm->vc_param->ret); offset = voltdm->vfsm->voltsetup_reg; } if (!ramp) return; val = voltdm->read(offset); val |= ramp << OMAP4430_RAMP_DOWN_COUNT_SHIFT; val |= ramp << OMAP4430_RAMP_UP_COUNT_SHIFT; voltdm->write(val, offset); omap_pm_get_oscillator(&tstart, &tshut); val = omap4_usec_to_val_scrm(tstart, OMAP4_SETUPTIME_SHIFT, OMAP4_SETUPTIME_MASK); val |= omap4_usec_to_val_scrm(tshut, OMAP4_DOWNTIME_SHIFT, OMAP4_DOWNTIME_MASK); writel_relaxed(val, OMAP4_SCRM_CLKSETUPTIME); } static void __init omap4_vc_init_pmic_signaling(struct voltagedomain *voltdm) { if (vc.vd) return; vc.vd = voltdm; voltdm->write(OMAP4_VDD_DEFAULT_VAL, OMAP4_PRM_VOLTCTRL_OFFSET); } /* OMAP4 specific voltage init functions */ static void __init omap4_vc_init_channel(struct voltagedomain *voltdm) { omap4_vc_init_pmic_signaling(voltdm); omap4_set_timings(voltdm, true); omap4_set_timings(voltdm, false); } struct i2c_init_data { u8 loadbits; u8 load; u8 hsscll_38_4; u8 hsscll_26; u8 hsscll_19_2; u8 hsscll_16_8; u8 hsscll_12; }; static const struct i2c_init_data omap4_i2c_timing_data[] __initconst = { { .load = 50, .loadbits = 0x3, .hsscll_38_4 = 13, .hsscll_26 = 11, .hsscll_19_2 = 9, .hsscll_16_8 = 9, .hsscll_12 = 8, }, { .load = 25, .loadbits = 0x2, .hsscll_38_4 = 13, .hsscll_26 = 11, .hsscll_19_2 = 9, .hsscll_16_8 = 9, .hsscll_12 = 8, }, { .load = 12, .loadbits = 0x1, .hsscll_38_4 = 11, .hsscll_26 = 10, .hsscll_19_2 = 9, .hsscll_16_8 = 9, .hsscll_12 = 8, }, { .load = 0, .loadbits = 0x0, .hsscll_38_4 = 12, .hsscll_26 = 10, .hsscll_19_2 = 9, .hsscll_16_8 = 8, .hsscll_12 = 8, }, }; /** * omap4_vc_i2c_timing_init - sets up board I2C timing parameters * @voltdm: voltagedomain pointer to get data from * * Use PMIC + board supplied settings for calculating the total I2C * channel capacitance and set the timing parameters based on this. * Pre-calculated values are provided in data tables, as it is not * too straightforward to calculate these runtime. */ static void __init omap4_vc_i2c_timing_init(struct voltagedomain *voltdm) { u32 capacitance; u32 val; u16 hsscll; const struct i2c_init_data *i2c_data; if (!voltdm->pmic->i2c_high_speed) { pr_info("%s: using bootloader low-speed timings\n", __func__); return; } /* PCB trace capacitance, 0.125pF / mm => mm / 8 */ capacitance = DIV_ROUND_UP(sr_i2c_pcb_length, 8); /* OMAP pad capacitance */ capacitance += 4; /* PMIC pad capacitance */ capacitance += voltdm->pmic->i2c_pad_load; /* Search for capacitance match in the table */ i2c_data = omap4_i2c_timing_data; while (i2c_data->load > capacitance) i2c_data++; /* Select proper values based on sysclk frequency */ switch (voltdm->sys_clk.rate) { case 38400000: hsscll = i2c_data->hsscll_38_4; break; case 26000000: hsscll = i2c_data->hsscll_26; break; case 19200000: hsscll = i2c_data->hsscll_19_2; break; case 16800000: hsscll = i2c_data->hsscll_16_8; break; case 12000000: hsscll = i2c_data->hsscll_12; break; default: pr_warn("%s: unsupported sysclk rate: %d!\n", __func__, voltdm->sys_clk.rate); return; } /* Loadbits define pull setup for the I2C channels */ val = i2c_data->loadbits << 25 | i2c_data->loadbits << 29; /* Write to SYSCTRL_PADCONF_WKUP_CTRL_I2C_2 to setup I2C pull */ writel_relaxed(val, OMAP2_L4_IO_ADDRESS(OMAP4_CTRL_MODULE_PAD_WKUP + OMAP4_CTRL_MODULE_PAD_WKUP_CONTROL_I2C_2)); /* HSSCLH can always be zero */ val = hsscll << OMAP4430_HSSCLL_SHIFT; val |= (0x28 << OMAP4430_SCLL_SHIFT | 0x2c << OMAP4430_SCLH_SHIFT); /* Write setup times to I2C config register */ voltdm->write(val, OMAP4_PRM_VC_CFG_I2C_CLK_OFFSET); } /** * omap_vc_i2c_init - initialize I2C interface to PMIC * @voltdm: voltage domain containing VC data * * Use PMIC supplied settings for I2C high-speed mode and * master code (if set) and program the VC I2C configuration * register. * * The VC I2C configuration is common to all VC channels, * so this function only configures I2C for the first VC * channel registers. All other VC channels will use the * same configuration. */ static void __init omap_vc_i2c_init(struct voltagedomain *voltdm) { struct omap_vc_channel *vc = voltdm->vc; static bool initialized; static bool i2c_high_speed; u8 mcode; if (initialized) { if (voltdm->pmic->i2c_high_speed != i2c_high_speed) pr_warn("%s: I2C config for vdd_%s does not match other channels (%u).\n", __func__, voltdm->name, i2c_high_speed); return; } /* * Note that for omap3 OMAP3430_SREN_MASK clears SREN to work around * erratum i531 "Extra Power Consumed When Repeated Start Operation * Mode Is Enabled on I2C Interface Dedicated for Smart Reflex (I2C4)". * Otherwise I2C4 eventually leads into about 23mW extra power being * consumed even during off idle using VMODE. */ i2c_high_speed = voltdm->pmic->i2c_high_speed; if (i2c_high_speed) voltdm->rmw(vc->common->i2c_cfg_clear_mask, vc->common->i2c_cfg_hsen_mask, vc->common->i2c_cfg_reg); mcode = voltdm->pmic->i2c_mcode; if (mcode) voltdm->rmw(vc->common->i2c_mcode_mask, mcode << __ffs(vc->common->i2c_mcode_mask), vc->common->i2c_cfg_reg); if (cpu_is_omap44xx()) omap4_vc_i2c_timing_init(voltdm); initialized = true; } /** * omap_vc_calc_vsel - calculate vsel value for a channel * @voltdm: channel to calculate value for * @uvolt: microvolt value to convert to vsel * * Converts a microvolt value to vsel value for the used PMIC. * This checks whether the microvolt value is out of bounds, and * adjusts the value accordingly. If unsupported value detected, * warning is thrown. */ static u8 omap_vc_calc_vsel(struct voltagedomain *voltdm, u32 uvolt) { if (voltdm->pmic->vddmin > uvolt) uvolt = voltdm->pmic->vddmin; if (voltdm->pmic->vddmax < uvolt) { WARN(1, "%s: voltage not supported by pmic: %u vs max %u\n", __func__, uvolt, voltdm->pmic->vddmax); /* Lets try maximum value anyway */ uvolt = voltdm->pmic->vddmax; } return voltdm->pmic->uv_to_vsel(uvolt); } void __init omap_vc_init_channel(struct voltagedomain *voltdm) { struct omap_vc_channel *vc = voltdm->vc; u8 on_vsel, onlp_vsel, ret_vsel, off_vsel; u32 val; if (!voltdm->pmic || !voltdm->pmic->uv_to_vsel) { pr_err("%s: No PMIC info for vdd_%s\n", __func__, voltdm->name); return; } if (!voltdm->read || !voltdm->write) { pr_err("%s: No read/write API for accessing vdd_%s regs\n", __func__, voltdm->name); return; } vc->cfg_channel = 0; if (vc->flags & OMAP_VC_CHANNEL_CFG_MUTANT) vc_cfg_bits = &vc_mutant_channel_cfg; else vc_cfg_bits = &vc_default_channel_cfg; /* get PMIC/board specific settings */ vc->i2c_slave_addr = voltdm->pmic->i2c_slave_addr; vc->volt_reg_addr = voltdm->pmic->volt_reg_addr; vc->cmd_reg_addr = voltdm->pmic->cmd_reg_addr; /* Configure the i2c slave address for this VC */ voltdm->rmw(vc->smps_sa_mask, vc->i2c_slave_addr << __ffs(vc->smps_sa_mask), vc->smps_sa_reg); vc->cfg_channel |= vc_cfg_bits->sa; /* * Configure the PMIC register addresses. */ voltdm->rmw(vc->smps_volra_mask, vc->volt_reg_addr << __ffs(vc->smps_volra_mask), vc->smps_volra_reg); vc->cfg_channel |= vc_cfg_bits->rav; if (vc->cmd_reg_addr) { voltdm->rmw(vc->smps_cmdra_mask, vc->cmd_reg_addr << __ffs(vc->smps_cmdra_mask), vc->smps_cmdra_reg); vc->cfg_channel |= vc_cfg_bits->rac; } if (vc->cmd_reg_addr == vc->volt_reg_addr) vc->cfg_channel |= vc_cfg_bits->racen; /* Set up the on, inactive, retention and off voltage */ on_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->on); onlp_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->onlp); ret_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->ret); off_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->off); val = ((on_vsel << vc->common->cmd_on_shift) | (onlp_vsel << vc->common->cmd_onlp_shift) | (ret_vsel << vc->common->cmd_ret_shift) | (off_vsel << vc->common->cmd_off_shift)); voltdm->write(val, vc->cmdval_reg); vc->cfg_channel |= vc_cfg_bits->cmd; /* Channel configuration */ omap_vc_config_channel(voltdm); omap_vc_i2c_init(voltdm); if (cpu_is_omap34xx()) omap3_vc_init_channel(voltdm); else if (cpu_is_omap44xx()) omap4_vc_init_channel(voltdm); } |