Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 | /* SPDX-License-Identifier: LGPL-2.1 OR MIT */ /* * rseq.h * * (C) Copyright 2016-2018 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com> */ #ifndef RSEQ_H #define RSEQ_H #include <stdint.h> #include <stdbool.h> #include <pthread.h> #include <signal.h> #include <sched.h> #include <errno.h> #include <stdio.h> #include <stdlib.h> #include <stddef.h> #include "rseq-abi.h" #include "compiler.h" #ifndef rseq_sizeof_field #define rseq_sizeof_field(TYPE, MEMBER) sizeof((((TYPE *)0)->MEMBER)) #endif #ifndef rseq_offsetofend #define rseq_offsetofend(TYPE, MEMBER) \ (offsetof(TYPE, MEMBER) + rseq_sizeof_field(TYPE, MEMBER)) #endif /* * Empty code injection macros, override when testing. * It is important to consider that the ASM injection macros need to be * fully reentrant (e.g. do not modify the stack). */ #ifndef RSEQ_INJECT_ASM #define RSEQ_INJECT_ASM(n) #endif #ifndef RSEQ_INJECT_C #define RSEQ_INJECT_C(n) #endif #ifndef RSEQ_INJECT_INPUT #define RSEQ_INJECT_INPUT #endif #ifndef RSEQ_INJECT_CLOBBER #define RSEQ_INJECT_CLOBBER #endif #ifndef RSEQ_INJECT_FAILED #define RSEQ_INJECT_FAILED #endif #include "rseq-thread-pointer.h" /* Offset from the thread pointer to the rseq area. */ extern ptrdiff_t rseq_offset; /* * Size of the registered rseq area. 0 if the registration was * unsuccessful. */ extern unsigned int rseq_size; /* Flags used during rseq registration. */ extern unsigned int rseq_flags; /* * rseq feature size supported by the kernel. 0 if the registration was * unsuccessful. */ extern unsigned int rseq_feature_size; enum rseq_mo { RSEQ_MO_RELAXED = 0, RSEQ_MO_CONSUME = 1, /* Unused */ RSEQ_MO_ACQUIRE = 2, /* Unused */ RSEQ_MO_RELEASE = 3, RSEQ_MO_ACQ_REL = 4, /* Unused */ RSEQ_MO_SEQ_CST = 5, /* Unused */ }; enum rseq_percpu_mode { RSEQ_PERCPU_CPU_ID = 0, RSEQ_PERCPU_MM_CID = 1, }; static inline struct rseq_abi *rseq_get_abi(void) { return (struct rseq_abi *) ((uintptr_t) rseq_thread_pointer() + rseq_offset); } #define rseq_likely(x) __builtin_expect(!!(x), 1) #define rseq_unlikely(x) __builtin_expect(!!(x), 0) #define rseq_barrier() __asm__ __volatile__("" : : : "memory") #define RSEQ_ACCESS_ONCE(x) (*(__volatile__ __typeof__(x) *)&(x)) #define RSEQ_WRITE_ONCE(x, v) __extension__ ({ RSEQ_ACCESS_ONCE(x) = (v); }) #define RSEQ_READ_ONCE(x) RSEQ_ACCESS_ONCE(x) #define __rseq_str_1(x) #x #define __rseq_str(x) __rseq_str_1(x) #define rseq_log(fmt, args...) \ fprintf(stderr, fmt "(in %s() at " __FILE__ ":" __rseq_str(__LINE__)"\n", \ ## args, __func__) #define rseq_bug(fmt, args...) \ do { \ rseq_log(fmt, ##args); \ abort(); \ } while (0) #if defined(__x86_64__) || defined(__i386__) #include <rseq-x86.h> #elif defined(__ARMEL__) #include <rseq-arm.h> #elif defined (__AARCH64EL__) #include <rseq-arm64.h> #elif defined(__PPC__) #include <rseq-ppc.h> #elif defined(__mips__) #include <rseq-mips.h> #elif defined(__s390__) #include <rseq-s390.h> #elif defined(__riscv) #include <rseq-riscv.h> #else #error unsupported target #endif /* * Register rseq for the current thread. This needs to be called once * by any thread which uses restartable sequences, before they start * using restartable sequences, to ensure restartable sequences * succeed. A restartable sequence executed from a non-registered * thread will always fail. */ int rseq_register_current_thread(void); /* * Unregister rseq for current thread. */ int rseq_unregister_current_thread(void); /* * Restartable sequence fallback for reading the current CPU number. */ int32_t rseq_fallback_current_cpu(void); /* * Restartable sequence fallback for reading the current node number. */ int32_t rseq_fallback_current_node(void); /* * Values returned can be either the current CPU number, -1 (rseq is * uninitialized), or -2 (rseq initialization has failed). */ static inline int32_t rseq_current_cpu_raw(void) { return RSEQ_ACCESS_ONCE(rseq_get_abi()->cpu_id); } /* * Returns a possible CPU number, which is typically the current CPU. * The returned CPU number can be used to prepare for an rseq critical * section, which will confirm whether the cpu number is indeed the * current one, and whether rseq is initialized. * * The CPU number returned by rseq_cpu_start should always be validated * by passing it to a rseq asm sequence, or by comparing it to the * return value of rseq_current_cpu_raw() if the rseq asm sequence * does not need to be invoked. */ static inline uint32_t rseq_cpu_start(void) { return RSEQ_ACCESS_ONCE(rseq_get_abi()->cpu_id_start); } static inline uint32_t rseq_current_cpu(void) { int32_t cpu; cpu = rseq_current_cpu_raw(); if (rseq_unlikely(cpu < 0)) cpu = rseq_fallback_current_cpu(); return cpu; } static inline bool rseq_node_id_available(void) { return (int) rseq_feature_size >= rseq_offsetofend(struct rseq_abi, node_id); } /* * Current NUMA node number. */ static inline uint32_t rseq_current_node_id(void) { assert(rseq_node_id_available()); return RSEQ_ACCESS_ONCE(rseq_get_abi()->node_id); } static inline bool rseq_mm_cid_available(void) { return (int) rseq_feature_size >= rseq_offsetofend(struct rseq_abi, mm_cid); } static inline uint32_t rseq_current_mm_cid(void) { return RSEQ_ACCESS_ONCE(rseq_get_abi()->mm_cid); } static inline void rseq_clear_rseq_cs(void) { RSEQ_WRITE_ONCE(rseq_get_abi()->rseq_cs.arch.ptr, 0); } /* * rseq_prepare_unload() should be invoked by each thread executing a rseq * critical section at least once between their last critical section and * library unload of the library defining the rseq critical section (struct * rseq_cs) or the code referred to by the struct rseq_cs start_ip and * post_commit_offset fields. This also applies to use of rseq in code * generated by JIT: rseq_prepare_unload() should be invoked at least once by * each thread executing a rseq critical section before reclaim of the memory * holding the struct rseq_cs or reclaim of the code pointed to by struct * rseq_cs start_ip and post_commit_offset fields. */ static inline void rseq_prepare_unload(void) { rseq_clear_rseq_cs(); } static inline __attribute__((always_inline)) int rseq_cmpeqv_storev(enum rseq_mo rseq_mo, enum rseq_percpu_mode percpu_mode, intptr_t *v, intptr_t expect, intptr_t newv, int cpu) { if (rseq_mo != RSEQ_MO_RELAXED) return -1; switch (percpu_mode) { case RSEQ_PERCPU_CPU_ID: return rseq_cmpeqv_storev_relaxed_cpu_id(v, expect, newv, cpu); case RSEQ_PERCPU_MM_CID: return rseq_cmpeqv_storev_relaxed_mm_cid(v, expect, newv, cpu); } return -1; } /* * Compare @v against @expectnot. When it does _not_ match, load @v * into @load, and store the content of *@v + voffp into @v. */ static inline __attribute__((always_inline)) int rseq_cmpnev_storeoffp_load(enum rseq_mo rseq_mo, enum rseq_percpu_mode percpu_mode, intptr_t *v, intptr_t expectnot, long voffp, intptr_t *load, int cpu) { if (rseq_mo != RSEQ_MO_RELAXED) return -1; switch (percpu_mode) { case RSEQ_PERCPU_CPU_ID: return rseq_cmpnev_storeoffp_load_relaxed_cpu_id(v, expectnot, voffp, load, cpu); case RSEQ_PERCPU_MM_CID: return rseq_cmpnev_storeoffp_load_relaxed_mm_cid(v, expectnot, voffp, load, cpu); } return -1; } static inline __attribute__((always_inline)) int rseq_addv(enum rseq_mo rseq_mo, enum rseq_percpu_mode percpu_mode, intptr_t *v, intptr_t count, int cpu) { if (rseq_mo != RSEQ_MO_RELAXED) return -1; switch (percpu_mode) { case RSEQ_PERCPU_CPU_ID: return rseq_addv_relaxed_cpu_id(v, count, cpu); case RSEQ_PERCPU_MM_CID: return rseq_addv_relaxed_mm_cid(v, count, cpu); } return -1; } #ifdef RSEQ_ARCH_HAS_OFFSET_DEREF_ADDV /* * pval = *(ptr+off) * *pval += inc; */ static inline __attribute__((always_inline)) int rseq_offset_deref_addv(enum rseq_mo rseq_mo, enum rseq_percpu_mode percpu_mode, intptr_t *ptr, long off, intptr_t inc, int cpu) { if (rseq_mo != RSEQ_MO_RELAXED) return -1; switch (percpu_mode) { case RSEQ_PERCPU_CPU_ID: return rseq_offset_deref_addv_relaxed_cpu_id(ptr, off, inc, cpu); case RSEQ_PERCPU_MM_CID: return rseq_offset_deref_addv_relaxed_mm_cid(ptr, off, inc, cpu); } return -1; } #endif static inline __attribute__((always_inline)) int rseq_cmpeqv_trystorev_storev(enum rseq_mo rseq_mo, enum rseq_percpu_mode percpu_mode, intptr_t *v, intptr_t expect, intptr_t *v2, intptr_t newv2, intptr_t newv, int cpu) { switch (rseq_mo) { case RSEQ_MO_RELAXED: switch (percpu_mode) { case RSEQ_PERCPU_CPU_ID: return rseq_cmpeqv_trystorev_storev_relaxed_cpu_id(v, expect, v2, newv2, newv, cpu); case RSEQ_PERCPU_MM_CID: return rseq_cmpeqv_trystorev_storev_relaxed_mm_cid(v, expect, v2, newv2, newv, cpu); } return -1; case RSEQ_MO_RELEASE: switch (percpu_mode) { case RSEQ_PERCPU_CPU_ID: return rseq_cmpeqv_trystorev_storev_release_cpu_id(v, expect, v2, newv2, newv, cpu); case RSEQ_PERCPU_MM_CID: return rseq_cmpeqv_trystorev_storev_release_mm_cid(v, expect, v2, newv2, newv, cpu); } return -1; default: return -1; } } static inline __attribute__((always_inline)) int rseq_cmpeqv_cmpeqv_storev(enum rseq_mo rseq_mo, enum rseq_percpu_mode percpu_mode, intptr_t *v, intptr_t expect, intptr_t *v2, intptr_t expect2, intptr_t newv, int cpu) { if (rseq_mo != RSEQ_MO_RELAXED) return -1; switch (percpu_mode) { case RSEQ_PERCPU_CPU_ID: return rseq_cmpeqv_cmpeqv_storev_relaxed_cpu_id(v, expect, v2, expect2, newv, cpu); case RSEQ_PERCPU_MM_CID: return rseq_cmpeqv_cmpeqv_storev_relaxed_mm_cid(v, expect, v2, expect2, newv, cpu); } return -1; } static inline __attribute__((always_inline)) int rseq_cmpeqv_trymemcpy_storev(enum rseq_mo rseq_mo, enum rseq_percpu_mode percpu_mode, intptr_t *v, intptr_t expect, void *dst, void *src, size_t len, intptr_t newv, int cpu) { switch (rseq_mo) { case RSEQ_MO_RELAXED: switch (percpu_mode) { case RSEQ_PERCPU_CPU_ID: return rseq_cmpeqv_trymemcpy_storev_relaxed_cpu_id(v, expect, dst, src, len, newv, cpu); case RSEQ_PERCPU_MM_CID: return rseq_cmpeqv_trymemcpy_storev_relaxed_mm_cid(v, expect, dst, src, len, newv, cpu); } return -1; case RSEQ_MO_RELEASE: switch (percpu_mode) { case RSEQ_PERCPU_CPU_ID: return rseq_cmpeqv_trymemcpy_storev_release_cpu_id(v, expect, dst, src, len, newv, cpu); case RSEQ_PERCPU_MM_CID: return rseq_cmpeqv_trymemcpy_storev_release_mm_cid(v, expect, dst, src, len, newv, cpu); } return -1; default: return -1; } } #endif /* RSEQ_H_ */ |