Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 | /* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2007 MIPS Technologies, Inc. * Copyright (C) 2007 Ralf Baechle <ralf@linux-mips.org> */ #include <linux/clockchips.h> #include <linux/interrupt.h> #include <linux/cpufreq.h> #include <linux/percpu.h> #include <linux/smp.h> #include <linux/irq.h> #include <asm/time.h> #include <asm/cevt-r4k.h> static int mips_next_event(unsigned long delta, struct clock_event_device *evt) { unsigned int cnt; int res; cnt = read_c0_count(); cnt += delta; write_c0_compare(cnt); res = ((int)(read_c0_count() - cnt) >= 0) ? -ETIME : 0; return res; } /** * calculate_min_delta() - Calculate a good minimum delta for mips_next_event(). * * Running under virtualisation can introduce overhead into mips_next_event() in * the form of hypervisor emulation of CP0_Count/CP0_Compare registers, * potentially with an unnatural frequency, which makes a fixed min_delta_ns * value inappropriate as it may be too small. * * It can also introduce occasional latency from the guest being descheduled. * * This function calculates a good minimum delta based roughly on the 75th * percentile of the time taken to do the mips_next_event() sequence, in order * to handle potentially higher overhead while also eliminating outliers due to * unpredictable hypervisor latency (which can be handled by retries). * * Return: An appropriate minimum delta for the clock event device. */ static unsigned int calculate_min_delta(void) { unsigned int cnt, i, j, k, l; unsigned int buf1[4], buf2[3]; unsigned int min_delta; /* * Calculate the median of 5 75th percentiles of 5 samples of how long * it takes to set CP0_Compare = CP0_Count + delta. */ for (i = 0; i < 5; ++i) { for (j = 0; j < 5; ++j) { /* * This is like the code in mips_next_event(), and * directly measures the borderline "safe" delta. */ cnt = read_c0_count(); write_c0_compare(cnt); cnt = read_c0_count() - cnt; /* Sorted insert into buf1 */ for (k = 0; k < j; ++k) { if (cnt < buf1[k]) { l = min_t(unsigned int, j, ARRAY_SIZE(buf1) - 1); for (; l > k; --l) buf1[l] = buf1[l - 1]; break; } } if (k < ARRAY_SIZE(buf1)) buf1[k] = cnt; } /* Sorted insert of 75th percentile into buf2 */ for (k = 0; k < i && k < ARRAY_SIZE(buf2); ++k) { if (buf1[ARRAY_SIZE(buf1) - 1] < buf2[k]) { l = min_t(unsigned int, i, ARRAY_SIZE(buf2) - 1); for (; l > k; --l) buf2[l] = buf2[l - 1]; break; } } if (k < ARRAY_SIZE(buf2)) buf2[k] = buf1[ARRAY_SIZE(buf1) - 1]; } /* Use 2 * median of 75th percentiles */ min_delta = buf2[ARRAY_SIZE(buf2) - 1] * 2; /* Don't go too low */ if (min_delta < 0x300) min_delta = 0x300; pr_debug("%s: median 75th percentile=%#x, min_delta=%#x\n", __func__, buf2[ARRAY_SIZE(buf2) - 1], min_delta); return min_delta; } DEFINE_PER_CPU(struct clock_event_device, mips_clockevent_device); int cp0_timer_irq_installed; /* * Possibly handle a performance counter interrupt. * Return true if the timer interrupt should not be checked */ static inline int handle_perf_irq(int r2) { /* * The performance counter overflow interrupt may be shared with the * timer interrupt (cp0_perfcount_irq < 0). If it is and a * performance counter has overflowed (perf_irq() == IRQ_HANDLED) * and we can't reliably determine if a counter interrupt has also * happened (!r2) then don't check for a timer interrupt. */ return (cp0_perfcount_irq < 0) && perf_irq() == IRQ_HANDLED && !r2; } irqreturn_t c0_compare_interrupt(int irq, void *dev_id) { const int r2 = cpu_has_mips_r2_r6; struct clock_event_device *cd; int cpu = smp_processor_id(); /* * Suckage alert: * Before R2 of the architecture there was no way to see if a * performance counter interrupt was pending, so we have to run * the performance counter interrupt handler anyway. */ if (handle_perf_irq(r2)) return IRQ_HANDLED; /* * The same applies to performance counter interrupts. But with the * above we now know that the reason we got here must be a timer * interrupt. Being the paranoiacs we are we check anyway. */ if (!r2 || (read_c0_cause() & CAUSEF_TI)) { /* Clear Count/Compare Interrupt */ write_c0_compare(read_c0_compare()); cd = &per_cpu(mips_clockevent_device, cpu); cd->event_handler(cd); return IRQ_HANDLED; } return IRQ_NONE; } struct irqaction c0_compare_irqaction = { .handler = c0_compare_interrupt, /* * IRQF_SHARED: The timer interrupt may be shared with other interrupts * such as perf counter and FDC interrupts. */ .flags = IRQF_PERCPU | IRQF_TIMER | IRQF_SHARED, .name = "timer", }; void mips_event_handler(struct clock_event_device *dev) { } /* * FIXME: This doesn't hold for the relocated E9000 compare interrupt. */ static int c0_compare_int_pending(void) { /* When cpu_has_mips_r2, this checks Cause.TI instead of Cause.IP7 */ return (read_c0_cause() >> cp0_compare_irq_shift) & (1ul << CAUSEB_IP); } /* * Compare interrupt can be routed and latched outside the core, * so wait up to worst case number of cycle counter ticks for timer interrupt * changes to propagate to the cause register. */ #define COMPARE_INT_SEEN_TICKS 50 int c0_compare_int_usable(void) { unsigned int delta; unsigned int cnt; /* * IP7 already pending? Try to clear it by acking the timer. */ if (c0_compare_int_pending()) { cnt = read_c0_count(); write_c0_compare(cnt - 1); back_to_back_c0_hazard(); while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS)) if (!c0_compare_int_pending()) break; if (c0_compare_int_pending()) return 0; } for (delta = 0x10; delta <= 0x400000; delta <<= 1) { cnt = read_c0_count(); cnt += delta; write_c0_compare(cnt); back_to_back_c0_hazard(); if ((int)(read_c0_count() - cnt) < 0) break; /* increase delta if the timer was already expired */ } while ((int)(read_c0_count() - cnt) <= 0) ; /* Wait for expiry */ while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS)) if (c0_compare_int_pending()) break; if (!c0_compare_int_pending()) return 0; cnt = read_c0_count(); write_c0_compare(cnt - 1); back_to_back_c0_hazard(); while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS)) if (!c0_compare_int_pending()) break; if (c0_compare_int_pending()) return 0; /* * Feels like a real count / compare timer. */ return 1; } unsigned int __weak get_c0_compare_int(void) { return MIPS_CPU_IRQ_BASE + cp0_compare_irq; } #ifdef CONFIG_CPU_FREQ static unsigned long mips_ref_freq; static int r4k_cpufreq_callback(struct notifier_block *nb, unsigned long val, void *data) { struct cpufreq_freqs *freq = data; struct clock_event_device *cd; unsigned long rate; int cpu; if (!mips_ref_freq) mips_ref_freq = freq->old; if (val == CPUFREQ_POSTCHANGE) { rate = cpufreq_scale(mips_hpt_frequency, mips_ref_freq, freq->new); for_each_cpu(cpu, freq->policy->cpus) { cd = &per_cpu(mips_clockevent_device, cpu); clockevents_update_freq(cd, rate); } } return 0; } static struct notifier_block r4k_cpufreq_notifier = { .notifier_call = r4k_cpufreq_callback, }; static int __init r4k_register_cpufreq_notifier(void) { return cpufreq_register_notifier(&r4k_cpufreq_notifier, CPUFREQ_TRANSITION_NOTIFIER); } core_initcall(r4k_register_cpufreq_notifier); #endif /* !CONFIG_CPU_FREQ */ int r4k_clockevent_init(void) { unsigned long flags = IRQF_PERCPU | IRQF_TIMER | IRQF_SHARED; unsigned int cpu = smp_processor_id(); struct clock_event_device *cd; unsigned int irq, min_delta; if (!cpu_has_counter || !mips_hpt_frequency) return -ENXIO; if (!c0_compare_int_usable()) return -ENXIO; /* * With vectored interrupts things are getting platform specific. * get_c0_compare_int is a hook to allow a platform to return the * interrupt number of its liking. */ irq = get_c0_compare_int(); cd = &per_cpu(mips_clockevent_device, cpu); cd->name = "MIPS"; cd->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP | CLOCK_EVT_FEAT_PERCPU; min_delta = calculate_min_delta(); cd->rating = 300; cd->irq = irq; cd->cpumask = cpumask_of(cpu); cd->set_next_event = mips_next_event; cd->event_handler = mips_event_handler; clockevents_config_and_register(cd, mips_hpt_frequency, min_delta, 0x7fffffff); if (cp0_timer_irq_installed) return 0; cp0_timer_irq_installed = 1; if (request_irq(irq, c0_compare_interrupt, flags, "timer", c0_compare_interrupt)) pr_err("Failed to request irq %d (timer)\n", irq); return 0; } |