Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 | // SPDX-License-Identifier: GPL-2.0-only // // Copyright (C) 2020 BAIKAL ELECTRONICS, JSC // // Authors: // Ramil Zaripov <Ramil.Zaripov@baikalelectronics.ru> // Serge Semin <Sergey.Semin@baikalelectronics.ru> // // Baikal-T1 DW APB SPI and System Boot SPI driver // #include <linux/clk.h> #include <linux/cpumask.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/mux/consumer.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/property.h> #include <linux/slab.h> #include <linux/spi/spi-mem.h> #include <linux/spi/spi.h> #include "spi-dw.h" #define BT1_BOOT_DIRMAP 0 #define BT1_BOOT_REGS 1 struct dw_spi_bt1 { struct dw_spi dws; struct clk *clk; struct mux_control *mux; #ifdef CONFIG_SPI_DW_BT1_DIRMAP void __iomem *map; resource_size_t map_len; #endif }; #define to_dw_spi_bt1(_ctlr) \ container_of(spi_controller_get_devdata(_ctlr), struct dw_spi_bt1, dws) typedef int (*dw_spi_bt1_init_cb)(struct platform_device *pdev, struct dw_spi_bt1 *dwsbt1); #ifdef CONFIG_SPI_DW_BT1_DIRMAP static int dw_spi_bt1_dirmap_create(struct spi_mem_dirmap_desc *desc) { struct dw_spi_bt1 *dwsbt1 = to_dw_spi_bt1(desc->mem->spi->controller); if (!dwsbt1->map || !dwsbt1->dws.mem_ops.supports_op(desc->mem, &desc->info.op_tmpl)) return -EOPNOTSUPP; /* * Make sure the requested region doesn't go out of the physically * mapped flash memory bounds and the operation is read-only. */ if (desc->info.offset + desc->info.length > dwsbt1->map_len || desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN) return -EOPNOTSUPP; return 0; } /* * Directly mapped SPI memory region is only accessible in the dword chunks. * That's why we have to create a dedicated read-method to copy data from there * to the passed buffer. */ static void dw_spi_bt1_dirmap_copy_from_map(void *to, void __iomem *from, size_t len) { size_t shift, chunk; u32 data; /* * We split the copying up into the next three stages: unaligned head, * aligned body, unaligned tail. */ shift = (size_t)from & 0x3; if (shift) { chunk = min_t(size_t, 4 - shift, len); data = readl_relaxed(from - shift); memcpy(to, (char *)&data + shift, chunk); from += chunk; to += chunk; len -= chunk; } while (len >= 4) { data = readl_relaxed(from); memcpy(to, &data, 4); from += 4; to += 4; len -= 4; } if (len) { data = readl_relaxed(from); memcpy(to, &data, len); } } static ssize_t dw_spi_bt1_dirmap_read(struct spi_mem_dirmap_desc *desc, u64 offs, size_t len, void *buf) { struct dw_spi_bt1 *dwsbt1 = to_dw_spi_bt1(desc->mem->spi->controller); struct dw_spi *dws = &dwsbt1->dws; struct spi_mem *mem = desc->mem; struct dw_spi_cfg cfg; int ret; /* * Make sure the requested operation length is valid. Truncate the * length if it's greater than the length of the MMIO region. */ if (offs >= dwsbt1->map_len || !len) return 0; len = min_t(size_t, len, dwsbt1->map_len - offs); /* Collect the controller configuration required by the operation */ cfg.tmode = DW_SPI_CTRLR0_TMOD_EPROMREAD; cfg.dfs = 8; cfg.ndf = 4; cfg.freq = mem->spi->max_speed_hz; /* Make sure the corresponding CS is de-asserted on transmission */ dw_spi_set_cs(mem->spi, false); dw_spi_enable_chip(dws, 0); dw_spi_update_config(dws, mem->spi, &cfg); dw_spi_umask_intr(dws, DW_SPI_INT_RXFI); dw_spi_enable_chip(dws, 1); /* * Enable the transparent mode of the System Boot Controller. * The SPI core IO should have been locked before calling this method * so noone would be touching the controller' registers during the * dirmap operation. */ ret = mux_control_select(dwsbt1->mux, BT1_BOOT_DIRMAP); if (ret) return ret; dw_spi_bt1_dirmap_copy_from_map(buf, dwsbt1->map + offs, len); mux_control_deselect(dwsbt1->mux); dw_spi_set_cs(mem->spi, true); ret = dw_spi_check_status(dws, true); return ret ?: len; } #endif /* CONFIG_SPI_DW_BT1_DIRMAP */ static int dw_spi_bt1_std_init(struct platform_device *pdev, struct dw_spi_bt1 *dwsbt1) { struct dw_spi *dws = &dwsbt1->dws; dws->irq = platform_get_irq(pdev, 0); if (dws->irq < 0) return dws->irq; dws->num_cs = 4; /* * Baikal-T1 Normal SPI Controllers don't always keep up with full SPI * bus speed especially when it comes to the concurrent access to the * APB bus resources. Thus we have no choice but to set a constraint on * the SPI bus frequency for the memory operations which require to * read/write data as fast as possible. */ dws->max_mem_freq = 20000000U; dw_spi_dma_setup_generic(dws); return 0; } static int dw_spi_bt1_sys_init(struct platform_device *pdev, struct dw_spi_bt1 *dwsbt1) { struct resource *mem __maybe_unused; struct dw_spi *dws = &dwsbt1->dws; /* * Baikal-T1 System Boot Controller is equipped with a mux, which * switches between the directly mapped SPI flash access mode and * IO access to the DW APB SSI registers. Note the mux controller * must be setup to preserve the registers being accessible by default * (on idle-state). */ dwsbt1->mux = devm_mux_control_get(&pdev->dev, NULL); if (IS_ERR(dwsbt1->mux)) return PTR_ERR(dwsbt1->mux); /* * Directly mapped SPI flash memory is a 16MB MMIO region, which can be * used to access a peripheral memory device just by reading/writing * data from/to it. Note the system APB bus will stall during each IO * from/to the dirmap region until the operation is finished. So don't * use it concurrently with time-critical tasks (like the SPI memory * operations implemented in the DW APB SSI driver). */ #ifdef CONFIG_SPI_DW_BT1_DIRMAP mem = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (mem) { dwsbt1->map = devm_ioremap_resource(&pdev->dev, mem); if (!IS_ERR(dwsbt1->map)) { dwsbt1->map_len = resource_size(mem); dws->mem_ops.dirmap_create = dw_spi_bt1_dirmap_create; dws->mem_ops.dirmap_read = dw_spi_bt1_dirmap_read; } else { dwsbt1->map = NULL; } } #endif /* CONFIG_SPI_DW_BT1_DIRMAP */ /* * There is no IRQ, no DMA and just one CS available on the System Boot * SPI controller. */ dws->irq = IRQ_NOTCONNECTED; dws->num_cs = 1; /* * Baikal-T1 System Boot SPI Controller doesn't keep up with the full * SPI bus speed due to relatively slow APB bus and races for it' * resources from different CPUs. The situation is worsen by a small * FIFOs depth (just 8 words). It works better in a single CPU mode * though, but still tends to be not fast enough at low CPU * frequencies. */ if (num_possible_cpus() > 1) dws->max_mem_freq = 10000000U; else dws->max_mem_freq = 20000000U; return 0; } static int dw_spi_bt1_probe(struct platform_device *pdev) { dw_spi_bt1_init_cb init_func; struct dw_spi_bt1 *dwsbt1; struct resource *mem; struct dw_spi *dws; int ret; dwsbt1 = devm_kzalloc(&pdev->dev, sizeof(struct dw_spi_bt1), GFP_KERNEL); if (!dwsbt1) return -ENOMEM; dws = &dwsbt1->dws; dws->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &mem); if (IS_ERR(dws->regs)) return PTR_ERR(dws->regs); dws->paddr = mem->start; dwsbt1->clk = devm_clk_get_enabled(&pdev->dev, NULL); if (IS_ERR(dwsbt1->clk)) return PTR_ERR(dwsbt1->clk); dws->bus_num = pdev->id; dws->reg_io_width = 4; dws->max_freq = clk_get_rate(dwsbt1->clk); if (!dws->max_freq) return -EINVAL; init_func = device_get_match_data(&pdev->dev); ret = init_func(pdev, dwsbt1); if (ret) return ret; pm_runtime_enable(&pdev->dev); ret = dw_spi_add_host(&pdev->dev, dws); if (ret) { pm_runtime_disable(&pdev->dev); return ret; } platform_set_drvdata(pdev, dwsbt1); return 0; } static void dw_spi_bt1_remove(struct platform_device *pdev) { struct dw_spi_bt1 *dwsbt1 = platform_get_drvdata(pdev); dw_spi_remove_host(&dwsbt1->dws); pm_runtime_disable(&pdev->dev); } static const struct of_device_id dw_spi_bt1_of_match[] = { { .compatible = "baikal,bt1-ssi", .data = dw_spi_bt1_std_init}, { .compatible = "baikal,bt1-sys-ssi", .data = dw_spi_bt1_sys_init}, { } }; MODULE_DEVICE_TABLE(of, dw_spi_bt1_of_match); static struct platform_driver dw_spi_bt1_driver = { .probe = dw_spi_bt1_probe, .remove_new = dw_spi_bt1_remove, .driver = { .name = "bt1-sys-ssi", .of_match_table = dw_spi_bt1_of_match, }, }; module_platform_driver(dw_spi_bt1_driver); MODULE_AUTHOR("Serge Semin <Sergey.Semin@baikalelectronics.ru>"); MODULE_DESCRIPTION("Baikal-T1 System Boot SPI Controller driver"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(SPI_DW_CORE); |