Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
// SPDX-License-Identifier: GPL-2.0-only

#include <linux/gpio/driver.h>
#include <linux/cpumask.h>
#include <linux/irq.h>
#include <linux/minmax.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/property.h>

/*
 * Total register block size is 0x1C for one bank of four ports (A, B, C, D).
 * An optional second bank, with ports E, F, G, and H, may be present, starting
 * at register offset 0x1C.
 */

/*
 * Pin select: (0) "normal", (1) "dedicate peripheral"
 * Not used on RTL8380/RTL8390, peripheral selection is managed by control bits
 * in the peripheral registers.
 */
#define REALTEK_GPIO_REG_CNR		0x00
/* Clear bit (0) for input, set bit (1) for output */
#define REALTEK_GPIO_REG_DIR		0x08
#define REALTEK_GPIO_REG_DATA		0x0C
/* Read bit for IRQ status, write 1 to clear IRQ */
#define REALTEK_GPIO_REG_ISR		0x10
/* Two bits per GPIO in IMR registers */
#define REALTEK_GPIO_REG_IMR		0x14
#define REALTEK_GPIO_REG_IMR_AB		0x14
#define REALTEK_GPIO_REG_IMR_CD		0x18
#define REALTEK_GPIO_IMR_LINE_MASK	GENMASK(1, 0)
#define REALTEK_GPIO_IRQ_EDGE_FALLING	1
#define REALTEK_GPIO_IRQ_EDGE_RISING	2
#define REALTEK_GPIO_IRQ_EDGE_BOTH	3

#define REALTEK_GPIO_MAX		32
#define REALTEK_GPIO_PORTS_PER_BANK	4

/**
 * realtek_gpio_ctrl - Realtek Otto GPIO driver data
 *
 * @gc: Associated gpio_chip instance
 * @base: Base address of the register block for a GPIO bank
 * @lock: Lock for accessing the IRQ registers and values
 * @intr_mask: Mask for interrupts lines
 * @intr_type: Interrupt type selection
 * @bank_read: Read a bank setting as a single 32-bit value
 * @bank_write: Write a bank setting as a single 32-bit value
 * @imr_line_pos: Bit shift of an IRQ line's IMR value.
 *
 * The DIR, DATA, and ISR registers consist of four 8-bit port values, packed
 * into a single 32-bit register. Use @bank_read (@bank_write) to get (assign)
 * a value from (to) these registers. The IMR register consists of four 16-bit
 * port values, packed into two 32-bit registers. Use @imr_line_pos to get the
 * bit shift of the 2-bit field for a line's IMR settings. Shifts larger than
 * 32 overflow into the second register.
 *
 * Because the interrupt mask register (IMR) combines the function of IRQ type
 * selection and masking, two extra values are stored. @intr_mask is used to
 * mask/unmask the interrupts for a GPIO line, and @intr_type is used to store
 * the selected interrupt types. The logical AND of these values is written to
 * IMR on changes.
 */
struct realtek_gpio_ctrl {
	struct gpio_chip gc;
	void __iomem *base;
	void __iomem *cpumask_base;
	struct cpumask cpu_irq_maskable;
	raw_spinlock_t lock;
	u8 intr_mask[REALTEK_GPIO_MAX];
	u8 intr_type[REALTEK_GPIO_MAX];
	u32 (*bank_read)(void __iomem *reg);
	void (*bank_write)(void __iomem *reg, u32 value);
	unsigned int (*line_imr_pos)(unsigned int line);
};

/* Expand with more flags as devices with other quirks are added */
enum realtek_gpio_flags {
	/*
	 * Allow disabling interrupts, for cases where the port order is
	 * unknown. This may result in a port mismatch between ISR and IMR.
	 * An interrupt would appear to come from a different line than the
	 * line the IRQ handler was assigned to, causing uncaught interrupts.
	 */
	GPIO_INTERRUPTS_DISABLED = BIT(0),
	/*
	 * Port order is reversed, meaning DCBA register layout for 1-bit
	 * fields, and [BA, DC] for 2-bit fields.
	 */
	GPIO_PORTS_REVERSED = BIT(1),
	/*
	 * Interrupts can be enabled per cpu. This requires a secondary IO
	 * range, where the per-cpu enable masks are located.
	 */
	GPIO_INTERRUPTS_PER_CPU = BIT(2),
};

static struct realtek_gpio_ctrl *irq_data_to_ctrl(struct irq_data *data)
{
	struct gpio_chip *gc = irq_data_get_irq_chip_data(data);

	return container_of(gc, struct realtek_gpio_ctrl, gc);
}

/*
 * Normal port order register access
 *
 * Port information is stored with the first port at offset 0, followed by the
 * second, etc. Most registers store one bit per GPIO and use a u8 value per
 * port. The two interrupt mask registers store two bits per GPIO, so use u16
 * values.
 */
static u32 realtek_gpio_bank_read_swapped(void __iomem *reg)
{
	return ioread32be(reg);
}

static void realtek_gpio_bank_write_swapped(void __iomem *reg, u32 value)
{
	iowrite32be(value, reg);
}

static unsigned int realtek_gpio_line_imr_pos_swapped(unsigned int line)
{
	unsigned int port_pin = line % 8;
	unsigned int port = line / 8;

	return 2 * (8 * (port ^ 1) + port_pin);
}

/*
 * Reversed port order register access
 *
 * For registers with one bit per GPIO, all ports are stored as u8-s in one
 * register in reversed order. The two interrupt mask registers store two bits
 * per GPIO, so use u16 values. The first register contains ports 1 and 0, the
 * second ports 3 and 2.
 */
static u32 realtek_gpio_bank_read(void __iomem *reg)
{
	return ioread32(reg);
}

static void realtek_gpio_bank_write(void __iomem *reg, u32 value)
{
	iowrite32(value, reg);
}

static unsigned int realtek_gpio_line_imr_pos(unsigned int line)
{
	return 2 * line;
}

static void realtek_gpio_clear_isr(struct realtek_gpio_ctrl *ctrl, u32 mask)
{
	ctrl->bank_write(ctrl->base + REALTEK_GPIO_REG_ISR, mask);
}

static u32 realtek_gpio_read_isr(struct realtek_gpio_ctrl *ctrl)
{
	return ctrl->bank_read(ctrl->base + REALTEK_GPIO_REG_ISR);
}

/* Set the rising and falling edge mask bits for a GPIO pin */
static void realtek_gpio_update_line_imr(struct realtek_gpio_ctrl *ctrl, unsigned int line)
{
	void __iomem *reg = ctrl->base + REALTEK_GPIO_REG_IMR;
	unsigned int line_shift = ctrl->line_imr_pos(line);
	unsigned int shift = line_shift % 32;
	u32 irq_type = ctrl->intr_type[line];
	u32 irq_mask = ctrl->intr_mask[line];
	u32 reg_val;

	reg += 4 * (line_shift / 32);
	reg_val = ioread32(reg);
	reg_val &= ~(REALTEK_GPIO_IMR_LINE_MASK << shift);
	reg_val |= (irq_type & irq_mask & REALTEK_GPIO_IMR_LINE_MASK) << shift;
	iowrite32(reg_val, reg);
}

static void realtek_gpio_irq_ack(struct irq_data *data)
{
	struct realtek_gpio_ctrl *ctrl = irq_data_to_ctrl(data);
	irq_hw_number_t line = irqd_to_hwirq(data);

	realtek_gpio_clear_isr(ctrl, BIT(line));
}

static void realtek_gpio_irq_unmask(struct irq_data *data)
{
	struct realtek_gpio_ctrl *ctrl = irq_data_to_ctrl(data);
	unsigned int line = irqd_to_hwirq(data);
	unsigned long flags;

	gpiochip_enable_irq(&ctrl->gc, line);

	raw_spin_lock_irqsave(&ctrl->lock, flags);
	ctrl->intr_mask[line] = REALTEK_GPIO_IMR_LINE_MASK;
	realtek_gpio_update_line_imr(ctrl, line);
	raw_spin_unlock_irqrestore(&ctrl->lock, flags);
}

static void realtek_gpio_irq_mask(struct irq_data *data)
{
	struct realtek_gpio_ctrl *ctrl = irq_data_to_ctrl(data);
	unsigned int line = irqd_to_hwirq(data);
	unsigned long flags;

	raw_spin_lock_irqsave(&ctrl->lock, flags);
	ctrl->intr_mask[line] = 0;
	realtek_gpio_update_line_imr(ctrl, line);
	raw_spin_unlock_irqrestore(&ctrl->lock, flags);

	gpiochip_disable_irq(&ctrl->gc, line);
}

static int realtek_gpio_irq_set_type(struct irq_data *data, unsigned int flow_type)
{
	struct realtek_gpio_ctrl *ctrl = irq_data_to_ctrl(data);
	unsigned int line = irqd_to_hwirq(data);
	unsigned long flags;
	u8 type;

	switch (flow_type & IRQ_TYPE_SENSE_MASK) {
	case IRQ_TYPE_EDGE_FALLING:
		type = REALTEK_GPIO_IRQ_EDGE_FALLING;
		break;
	case IRQ_TYPE_EDGE_RISING:
		type = REALTEK_GPIO_IRQ_EDGE_RISING;
		break;
	case IRQ_TYPE_EDGE_BOTH:
		type = REALTEK_GPIO_IRQ_EDGE_BOTH;
		break;
	default:
		return -EINVAL;
	}

	irq_set_handler_locked(data, handle_edge_irq);

	raw_spin_lock_irqsave(&ctrl->lock, flags);
	ctrl->intr_type[line] = type;
	realtek_gpio_update_line_imr(ctrl, line);
	raw_spin_unlock_irqrestore(&ctrl->lock, flags);

	return 0;
}

static void realtek_gpio_irq_handler(struct irq_desc *desc)
{
	struct gpio_chip *gc = irq_desc_get_handler_data(desc);
	struct realtek_gpio_ctrl *ctrl = gpiochip_get_data(gc);
	struct irq_chip *irq_chip = irq_desc_get_chip(desc);
	unsigned long status;
	int offset;

	chained_irq_enter(irq_chip, desc);

	status = realtek_gpio_read_isr(ctrl);
	for_each_set_bit(offset, &status, gc->ngpio)
		generic_handle_domain_irq(gc->irq.domain, offset);

	chained_irq_exit(irq_chip, desc);
}

static inline void __iomem *realtek_gpio_irq_cpu_mask(struct realtek_gpio_ctrl *ctrl, int cpu)
{
	return ctrl->cpumask_base + REALTEK_GPIO_PORTS_PER_BANK * cpu;
}

static int realtek_gpio_irq_set_affinity(struct irq_data *data,
	const struct cpumask *dest, bool force)
{
	struct realtek_gpio_ctrl *ctrl = irq_data_to_ctrl(data);
	unsigned int line = irqd_to_hwirq(data);
	void __iomem *irq_cpu_mask;
	unsigned long flags;
	int cpu;
	u32 v;

	if (!ctrl->cpumask_base)
		return -ENXIO;

	raw_spin_lock_irqsave(&ctrl->lock, flags);

	for_each_cpu(cpu, &ctrl->cpu_irq_maskable) {
		irq_cpu_mask = realtek_gpio_irq_cpu_mask(ctrl, cpu);
		v = ctrl->bank_read(irq_cpu_mask);

		if (cpumask_test_cpu(cpu, dest))
			v |= BIT(line);
		else
			v &= ~BIT(line);

		ctrl->bank_write(irq_cpu_mask, v);
	}

	raw_spin_unlock_irqrestore(&ctrl->lock, flags);

	irq_data_update_effective_affinity(data, dest);

	return 0;
}

static int realtek_gpio_irq_init(struct gpio_chip *gc)
{
	struct realtek_gpio_ctrl *ctrl = gpiochip_get_data(gc);
	u32 mask_all = GENMASK(gc->ngpio - 1, 0);
	unsigned int line;
	int cpu;

	for (line = 0; line < gc->ngpio; line++)
		realtek_gpio_update_line_imr(ctrl, line);

	realtek_gpio_clear_isr(ctrl, mask_all);

	for_each_cpu(cpu, &ctrl->cpu_irq_maskable)
		ctrl->bank_write(realtek_gpio_irq_cpu_mask(ctrl, cpu), mask_all);

	return 0;
}

static const struct irq_chip realtek_gpio_irq_chip = {
	.name = "realtek-otto-gpio",
	.irq_ack = realtek_gpio_irq_ack,
	.irq_mask = realtek_gpio_irq_mask,
	.irq_unmask = realtek_gpio_irq_unmask,
	.irq_set_type = realtek_gpio_irq_set_type,
	.irq_set_affinity = realtek_gpio_irq_set_affinity,
	.flags = IRQCHIP_IMMUTABLE,
	GPIOCHIP_IRQ_RESOURCE_HELPERS,
};

static const struct of_device_id realtek_gpio_of_match[] = {
	{
		.compatible = "realtek,otto-gpio",
		.data = (void *)GPIO_INTERRUPTS_DISABLED,
	},
	{
		.compatible = "realtek,rtl8380-gpio",
	},
	{
		.compatible = "realtek,rtl8390-gpio",
	},
	{
		.compatible = "realtek,rtl9300-gpio",
		.data = (void *)(GPIO_PORTS_REVERSED | GPIO_INTERRUPTS_PER_CPU)
	},
	{
		.compatible = "realtek,rtl9310-gpio",
	},
	{}
};
MODULE_DEVICE_TABLE(of, realtek_gpio_of_match);

static int realtek_gpio_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	unsigned long bgpio_flags;
	unsigned int dev_flags;
	struct gpio_irq_chip *girq;
	struct realtek_gpio_ctrl *ctrl;
	struct resource *res;
	u32 ngpios;
	unsigned int nr_cpus;
	int cpu, err, irq;

	ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
	if (!ctrl)
		return -ENOMEM;

	dev_flags = (unsigned int) device_get_match_data(dev);

	ngpios = REALTEK_GPIO_MAX;
	device_property_read_u32(dev, "ngpios", &ngpios);

	if (ngpios > REALTEK_GPIO_MAX) {
		dev_err(&pdev->dev, "invalid ngpios (max. %d)\n",
			REALTEK_GPIO_MAX);
		return -EINVAL;
	}

	ctrl->base = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(ctrl->base))
		return PTR_ERR(ctrl->base);

	raw_spin_lock_init(&ctrl->lock);

	if (dev_flags & GPIO_PORTS_REVERSED) {
		bgpio_flags = 0;
		ctrl->bank_read = realtek_gpio_bank_read;
		ctrl->bank_write = realtek_gpio_bank_write;
		ctrl->line_imr_pos = realtek_gpio_line_imr_pos;
	} else {
		bgpio_flags = BGPIOF_BIG_ENDIAN_BYTE_ORDER;
		ctrl->bank_read = realtek_gpio_bank_read_swapped;
		ctrl->bank_write = realtek_gpio_bank_write_swapped;
		ctrl->line_imr_pos = realtek_gpio_line_imr_pos_swapped;
	}

	err = bgpio_init(&ctrl->gc, dev, 4,
		ctrl->base + REALTEK_GPIO_REG_DATA, NULL, NULL,
		ctrl->base + REALTEK_GPIO_REG_DIR, NULL,
		bgpio_flags);
	if (err) {
		dev_err(dev, "unable to init generic GPIO");
		return err;
	}

	ctrl->gc.ngpio = ngpios;
	ctrl->gc.owner = THIS_MODULE;

	irq = platform_get_irq_optional(pdev, 0);
	if (!(dev_flags & GPIO_INTERRUPTS_DISABLED) && irq > 0) {
		girq = &ctrl->gc.irq;
		gpio_irq_chip_set_chip(girq, &realtek_gpio_irq_chip);
		girq->default_type = IRQ_TYPE_NONE;
		girq->handler = handle_bad_irq;
		girq->parent_handler = realtek_gpio_irq_handler;
		girq->num_parents = 1;
		girq->parents = devm_kcalloc(dev, girq->num_parents,
					sizeof(*girq->parents),	GFP_KERNEL);
		if (!girq->parents)
			return -ENOMEM;
		girq->parents[0] = irq;
		girq->init_hw = realtek_gpio_irq_init;
	}

	cpumask_clear(&ctrl->cpu_irq_maskable);

	if ((dev_flags & GPIO_INTERRUPTS_PER_CPU) && irq > 0) {
		ctrl->cpumask_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res);
		if (IS_ERR(ctrl->cpumask_base))
			return dev_err_probe(dev, PTR_ERR(ctrl->cpumask_base),
				"missing CPU IRQ mask registers");

		nr_cpus = resource_size(res) / REALTEK_GPIO_PORTS_PER_BANK;
		nr_cpus = min(nr_cpus, num_present_cpus());

		for (cpu = 0; cpu < nr_cpus; cpu++)
			cpumask_set_cpu(cpu, &ctrl->cpu_irq_maskable);
	}

	return devm_gpiochip_add_data(dev, &ctrl->gc, ctrl);
}

static struct platform_driver realtek_gpio_driver = {
	.driver = {
		.name = "realtek-otto-gpio",
		.of_match_table	= realtek_gpio_of_match,
	},
	.probe = realtek_gpio_probe,
};
module_platform_driver(realtek_gpio_driver);

MODULE_DESCRIPTION("Realtek Otto GPIO support");
MODULE_AUTHOR("Sander Vanheule <sander@svanheule.net>");
MODULE_LICENSE("GPL v2");