Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 | // SPDX-License-Identifier: GPL-2.0 /* * Driver for Silicon Labs Si544 Programmable Oscillator * Copyright (C) 2018 Topic Embedded Products * Author: Mike Looijmans <mike.looijmans@topic.nl> */ #include <linux/clk-provider.h> #include <linux/delay.h> #include <linux/math64.h> #include <linux/module.h> #include <linux/i2c.h> #include <linux/regmap.h> #include <linux/slab.h> /* I2C registers (decimal as in datasheet) */ #define SI544_REG_CONTROL 7 #define SI544_REG_OE_STATE 17 #define SI544_REG_HS_DIV 23 #define SI544_REG_LS_HS_DIV 24 #define SI544_REG_FBDIV0 26 #define SI544_REG_FBDIV8 27 #define SI544_REG_FBDIV16 28 #define SI544_REG_FBDIV24 29 #define SI544_REG_FBDIV32 30 #define SI544_REG_FBDIV40 31 #define SI544_REG_FCAL_OVR 69 #define SI544_REG_ADPLL_DELTA_M0 231 #define SI544_REG_ADPLL_DELTA_M8 232 #define SI544_REG_ADPLL_DELTA_M16 233 #define SI544_REG_PAGE_SELECT 255 /* Register values */ #define SI544_CONTROL_RESET BIT(7) #define SI544_CONTROL_MS_ICAL2 BIT(3) #define SI544_OE_STATE_ODC_OE BIT(0) /* Max freq depends on speed grade */ #define SI544_MIN_FREQ 200000U /* Si544 Internal oscilator runs at 55.05 MHz */ #define FXO 55050000U /* VCO range is 10.8 .. 12.1 GHz, max depends on speed grade */ #define FVCO_MIN 10800000000ULL #define HS_DIV_MAX 2046 #define HS_DIV_MAX_ODD 33 /* Lowest frequency synthesizeable using only the HS divider */ #define MIN_HSDIV_FREQ (FVCO_MIN / HS_DIV_MAX) /* Range and interpretation of the adjustment value */ #define DELTA_M_MAX 8161512 #define DELTA_M_FRAC_NUM 19 #define DELTA_M_FRAC_DEN 20000 struct clk_si544 { struct clk_hw hw; struct regmap *regmap; struct i2c_client *i2c_client; unsigned long max_freq; }; #define to_clk_si544(_hw) container_of(_hw, struct clk_si544, hw) /** * struct clk_si544_muldiv - Multiplier/divider settings * @fb_div_frac: integer part of feedback divider (32 bits) * @fb_div_int: fractional part of feedback divider (11 bits) * @hs_div: 1st divider, 5..2046, must be even when >33 * @ls_div_bits: 2nd divider, as 2^x, range 0..5 * If ls_div_bits is non-zero, hs_div must be even * @delta_m: Frequency shift for small -950..+950 ppm changes, 24 bit */ struct clk_si544_muldiv { u32 fb_div_frac; u16 fb_div_int; u16 hs_div; u8 ls_div_bits; s32 delta_m; }; /* Enables or disables the output driver */ static int si544_enable_output(struct clk_si544 *data, bool enable) { return regmap_update_bits(data->regmap, SI544_REG_OE_STATE, SI544_OE_STATE_ODC_OE, enable ? SI544_OE_STATE_ODC_OE : 0); } static int si544_prepare(struct clk_hw *hw) { struct clk_si544 *data = to_clk_si544(hw); return si544_enable_output(data, true); } static void si544_unprepare(struct clk_hw *hw) { struct clk_si544 *data = to_clk_si544(hw); si544_enable_output(data, false); } static int si544_is_prepared(struct clk_hw *hw) { struct clk_si544 *data = to_clk_si544(hw); unsigned int val; int err; err = regmap_read(data->regmap, SI544_REG_OE_STATE, &val); if (err < 0) return err; return !!(val & SI544_OE_STATE_ODC_OE); } /* Retrieve clock multiplier and dividers from hardware */ static int si544_get_muldiv(struct clk_si544 *data, struct clk_si544_muldiv *settings) { int err; u8 reg[6]; err = regmap_bulk_read(data->regmap, SI544_REG_HS_DIV, reg, 2); if (err) return err; settings->ls_div_bits = (reg[1] >> 4) & 0x07; settings->hs_div = (reg[1] & 0x07) << 8 | reg[0]; err = regmap_bulk_read(data->regmap, SI544_REG_FBDIV0, reg, 6); if (err) return err; settings->fb_div_int = reg[4] | (reg[5] & 0x07) << 8; settings->fb_div_frac = reg[0] | reg[1] << 8 | reg[2] << 16 | reg[3] << 24; err = regmap_bulk_read(data->regmap, SI544_REG_ADPLL_DELTA_M0, reg, 3); if (err) return err; /* Interpret as 24-bit signed number */ settings->delta_m = reg[0] << 8 | reg[1] << 16 | reg[2] << 24; settings->delta_m >>= 8; return 0; } static int si544_set_delta_m(struct clk_si544 *data, s32 delta_m) { u8 reg[3]; reg[0] = delta_m; reg[1] = delta_m >> 8; reg[2] = delta_m >> 16; return regmap_bulk_write(data->regmap, SI544_REG_ADPLL_DELTA_M0, reg, 3); } static int si544_set_muldiv(struct clk_si544 *data, struct clk_si544_muldiv *settings) { int err; u8 reg[6]; reg[0] = settings->hs_div; reg[1] = settings->hs_div >> 8 | settings->ls_div_bits << 4; err = regmap_bulk_write(data->regmap, SI544_REG_HS_DIV, reg, 2); if (err < 0) return err; reg[0] = settings->fb_div_frac; reg[1] = settings->fb_div_frac >> 8; reg[2] = settings->fb_div_frac >> 16; reg[3] = settings->fb_div_frac >> 24; reg[4] = settings->fb_div_int; reg[5] = settings->fb_div_int >> 8; /* * Writing to SI544_REG_FBDIV40 triggers the clock change, so that * must be written last */ return regmap_bulk_write(data->regmap, SI544_REG_FBDIV0, reg, 6); } static bool is_valid_frequency(const struct clk_si544 *data, unsigned long frequency) { if (frequency < SI544_MIN_FREQ) return false; return frequency <= data->max_freq; } /* Calculate divider settings for a given frequency */ static int si544_calc_muldiv(struct clk_si544_muldiv *settings, unsigned long frequency) { u64 vco; u32 ls_freq; u32 tmp; u8 res; /* Determine the minimum value of LS_DIV and resulting target freq. */ ls_freq = frequency; settings->ls_div_bits = 0; if (frequency >= MIN_HSDIV_FREQ) { settings->ls_div_bits = 0; } else { res = 1; tmp = 2 * HS_DIV_MAX; while (tmp <= (HS_DIV_MAX * 32)) { if (((u64)frequency * tmp) >= FVCO_MIN) break; ++res; tmp <<= 1; } settings->ls_div_bits = res; ls_freq = frequency << res; } /* Determine minimum HS_DIV by rounding up */ vco = FVCO_MIN + ls_freq - 1; do_div(vco, ls_freq); settings->hs_div = vco; /* round up to even number when required */ if ((settings->hs_div & 1) && (settings->hs_div > HS_DIV_MAX_ODD || settings->ls_div_bits)) ++settings->hs_div; /* Calculate VCO frequency (in 10..12GHz range) */ vco = (u64)ls_freq * settings->hs_div; /* Calculate the integer part of the feedback divider */ tmp = do_div(vco, FXO); settings->fb_div_int = vco; /* And the fractional bits using the remainder */ vco = (u64)tmp << 32; vco += FXO / 2; /* Round to nearest multiple */ do_div(vco, FXO); settings->fb_div_frac = vco; /* Reset the frequency adjustment */ settings->delta_m = 0; return 0; } /* Calculate resulting frequency given the register settings */ static unsigned long si544_calc_center_rate( const struct clk_si544_muldiv *settings) { u32 d = settings->hs_div * BIT(settings->ls_div_bits); u64 vco; /* Calculate VCO from the fractional part */ vco = (u64)settings->fb_div_frac * FXO; vco += (FXO / 2); vco >>= 32; /* Add the integer part of the VCO frequency */ vco += (u64)settings->fb_div_int * FXO; /* Apply divider to obtain the generated frequency */ do_div(vco, d); return vco; } static unsigned long si544_calc_rate(const struct clk_si544_muldiv *settings) { unsigned long rate = si544_calc_center_rate(settings); s64 delta = (s64)rate * (DELTA_M_FRAC_NUM * settings->delta_m); /* * The clock adjustment is much smaller than 1 Hz, round to the * nearest multiple. Apparently div64_s64 rounds towards zero, hence * check the sign and adjust into the proper direction. */ if (settings->delta_m < 0) delta -= ((s64)DELTA_M_MAX * DELTA_M_FRAC_DEN) / 2; else delta += ((s64)DELTA_M_MAX * DELTA_M_FRAC_DEN) / 2; delta = div64_s64(delta, ((s64)DELTA_M_MAX * DELTA_M_FRAC_DEN)); return rate + delta; } static unsigned long si544_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_si544 *data = to_clk_si544(hw); struct clk_si544_muldiv settings; int err; err = si544_get_muldiv(data, &settings); if (err) return 0; return si544_calc_rate(&settings); } static long si544_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { struct clk_si544 *data = to_clk_si544(hw); if (!is_valid_frequency(data, rate)) return -EINVAL; /* The accuracy is less than 1 Hz, so any rate is possible */ return rate; } /* Calculates the maximum "small" change, 950 * rate / 1000000 */ static unsigned long si544_max_delta(unsigned long rate) { u64 num = rate; num *= DELTA_M_FRAC_NUM; do_div(num, DELTA_M_FRAC_DEN); return num; } static s32 si544_calc_delta(s32 delta, s32 max_delta) { s64 n = (s64)delta * DELTA_M_MAX; return div_s64(n, max_delta); } static int si544_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_si544 *data = to_clk_si544(hw); struct clk_si544_muldiv settings; unsigned long center; long max_delta; long delta; unsigned int old_oe_state; int err; if (!is_valid_frequency(data, rate)) return -EINVAL; /* Try using the frequency adjustment feature for a <= 950ppm change */ err = si544_get_muldiv(data, &settings); if (err) return err; center = si544_calc_center_rate(&settings); max_delta = si544_max_delta(center); delta = rate - center; if (abs(delta) <= max_delta) return si544_set_delta_m(data, si544_calc_delta(delta, max_delta)); /* Too big for the delta adjustment, need to reprogram */ err = si544_calc_muldiv(&settings, rate); if (err) return err; err = regmap_read(data->regmap, SI544_REG_OE_STATE, &old_oe_state); if (err) return err; si544_enable_output(data, false); /* Allow FCAL for this frequency update */ err = regmap_write(data->regmap, SI544_REG_FCAL_OVR, 0); if (err < 0) return err; err = si544_set_delta_m(data, settings.delta_m); if (err < 0) return err; err = si544_set_muldiv(data, &settings); if (err < 0) return err; /* Undefined state now, best to leave disabled */ /* Trigger calibration */ err = regmap_write(data->regmap, SI544_REG_CONTROL, SI544_CONTROL_MS_ICAL2); if (err < 0) return err; /* Applying a new frequency can take up to 10ms */ usleep_range(10000, 12000); if (old_oe_state & SI544_OE_STATE_ODC_OE) si544_enable_output(data, true); return err; } static const struct clk_ops si544_clk_ops = { .prepare = si544_prepare, .unprepare = si544_unprepare, .is_prepared = si544_is_prepared, .recalc_rate = si544_recalc_rate, .round_rate = si544_round_rate, .set_rate = si544_set_rate, }; static bool si544_regmap_is_volatile(struct device *dev, unsigned int reg) { switch (reg) { case SI544_REG_CONTROL: case SI544_REG_FCAL_OVR: return true; default: return false; } } static const struct regmap_config si544_regmap_config = { .reg_bits = 8, .val_bits = 8, .cache_type = REGCACHE_MAPLE, .max_register = SI544_REG_PAGE_SELECT, .volatile_reg = si544_regmap_is_volatile, }; static int si544_probe(struct i2c_client *client) { struct clk_si544 *data; struct clk_init_data init; int err; data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; init.ops = &si544_clk_ops; init.flags = 0; init.num_parents = 0; data->hw.init = &init; data->i2c_client = client; data->max_freq = (uintptr_t)i2c_get_match_data(client); if (of_property_read_string(client->dev.of_node, "clock-output-names", &init.name)) init.name = client->dev.of_node->name; data->regmap = devm_regmap_init_i2c(client, &si544_regmap_config); if (IS_ERR(data->regmap)) return PTR_ERR(data->regmap); i2c_set_clientdata(client, data); /* Select page 0, just to be sure, there appear to be no more */ err = regmap_write(data->regmap, SI544_REG_PAGE_SELECT, 0); if (err < 0) return err; err = devm_clk_hw_register(&client->dev, &data->hw); if (err) { dev_err(&client->dev, "clock registration failed\n"); return err; } err = devm_of_clk_add_hw_provider(&client->dev, of_clk_hw_simple_get, &data->hw); if (err) { dev_err(&client->dev, "unable to add clk provider\n"); return err; } return 0; } static const struct i2c_device_id si544_id[] = { { "si544a", 1500000000 }, { "si544b", 800000000 }, { "si544c", 350000000 }, { } }; MODULE_DEVICE_TABLE(i2c, si544_id); static const struct of_device_id clk_si544_of_match[] = { { .compatible = "silabs,si544a", .data = (void *)1500000000 }, { .compatible = "silabs,si544b", .data = (void *)800000000 }, { .compatible = "silabs,si544c", .data = (void *)350000000 }, { } }; MODULE_DEVICE_TABLE(of, clk_si544_of_match); static struct i2c_driver si544_driver = { .driver = { .name = "si544", .of_match_table = clk_si544_of_match, }, .probe = si544_probe, .id_table = si544_id, }; module_i2c_driver(si544_driver); MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>"); MODULE_DESCRIPTION("Si544 driver"); MODULE_LICENSE("GPL"); |