Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2002 Andi Kleen, SuSE Labs. * Thanks to Ben LaHaise for precious feedback. */ #include <linux/highmem.h> #include <linux/memblock.h> #include <linux/sched.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/seq_file.h> #include <linux/proc_fs.h> #include <linux/debugfs.h> #include <linux/pfn.h> #include <linux/percpu.h> #include <linux/gfp.h> #include <linux/pci.h> #include <linux/vmalloc.h> #include <linux/libnvdimm.h> #include <linux/vmstat.h> #include <linux/kernel.h> #include <linux/cc_platform.h> #include <linux/set_memory.h> #include <linux/memregion.h> #include <asm/e820/api.h> #include <asm/processor.h> #include <asm/tlbflush.h> #include <asm/sections.h> #include <asm/setup.h> #include <linux/uaccess.h> #include <asm/pgalloc.h> #include <asm/proto.h> #include <asm/memtype.h> #include <asm/hyperv-tlfs.h> #include <asm/mshyperv.h> #include "../mm_internal.h" /* * The current flushing context - we pass it instead of 5 arguments: */ struct cpa_data { unsigned long *vaddr; pgd_t *pgd; pgprot_t mask_set; pgprot_t mask_clr; unsigned long numpages; unsigned long curpage; unsigned long pfn; unsigned int flags; unsigned int force_split : 1, force_static_prot : 1, force_flush_all : 1; struct page **pages; }; enum cpa_warn { CPA_CONFLICT, CPA_PROTECT, CPA_DETECT, }; static const int cpa_warn_level = CPA_PROTECT; /* * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings) * using cpa_lock. So that we don't allow any other cpu, with stale large tlb * entries change the page attribute in parallel to some other cpu * splitting a large page entry along with changing the attribute. */ static DEFINE_SPINLOCK(cpa_lock); #define CPA_FLUSHTLB 1 #define CPA_ARRAY 2 #define CPA_PAGES_ARRAY 4 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */ static inline pgprot_t cachemode2pgprot(enum page_cache_mode pcm) { return __pgprot(cachemode2protval(pcm)); } #ifdef CONFIG_PROC_FS static unsigned long direct_pages_count[PG_LEVEL_NUM]; void update_page_count(int level, unsigned long pages) { /* Protect against CPA */ spin_lock(&pgd_lock); direct_pages_count[level] += pages; spin_unlock(&pgd_lock); } static void split_page_count(int level) { if (direct_pages_count[level] == 0) return; direct_pages_count[level]--; if (system_state == SYSTEM_RUNNING) { if (level == PG_LEVEL_2M) count_vm_event(DIRECT_MAP_LEVEL2_SPLIT); else if (level == PG_LEVEL_1G) count_vm_event(DIRECT_MAP_LEVEL3_SPLIT); } direct_pages_count[level - 1] += PTRS_PER_PTE; } void arch_report_meminfo(struct seq_file *m) { seq_printf(m, "DirectMap4k: %8lu kB\n", direct_pages_count[PG_LEVEL_4K] << 2); #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) seq_printf(m, "DirectMap2M: %8lu kB\n", direct_pages_count[PG_LEVEL_2M] << 11); #else seq_printf(m, "DirectMap4M: %8lu kB\n", direct_pages_count[PG_LEVEL_2M] << 12); #endif if (direct_gbpages) seq_printf(m, "DirectMap1G: %8lu kB\n", direct_pages_count[PG_LEVEL_1G] << 20); } #else static inline void split_page_count(int level) { } #endif #ifdef CONFIG_X86_CPA_STATISTICS static unsigned long cpa_1g_checked; static unsigned long cpa_1g_sameprot; static unsigned long cpa_1g_preserved; static unsigned long cpa_2m_checked; static unsigned long cpa_2m_sameprot; static unsigned long cpa_2m_preserved; static unsigned long cpa_4k_install; static inline void cpa_inc_1g_checked(void) { cpa_1g_checked++; } static inline void cpa_inc_2m_checked(void) { cpa_2m_checked++; } static inline void cpa_inc_4k_install(void) { data_race(cpa_4k_install++); } static inline void cpa_inc_lp_sameprot(int level) { if (level == PG_LEVEL_1G) cpa_1g_sameprot++; else cpa_2m_sameprot++; } static inline void cpa_inc_lp_preserved(int level) { if (level == PG_LEVEL_1G) cpa_1g_preserved++; else cpa_2m_preserved++; } static int cpastats_show(struct seq_file *m, void *p) { seq_printf(m, "1G pages checked: %16lu\n", cpa_1g_checked); seq_printf(m, "1G pages sameprot: %16lu\n", cpa_1g_sameprot); seq_printf(m, "1G pages preserved: %16lu\n", cpa_1g_preserved); seq_printf(m, "2M pages checked: %16lu\n", cpa_2m_checked); seq_printf(m, "2M pages sameprot: %16lu\n", cpa_2m_sameprot); seq_printf(m, "2M pages preserved: %16lu\n", cpa_2m_preserved); seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install); return 0; } static int cpastats_open(struct inode *inode, struct file *file) { return single_open(file, cpastats_show, NULL); } static const struct file_operations cpastats_fops = { .open = cpastats_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int __init cpa_stats_init(void) { debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL, &cpastats_fops); return 0; } late_initcall(cpa_stats_init); #else static inline void cpa_inc_1g_checked(void) { } static inline void cpa_inc_2m_checked(void) { } static inline void cpa_inc_4k_install(void) { } static inline void cpa_inc_lp_sameprot(int level) { } static inline void cpa_inc_lp_preserved(int level) { } #endif static inline int within(unsigned long addr, unsigned long start, unsigned long end) { return addr >= start && addr < end; } static inline int within_inclusive(unsigned long addr, unsigned long start, unsigned long end) { return addr >= start && addr <= end; } #ifdef CONFIG_X86_64 /* * The kernel image is mapped into two places in the virtual address space * (addresses without KASLR, of course): * * 1. The kernel direct map (0xffff880000000000) * 2. The "high kernel map" (0xffffffff81000000) * * We actually execute out of #2. If we get the address of a kernel symbol, it * points to #2, but almost all physical-to-virtual translations point to #1. * * This is so that we can have both a directmap of all physical memory *and* * take full advantage of the limited (s32) immediate addressing range (2G) * of x86_64. * * See Documentation/arch/x86/x86_64/mm.rst for more detail. */ static inline unsigned long highmap_start_pfn(void) { return __pa_symbol(_text) >> PAGE_SHIFT; } static inline unsigned long highmap_end_pfn(void) { /* Do not reference physical address outside the kernel. */ return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT; } static bool __cpa_pfn_in_highmap(unsigned long pfn) { /* * Kernel text has an alias mapping at a high address, known * here as "highmap". */ return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn()); } #else static bool __cpa_pfn_in_highmap(unsigned long pfn) { /* There is no highmap on 32-bit */ return false; } #endif /* * See set_mce_nospec(). * * Machine check recovery code needs to change cache mode of poisoned pages to * UC to avoid speculative access logging another error. But passing the * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a * speculative access. So we cheat and flip the top bit of the address. This * works fine for the code that updates the page tables. But at the end of the * process we need to flush the TLB and cache and the non-canonical address * causes a #GP fault when used by the INVLPG and CLFLUSH instructions. * * But in the common case we already have a canonical address. This code * will fix the top bit if needed and is a no-op otherwise. */ static inline unsigned long fix_addr(unsigned long addr) { #ifdef CONFIG_X86_64 return (long)(addr << 1) >> 1; #else return addr; #endif } static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx) { if (cpa->flags & CPA_PAGES_ARRAY) { struct page *page = cpa->pages[idx]; if (unlikely(PageHighMem(page))) return 0; return (unsigned long)page_address(page); } if (cpa->flags & CPA_ARRAY) return cpa->vaddr[idx]; return *cpa->vaddr + idx * PAGE_SIZE; } /* * Flushing functions */ static void clflush_cache_range_opt(void *vaddr, unsigned int size) { const unsigned long clflush_size = boot_cpu_data.x86_clflush_size; void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1)); void *vend = vaddr + size; if (p >= vend) return; for (; p < vend; p += clflush_size) clflushopt(p); } /** * clflush_cache_range - flush a cache range with clflush * @vaddr: virtual start address * @size: number of bytes to flush * * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or * SFENCE to avoid ordering issues. */ void clflush_cache_range(void *vaddr, unsigned int size) { mb(); clflush_cache_range_opt(vaddr, size); mb(); } EXPORT_SYMBOL_GPL(clflush_cache_range); #ifdef CONFIG_ARCH_HAS_PMEM_API void arch_invalidate_pmem(void *addr, size_t size) { clflush_cache_range(addr, size); } EXPORT_SYMBOL_GPL(arch_invalidate_pmem); #endif #ifdef CONFIG_ARCH_HAS_CPU_CACHE_INVALIDATE_MEMREGION bool cpu_cache_has_invalidate_memregion(void) { return !cpu_feature_enabled(X86_FEATURE_HYPERVISOR); } EXPORT_SYMBOL_NS_GPL(cpu_cache_has_invalidate_memregion, DEVMEM); int cpu_cache_invalidate_memregion(int res_desc) { if (WARN_ON_ONCE(!cpu_cache_has_invalidate_memregion())) return -ENXIO; wbinvd_on_all_cpus(); return 0; } EXPORT_SYMBOL_NS_GPL(cpu_cache_invalidate_memregion, DEVMEM); #endif static void __cpa_flush_all(void *arg) { unsigned long cache = (unsigned long)arg; /* * Flush all to work around Errata in early athlons regarding * large page flushing. */ __flush_tlb_all(); if (cache && boot_cpu_data.x86 >= 4) wbinvd(); } static void cpa_flush_all(unsigned long cache) { BUG_ON(irqs_disabled() && !early_boot_irqs_disabled); on_each_cpu(__cpa_flush_all, (void *) cache, 1); } static void __cpa_flush_tlb(void *data) { struct cpa_data *cpa = data; unsigned int i; for (i = 0; i < cpa->numpages; i++) flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i))); } static void cpa_flush(struct cpa_data *data, int cache) { struct cpa_data *cpa = data; unsigned int i; BUG_ON(irqs_disabled() && !early_boot_irqs_disabled); if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) { cpa_flush_all(cache); return; } if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling) flush_tlb_all(); else on_each_cpu(__cpa_flush_tlb, cpa, 1); if (!cache) return; mb(); for (i = 0; i < cpa->numpages; i++) { unsigned long addr = __cpa_addr(cpa, i); unsigned int level; pte_t *pte = lookup_address(addr, &level); /* * Only flush present addresses: */ if (pte && (pte_val(*pte) & _PAGE_PRESENT)) clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE); } mb(); } static bool overlaps(unsigned long r1_start, unsigned long r1_end, unsigned long r2_start, unsigned long r2_end) { return (r1_start <= r2_end && r1_end >= r2_start) || (r2_start <= r1_end && r2_end >= r1_start); } #ifdef CONFIG_PCI_BIOS /* * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS * based config access (CONFIG_PCI_GOBIOS) support. */ #define BIOS_PFN PFN_DOWN(BIOS_BEGIN) #define BIOS_PFN_END PFN_DOWN(BIOS_END - 1) static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn) { if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END)) return _PAGE_NX; return 0; } #else static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn) { return 0; } #endif /* * The .rodata section needs to be read-only. Using the pfn catches all * aliases. This also includes __ro_after_init, so do not enforce until * kernel_set_to_readonly is true. */ static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn) { unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata)); /* * Note: __end_rodata is at page aligned and not inclusive, so * subtract 1 to get the last enforced PFN in the rodata area. */ epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1; if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro)) return _PAGE_RW; return 0; } /* * Protect kernel text against becoming non executable by forbidding * _PAGE_NX. This protects only the high kernel mapping (_text -> _etext) * out of which the kernel actually executes. Do not protect the low * mapping. * * This does not cover __inittext since that is gone after boot. */ static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end) { unsigned long t_end = (unsigned long)_etext - 1; unsigned long t_start = (unsigned long)_text; if (overlaps(start, end, t_start, t_end)) return _PAGE_NX; return 0; } #if defined(CONFIG_X86_64) /* * Once the kernel maps the text as RO (kernel_set_to_readonly is set), * kernel text mappings for the large page aligned text, rodata sections * will be always read-only. For the kernel identity mappings covering the * holes caused by this alignment can be anything that user asks. * * This will preserve the large page mappings for kernel text/data at no * extra cost. */ static pgprotval_t protect_kernel_text_ro(unsigned long start, unsigned long end) { unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1; unsigned long t_start = (unsigned long)_text; unsigned int level; if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end)) return 0; /* * Don't enforce the !RW mapping for the kernel text mapping, if * the current mapping is already using small page mapping. No * need to work hard to preserve large page mappings in this case. * * This also fixes the Linux Xen paravirt guest boot failure caused * by unexpected read-only mappings for kernel identity * mappings. In this paravirt guest case, the kernel text mapping * and the kernel identity mapping share the same page-table pages, * so the protections for kernel text and identity mappings have to * be the same. */ if (lookup_address(start, &level) && (level != PG_LEVEL_4K)) return _PAGE_RW; return 0; } #else static pgprotval_t protect_kernel_text_ro(unsigned long start, unsigned long end) { return 0; } #endif static inline bool conflicts(pgprot_t prot, pgprotval_t val) { return (pgprot_val(prot) & ~val) != pgprot_val(prot); } static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val, unsigned long start, unsigned long end, unsigned long pfn, const char *txt) { static const char *lvltxt[] = { [CPA_CONFLICT] = "conflict", [CPA_PROTECT] = "protect", [CPA_DETECT] = "detect", }; if (warnlvl > cpa_warn_level || !conflicts(prot, val)) return; pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n", lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot), (unsigned long long)val); } /* * Certain areas of memory on x86 require very specific protection flags, * for example the BIOS area or kernel text. Callers don't always get this * right (again, ioremap() on BIOS memory is not uncommon) so this function * checks and fixes these known static required protection bits. */ static inline pgprot_t static_protections(pgprot_t prot, unsigned long start, unsigned long pfn, unsigned long npg, unsigned long lpsize, int warnlvl) { pgprotval_t forbidden, res; unsigned long end; /* * There is no point in checking RW/NX conflicts when the requested * mapping is setting the page !PRESENT. */ if (!(pgprot_val(prot) & _PAGE_PRESENT)) return prot; /* Operate on the virtual address */ end = start + npg * PAGE_SIZE - 1; res = protect_kernel_text(start, end); check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX"); forbidden = res; /* * Special case to preserve a large page. If the change spawns the * full large page mapping then there is no point to split it * up. Happens with ftrace and is going to be removed once ftrace * switched to text_poke(). */ if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) { res = protect_kernel_text_ro(start, end); check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO"); forbidden |= res; } /* Check the PFN directly */ res = protect_pci_bios(pfn, pfn + npg - 1); check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX"); forbidden |= res; res = protect_rodata(pfn, pfn + npg - 1); check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO"); forbidden |= res; return __pgprot(pgprot_val(prot) & ~forbidden); } /* * Validate strict W^X semantics. */ static inline pgprot_t verify_rwx(pgprot_t old, pgprot_t new, unsigned long start, unsigned long pfn, unsigned long npg) { unsigned long end; /* * 32-bit has some unfixable W+X issues, like EFI code * and writeable data being in the same page. Disable * detection and enforcement there. */ if (IS_ENABLED(CONFIG_X86_32)) return new; /* Only verify when NX is supported: */ if (!(__supported_pte_mask & _PAGE_NX)) return new; if (!((pgprot_val(old) ^ pgprot_val(new)) & (_PAGE_RW | _PAGE_NX))) return new; if ((pgprot_val(new) & (_PAGE_RW | _PAGE_NX)) != _PAGE_RW) return new; end = start + npg * PAGE_SIZE - 1; WARN_ONCE(1, "CPA detected W^X violation: %016llx -> %016llx range: 0x%016lx - 0x%016lx PFN %lx\n", (unsigned long long)pgprot_val(old), (unsigned long long)pgprot_val(new), start, end, pfn); /* * For now, allow all permission change attempts by returning the * attempted permissions. This can 'return old' to actively * refuse the permission change at a later time. */ return new; } /* * Lookup the page table entry for a virtual address in a specific pgd. * Return a pointer to the entry and the level of the mapping. */ pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address, unsigned int *level) { p4d_t *p4d; pud_t *pud; pmd_t *pmd; *level = PG_LEVEL_NONE; if (pgd_none(*pgd)) return NULL; p4d = p4d_offset(pgd, address); if (p4d_none(*p4d)) return NULL; *level = PG_LEVEL_512G; if (p4d_large(*p4d) || !p4d_present(*p4d)) return (pte_t *)p4d; pud = pud_offset(p4d, address); if (pud_none(*pud)) return NULL; *level = PG_LEVEL_1G; if (pud_large(*pud) || !pud_present(*pud)) return (pte_t *)pud; pmd = pmd_offset(pud, address); if (pmd_none(*pmd)) return NULL; *level = PG_LEVEL_2M; if (pmd_large(*pmd) || !pmd_present(*pmd)) return (pte_t *)pmd; *level = PG_LEVEL_4K; return pte_offset_kernel(pmd, address); } /* * Lookup the page table entry for a virtual address. Return a pointer * to the entry and the level of the mapping. * * Note: We return pud and pmd either when the entry is marked large * or when the present bit is not set. Otherwise we would return a * pointer to a nonexisting mapping. */ pte_t *lookup_address(unsigned long address, unsigned int *level) { return lookup_address_in_pgd(pgd_offset_k(address), address, level); } EXPORT_SYMBOL_GPL(lookup_address); static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address, unsigned int *level) { if (cpa->pgd) return lookup_address_in_pgd(cpa->pgd + pgd_index(address), address, level); return lookup_address(address, level); } /* * Lookup the PMD entry for a virtual address. Return a pointer to the entry * or NULL if not present. */ pmd_t *lookup_pmd_address(unsigned long address) { pgd_t *pgd; p4d_t *p4d; pud_t *pud; pgd = pgd_offset_k(address); if (pgd_none(*pgd)) return NULL; p4d = p4d_offset(pgd, address); if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d)) return NULL; pud = pud_offset(p4d, address); if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud)) return NULL; return pmd_offset(pud, address); } /* * This is necessary because __pa() does not work on some * kinds of memory, like vmalloc() or the alloc_remap() * areas on 32-bit NUMA systems. The percpu areas can * end up in this kind of memory, for instance. * * Note that as long as the PTEs are well-formed with correct PFNs, this * works without checking the PRESENT bit in the leaf PTE. This is unlike * the similar vmalloc_to_page() and derivatives. Callers may depend on * this behavior. * * This could be optimized, but it is only used in paths that are not perf * sensitive, and keeping it unoptimized should increase the testing coverage * for the more obscure platforms. */ phys_addr_t slow_virt_to_phys(void *__virt_addr) { unsigned long virt_addr = (unsigned long)__virt_addr; phys_addr_t phys_addr; unsigned long offset; enum pg_level level; pte_t *pte; pte = lookup_address(virt_addr, &level); BUG_ON(!pte); /* * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t * before being left-shifted PAGE_SHIFT bits -- this trick is to * make 32-PAE kernel work correctly. */ switch (level) { case PG_LEVEL_1G: phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT; offset = virt_addr & ~PUD_MASK; break; case PG_LEVEL_2M: phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT; offset = virt_addr & ~PMD_MASK; break; default: phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT; offset = virt_addr & ~PAGE_MASK; } return (phys_addr_t)(phys_addr | offset); } EXPORT_SYMBOL_GPL(slow_virt_to_phys); /* * Set the new pmd in all the pgds we know about: */ static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte) { /* change init_mm */ set_pte_atomic(kpte, pte); #ifdef CONFIG_X86_32 if (!SHARED_KERNEL_PMD) { struct page *page; list_for_each_entry(page, &pgd_list, lru) { pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pgd = (pgd_t *)page_address(page) + pgd_index(address); p4d = p4d_offset(pgd, address); pud = pud_offset(p4d, address); pmd = pmd_offset(pud, address); set_pte_atomic((pte_t *)pmd, pte); } } #endif } static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot) { /* * _PAGE_GLOBAL means "global page" for present PTEs. * But, it is also used to indicate _PAGE_PROTNONE * for non-present PTEs. * * This ensures that a _PAGE_GLOBAL PTE going from * present to non-present is not confused as * _PAGE_PROTNONE. */ if (!(pgprot_val(prot) & _PAGE_PRESENT)) pgprot_val(prot) &= ~_PAGE_GLOBAL; return prot; } static int __should_split_large_page(pte_t *kpte, unsigned long address, struct cpa_data *cpa) { unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn; pgprot_t old_prot, new_prot, req_prot, chk_prot; pte_t new_pte, *tmp; enum pg_level level; /* * Check for races, another CPU might have split this page * up already: */ tmp = _lookup_address_cpa(cpa, address, &level); if (tmp != kpte) return 1; switch (level) { case PG_LEVEL_2M: old_prot = pmd_pgprot(*(pmd_t *)kpte); old_pfn = pmd_pfn(*(pmd_t *)kpte); cpa_inc_2m_checked(); break; case PG_LEVEL_1G: old_prot = pud_pgprot(*(pud_t *)kpte); old_pfn = pud_pfn(*(pud_t *)kpte); cpa_inc_1g_checked(); break; default: return -EINVAL; } psize = page_level_size(level); pmask = page_level_mask(level); /* * Calculate the number of pages, which fit into this large * page starting at address: */ lpaddr = (address + psize) & pmask; numpages = (lpaddr - address) >> PAGE_SHIFT; if (numpages < cpa->numpages) cpa->numpages = numpages; /* * We are safe now. Check whether the new pgprot is the same: * Convert protection attributes to 4k-format, as cpa->mask* are set * up accordingly. */ /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */ req_prot = pgprot_large_2_4k(old_prot); pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr); pgprot_val(req_prot) |= pgprot_val(cpa->mask_set); /* * req_prot is in format of 4k pages. It must be converted to large * page format: the caching mode includes the PAT bit located at * different bit positions in the two formats. */ req_prot = pgprot_4k_2_large(req_prot); req_prot = pgprot_clear_protnone_bits(req_prot); if (pgprot_val(req_prot) & _PAGE_PRESENT) pgprot_val(req_prot) |= _PAGE_PSE; /* * old_pfn points to the large page base pfn. So we need to add the * offset of the virtual address: */ pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT); cpa->pfn = pfn; /* * Calculate the large page base address and the number of 4K pages * in the large page */ lpaddr = address & pmask; numpages = psize >> PAGE_SHIFT; /* * Sanity check that the existing mapping is correct versus the static * protections. static_protections() guards against !PRESENT, so no * extra conditional required here. */ chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages, psize, CPA_CONFLICT); if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) { /* * Split the large page and tell the split code to * enforce static protections. */ cpa->force_static_prot = 1; return 1; } /* * Optimization: If the requested pgprot is the same as the current * pgprot, then the large page can be preserved and no updates are * required independent of alignment and length of the requested * range. The above already established that the current pgprot is * correct, which in consequence makes the requested pgprot correct * as well if it is the same. The static protection scan below will * not come to a different conclusion. */ if (pgprot_val(req_prot) == pgprot_val(old_prot)) { cpa_inc_lp_sameprot(level); return 0; } /* * If the requested range does not cover the full page, split it up */ if (address != lpaddr || cpa->numpages != numpages) return 1; /* * Check whether the requested pgprot is conflicting with a static * protection requirement in the large page. */ new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages, psize, CPA_DETECT); new_prot = verify_rwx(old_prot, new_prot, lpaddr, old_pfn, numpages); /* * If there is a conflict, split the large page. * * There used to be a 4k wise evaluation trying really hard to * preserve the large pages, but experimentation has shown, that this * does not help at all. There might be corner cases which would * preserve one large page occasionally, but it's really not worth the * extra code and cycles for the common case. */ if (pgprot_val(req_prot) != pgprot_val(new_prot)) return 1; /* All checks passed. Update the large page mapping. */ new_pte = pfn_pte(old_pfn, new_prot); __set_pmd_pte(kpte, address, new_pte); cpa->flags |= CPA_FLUSHTLB; cpa_inc_lp_preserved(level); return 0; } static int should_split_large_page(pte_t *kpte, unsigned long address, struct cpa_data *cpa) { int do_split; if (cpa->force_split) return 1; spin_lock(&pgd_lock); do_split = __should_split_large_page(kpte, address, cpa); spin_unlock(&pgd_lock); return do_split; } static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn, pgprot_t ref_prot, unsigned long address, unsigned long size) { unsigned int npg = PFN_DOWN(size); pgprot_t prot; /* * If should_split_large_page() discovered an inconsistent mapping, * remove the invalid protection in the split mapping. */ if (!cpa->force_static_prot) goto set; /* Hand in lpsize = 0 to enforce the protection mechanism */ prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT); if (pgprot_val(prot) == pgprot_val(ref_prot)) goto set; /* * If this is splitting a PMD, fix it up. PUD splits cannot be * fixed trivially as that would require to rescan the newly * installed PMD mappings after returning from split_large_page() * so an eventual further split can allocate the necessary PTE * pages. Warn for now and revisit it in case this actually * happens. */ if (size == PAGE_SIZE) ref_prot = prot; else pr_warn_once("CPA: Cannot fixup static protections for PUD split\n"); set: set_pte(pte, pfn_pte(pfn, ref_prot)); } static int __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address, struct page *base) { unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1; pte_t *pbase = (pte_t *)page_address(base); unsigned int i, level; pgprot_t ref_prot; pte_t *tmp; spin_lock(&pgd_lock); /* * Check for races, another CPU might have split this page * up for us already: */ tmp = _lookup_address_cpa(cpa, address, &level); if (tmp != kpte) { spin_unlock(&pgd_lock); return 1; } paravirt_alloc_pte(&init_mm, page_to_pfn(base)); switch (level) { case PG_LEVEL_2M: ref_prot = pmd_pgprot(*(pmd_t *)kpte); /* * Clear PSE (aka _PAGE_PAT) and move * PAT bit to correct position. */ ref_prot = pgprot_large_2_4k(ref_prot); ref_pfn = pmd_pfn(*(pmd_t *)kpte); lpaddr = address & PMD_MASK; lpinc = PAGE_SIZE; break; case PG_LEVEL_1G: ref_prot = pud_pgprot(*(pud_t *)kpte); ref_pfn = pud_pfn(*(pud_t *)kpte); pfninc = PMD_SIZE >> PAGE_SHIFT; lpaddr = address & PUD_MASK; lpinc = PMD_SIZE; /* * Clear the PSE flags if the PRESENT flag is not set * otherwise pmd_present/pmd_huge will return true * even on a non present pmd. */ if (!(pgprot_val(ref_prot) & _PAGE_PRESENT)) pgprot_val(ref_prot) &= ~_PAGE_PSE; break; default: spin_unlock(&pgd_lock); return 1; } ref_prot = pgprot_clear_protnone_bits(ref_prot); /* * Get the target pfn from the original entry: */ pfn = ref_pfn; for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc) split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc); if (virt_addr_valid(address)) { unsigned long pfn = PFN_DOWN(__pa(address)); if (pfn_range_is_mapped(pfn, pfn + 1)) split_page_count(level); } /* * Install the new, split up pagetable. * * We use the standard kernel pagetable protections for the new * pagetable protections, the actual ptes set above control the * primary protection behavior: */ __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE))); /* * Do a global flush tlb after splitting the large page * and before we do the actual change page attribute in the PTE. * * Without this, we violate the TLB application note, that says: * "The TLBs may contain both ordinary and large-page * translations for a 4-KByte range of linear addresses. This * may occur if software modifies the paging structures so that * the page size used for the address range changes. If the two * translations differ with respect to page frame or attributes * (e.g., permissions), processor behavior is undefined and may * be implementation-specific." * * We do this global tlb flush inside the cpa_lock, so that we * don't allow any other cpu, with stale tlb entries change the * page attribute in parallel, that also falls into the * just split large page entry. */ flush_tlb_all(); spin_unlock(&pgd_lock); return 0; } static int split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address) { struct page *base; if (!debug_pagealloc_enabled()) spin_unlock(&cpa_lock); base = alloc_pages(GFP_KERNEL, 0); if (!debug_pagealloc_enabled()) spin_lock(&cpa_lock); if (!base) return -ENOMEM; if (__split_large_page(cpa, kpte, address, base)) __free_page(base); return 0; } static bool try_to_free_pte_page(pte_t *pte) { int i; for (i = 0; i < PTRS_PER_PTE; i++) if (!pte_none(pte[i])) return false; free_page((unsigned long)pte); return true; } static bool try_to_free_pmd_page(pmd_t *pmd) { int i; for (i = 0; i < PTRS_PER_PMD; i++) if (!pmd_none(pmd[i])) return false; free_page((unsigned long)pmd); return true; } static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end) { pte_t *pte = pte_offset_kernel(pmd, start); while (start < end) { set_pte(pte, __pte(0)); start += PAGE_SIZE; pte++; } if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) { pmd_clear(pmd); return true; } return false; } static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd, unsigned long start, unsigned long end) { if (unmap_pte_range(pmd, start, end)) if (try_to_free_pmd_page(pud_pgtable(*pud))) pud_clear(pud); } static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end) { pmd_t *pmd = pmd_offset(pud, start); /* * Not on a 2MB page boundary? */ if (start & (PMD_SIZE - 1)) { unsigned long next_page = (start + PMD_SIZE) & PMD_MASK; unsigned long pre_end = min_t(unsigned long, end, next_page); __unmap_pmd_range(pud, pmd, start, pre_end); start = pre_end; pmd++; } /* * Try to unmap in 2M chunks. */ while (end - start >= PMD_SIZE) { if (pmd_large(*pmd)) pmd_clear(pmd); else __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE); start += PMD_SIZE; pmd++; } /* * 4K leftovers? */ if (start < end) return __unmap_pmd_range(pud, pmd, start, end); /* * Try again to free the PMD page if haven't succeeded above. */ if (!pud_none(*pud)) if (try_to_free_pmd_page(pud_pgtable(*pud))) pud_clear(pud); } static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end) { pud_t *pud = pud_offset(p4d, start); /* * Not on a GB page boundary? */ if (start & (PUD_SIZE - 1)) { unsigned long next_page = (start + PUD_SIZE) & PUD_MASK; unsigned long pre_end = min_t(unsigned long, end, next_page); unmap_pmd_range(pud, start, pre_end); start = pre_end; pud++; } /* * Try to unmap in 1G chunks? */ while (end - start >= PUD_SIZE) { if (pud_large(*pud)) pud_clear(pud); else unmap_pmd_range(pud, start, start + PUD_SIZE); start += PUD_SIZE; pud++; } /* * 2M leftovers? */ if (start < end) unmap_pmd_range(pud, start, end); /* * No need to try to free the PUD page because we'll free it in * populate_pgd's error path */ } static int alloc_pte_page(pmd_t *pmd) { pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL); if (!pte) return -1; set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); return 0; } static int alloc_pmd_page(pud_t *pud) { pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); if (!pmd) return -1; set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); return 0; } static void populate_pte(struct cpa_data *cpa, unsigned long start, unsigned long end, unsigned num_pages, pmd_t *pmd, pgprot_t pgprot) { pte_t *pte; pte = pte_offset_kernel(pmd, start); pgprot = pgprot_clear_protnone_bits(pgprot); while (num_pages-- && start < end) { set_pte(pte, pfn_pte(cpa->pfn, pgprot)); start += PAGE_SIZE; cpa->pfn++; pte++; } } static long populate_pmd(struct cpa_data *cpa, unsigned long start, unsigned long end, unsigned num_pages, pud_t *pud, pgprot_t pgprot) { long cur_pages = 0; pmd_t *pmd; pgprot_t pmd_pgprot; /* * Not on a 2M boundary? */ if (start & (PMD_SIZE - 1)) { unsigned long pre_end = start + (num_pages << PAGE_SHIFT); unsigned long next_page = (start + PMD_SIZE) & PMD_MASK; pre_end = min_t(unsigned long, pre_end, next_page); cur_pages = (pre_end - start) >> PAGE_SHIFT; cur_pages = min_t(unsigned int, num_pages, cur_pages); /* * Need a PTE page? */ pmd = pmd_offset(pud, start); if (pmd_none(*pmd)) if (alloc_pte_page(pmd)) return -1; populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot); start = pre_end; } /* * We mapped them all? */ if (num_pages == cur_pages) return cur_pages; pmd_pgprot = pgprot_4k_2_large(pgprot); while (end - start >= PMD_SIZE) { /* * We cannot use a 1G page so allocate a PMD page if needed. */ if (pud_none(*pud)) if (alloc_pmd_page(pud)) return -1; pmd = pmd_offset(pud, start); set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn, canon_pgprot(pmd_pgprot)))); start += PMD_SIZE; cpa->pfn += PMD_SIZE >> PAGE_SHIFT; cur_pages += PMD_SIZE >> PAGE_SHIFT; } /* * Map trailing 4K pages. */ if (start < end) { pmd = pmd_offset(pud, start); if (pmd_none(*pmd)) if (alloc_pte_page(pmd)) return -1; populate_pte(cpa, start, end, num_pages - cur_pages, pmd, pgprot); } return num_pages; } static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d, pgprot_t pgprot) { pud_t *pud; unsigned long end; long cur_pages = 0; pgprot_t pud_pgprot; end = start + (cpa->numpages << PAGE_SHIFT); /* * Not on a Gb page boundary? => map everything up to it with * smaller pages. */ if (start & (PUD_SIZE - 1)) { unsigned long pre_end; unsigned long next_page = (start + PUD_SIZE) & PUD_MASK; pre_end = min_t(unsigned long, end, next_page); cur_pages = (pre_end - start) >> PAGE_SHIFT; cur_pages = min_t(int, (int)cpa->numpages, cur_pages); pud = pud_offset(p4d, start); /* * Need a PMD page? */ if (pud_none(*pud)) if (alloc_pmd_page(pud)) return -1; cur_pages = populate_pmd(cpa, start, pre_end, cur_pages, pud, pgprot); if (cur_pages < 0) return cur_pages; start = pre_end; } /* We mapped them all? */ if (cpa->numpages == cur_pages) return cur_pages; pud = pud_offset(p4d, start); pud_pgprot = pgprot_4k_2_large(pgprot); /* * Map everything starting from the Gb boundary, possibly with 1G pages */ while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) { set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn, canon_pgprot(pud_pgprot)))); start += PUD_SIZE; cpa->pfn += PUD_SIZE >> PAGE_SHIFT; cur_pages += PUD_SIZE >> PAGE_SHIFT; pud++; } /* Map trailing leftover */ if (start < end) { long tmp; pud = pud_offset(p4d, start); if (pud_none(*pud)) if (alloc_pmd_page(pud)) return -1; tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages, pud, pgprot); if (tmp < 0) return cur_pages; cur_pages += tmp; } return cur_pages; } /* * Restrictions for kernel page table do not necessarily apply when mapping in * an alternate PGD. */ static int populate_pgd(struct cpa_data *cpa, unsigned long addr) { pgprot_t pgprot = __pgprot(_KERNPG_TABLE); pud_t *pud = NULL; /* shut up gcc */ p4d_t *p4d; pgd_t *pgd_entry; long ret; pgd_entry = cpa->pgd + pgd_index(addr); if (pgd_none(*pgd_entry)) { p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL); if (!p4d) return -1; set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE)); } /* * Allocate a PUD page and hand it down for mapping. */ p4d = p4d_offset(pgd_entry, addr); if (p4d_none(*p4d)) { pud = (pud_t *)get_zeroed_page(GFP_KERNEL); if (!pud) return -1; set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE)); } pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr); pgprot_val(pgprot) |= pgprot_val(cpa->mask_set); ret = populate_pud(cpa, addr, p4d, pgprot); if (ret < 0) { /* * Leave the PUD page in place in case some other CPU or thread * already found it, but remove any useless entries we just * added to it. */ unmap_pud_range(p4d, addr, addr + (cpa->numpages << PAGE_SHIFT)); return ret; } cpa->numpages = ret; return 0; } static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr, int primary) { if (cpa->pgd) { /* * Right now, we only execute this code path when mapping * the EFI virtual memory map regions, no other users * provide a ->pgd value. This may change in the future. */ return populate_pgd(cpa, vaddr); } /* * Ignore all non primary paths. */ if (!primary) { cpa->numpages = 1; return 0; } /* * Ignore the NULL PTE for kernel identity mapping, as it is expected * to have holes. * Also set numpages to '1' indicating that we processed cpa req for * one virtual address page and its pfn. TBD: numpages can be set based * on the initial value and the level returned by lookup_address(). */ if (within(vaddr, PAGE_OFFSET, PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) { cpa->numpages = 1; cpa->pfn = __pa(vaddr) >> PAGE_SHIFT; return 0; } else if (__cpa_pfn_in_highmap(cpa->pfn)) { /* Faults in the highmap are OK, so do not warn: */ return -EFAULT; } else { WARN(1, KERN_WARNING "CPA: called for zero pte. " "vaddr = %lx cpa->vaddr = %lx\n", vaddr, *cpa->vaddr); return -EFAULT; } } static int __change_page_attr(struct cpa_data *cpa, int primary) { unsigned long address; int do_split, err; unsigned int level; pte_t *kpte, old_pte; address = __cpa_addr(cpa, cpa->curpage); repeat: kpte = _lookup_address_cpa(cpa, address, &level); if (!kpte) return __cpa_process_fault(cpa, address, primary); old_pte = *kpte; if (pte_none(old_pte)) return __cpa_process_fault(cpa, address, primary); if (level == PG_LEVEL_4K) { pte_t new_pte; pgprot_t old_prot = pte_pgprot(old_pte); pgprot_t new_prot = pte_pgprot(old_pte); unsigned long pfn = pte_pfn(old_pte); pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr); pgprot_val(new_prot) |= pgprot_val(cpa->mask_set); cpa_inc_4k_install(); /* Hand in lpsize = 0 to enforce the protection mechanism */ new_prot = static_protections(new_prot, address, pfn, 1, 0, CPA_PROTECT); new_prot = verify_rwx(old_prot, new_prot, address, pfn, 1); new_prot = pgprot_clear_protnone_bits(new_prot); /* * We need to keep the pfn from the existing PTE, * after all we're only going to change its attributes * not the memory it points to */ new_pte = pfn_pte(pfn, new_prot); cpa->pfn = pfn; /* * Do we really change anything ? */ if (pte_val(old_pte) != pte_val(new_pte)) { set_pte_atomic(kpte, new_pte); cpa->flags |= CPA_FLUSHTLB; } cpa->numpages = 1; return 0; } /* * Check, whether we can keep the large page intact * and just change the pte: */ do_split = should_split_large_page(kpte, address, cpa); /* * When the range fits into the existing large page, * return. cp->numpages and cpa->tlbflush have been updated in * try_large_page: */ if (do_split <= 0) return do_split; /* * We have to split the large page: */ err = split_large_page(cpa, kpte, address); if (!err) goto repeat; return err; } static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary); /* * Check the directmap and "high kernel map" 'aliases'. */ static int cpa_process_alias(struct cpa_data *cpa) { struct cpa_data alias_cpa; unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT); unsigned long vaddr; int ret; if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1)) return 0; /* * No need to redo, when the primary call touched the direct * mapping already: */ vaddr = __cpa_addr(cpa, cpa->curpage); if (!(within(vaddr, PAGE_OFFSET, PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) { alias_cpa = *cpa; alias_cpa.vaddr = &laddr; alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY); alias_cpa.curpage = 0; /* Directmap always has NX set, do not modify. */ if (__supported_pte_mask & _PAGE_NX) { alias_cpa.mask_clr.pgprot &= ~_PAGE_NX; alias_cpa.mask_set.pgprot &= ~_PAGE_NX; } cpa->force_flush_all = 1; ret = __change_page_attr_set_clr(&alias_cpa, 0); if (ret) return ret; } #ifdef CONFIG_X86_64 /* * If the primary call didn't touch the high mapping already * and the physical address is inside the kernel map, we need * to touch the high mapped kernel as well: */ if (!within(vaddr, (unsigned long)_text, _brk_end) && __cpa_pfn_in_highmap(cpa->pfn)) { unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) + __START_KERNEL_map - phys_base; alias_cpa = *cpa; alias_cpa.vaddr = &temp_cpa_vaddr; alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY); alias_cpa.curpage = 0; /* * [_text, _brk_end) also covers data, do not modify NX except * in cases where the highmap is the primary target. */ if (__supported_pte_mask & _PAGE_NX) { alias_cpa.mask_clr.pgprot &= ~_PAGE_NX; alias_cpa.mask_set.pgprot &= ~_PAGE_NX; } cpa->force_flush_all = 1; /* * The high mapping range is imprecise, so ignore the * return value. */ __change_page_attr_set_clr(&alias_cpa, 0); } #endif return 0; } static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary) { unsigned long numpages = cpa->numpages; unsigned long rempages = numpages; int ret = 0; /* * No changes, easy! */ if (!(pgprot_val(cpa->mask_set) | pgprot_val(cpa->mask_clr)) && !cpa->force_split) return ret; while (rempages) { /* * Store the remaining nr of pages for the large page * preservation check. */ cpa->numpages = rempages; /* for array changes, we can't use large page */ if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY)) cpa->numpages = 1; if (!debug_pagealloc_enabled()) spin_lock(&cpa_lock); ret = __change_page_attr(cpa, primary); if (!debug_pagealloc_enabled()) spin_unlock(&cpa_lock); if (ret) goto out; if (primary && !(cpa->flags & CPA_NO_CHECK_ALIAS)) { ret = cpa_process_alias(cpa); if (ret) goto out; } /* * Adjust the number of pages with the result of the * CPA operation. Either a large page has been * preserved or a single page update happened. */ BUG_ON(cpa->numpages > rempages || !cpa->numpages); rempages -= cpa->numpages; cpa->curpage += cpa->numpages; } out: /* Restore the original numpages */ cpa->numpages = numpages; return ret; } static int change_page_attr_set_clr(unsigned long *addr, int numpages, pgprot_t mask_set, pgprot_t mask_clr, int force_split, int in_flag, struct page **pages) { struct cpa_data cpa; int ret, cache; memset(&cpa, 0, sizeof(cpa)); /* * Check, if we are requested to set a not supported * feature. Clearing non-supported features is OK. */ mask_set = canon_pgprot(mask_set); if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split) return 0; /* Ensure we are PAGE_SIZE aligned */ if (in_flag & CPA_ARRAY) { int i; for (i = 0; i < numpages; i++) { if (addr[i] & ~PAGE_MASK) { addr[i] &= PAGE_MASK; WARN_ON_ONCE(1); } } } else if (!(in_flag & CPA_PAGES_ARRAY)) { /* * in_flag of CPA_PAGES_ARRAY implies it is aligned. * No need to check in that case */ if (*addr & ~PAGE_MASK) { *addr &= PAGE_MASK; /* * People should not be passing in unaligned addresses: */ WARN_ON_ONCE(1); } } /* Must avoid aliasing mappings in the highmem code */ kmap_flush_unused(); vm_unmap_aliases(); cpa.vaddr = addr; cpa.pages = pages; cpa.numpages = numpages; cpa.mask_set = mask_set; cpa.mask_clr = mask_clr; cpa.flags = in_flag; cpa.curpage = 0; cpa.force_split = force_split; ret = __change_page_attr_set_clr(&cpa, 1); /* * Check whether we really changed something: */ if (!(cpa.flags & CPA_FLUSHTLB)) goto out; /* * No need to flush, when we did not set any of the caching * attributes: */ cache = !!pgprot2cachemode(mask_set); /* * On error; flush everything to be sure. */ if (ret) { cpa_flush_all(cache); goto out; } cpa_flush(&cpa, cache); out: return ret; } static inline int change_page_attr_set(unsigned long *addr, int numpages, pgprot_t mask, int array) { return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0, (array ? CPA_ARRAY : 0), NULL); } static inline int change_page_attr_clear(unsigned long *addr, int numpages, pgprot_t mask, int array) { return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0, (array ? CPA_ARRAY : 0), NULL); } static inline int cpa_set_pages_array(struct page **pages, int numpages, pgprot_t mask) { return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0, CPA_PAGES_ARRAY, pages); } static inline int cpa_clear_pages_array(struct page **pages, int numpages, pgprot_t mask) { return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0, CPA_PAGES_ARRAY, pages); } /* * __set_memory_prot is an internal helper for callers that have been passed * a pgprot_t value from upper layers and a reservation has already been taken. * If you want to set the pgprot to a specific page protocol, use the * set_memory_xx() functions. */ int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot) { return change_page_attr_set_clr(&addr, numpages, prot, __pgprot(~pgprot_val(prot)), 0, 0, NULL); } int _set_memory_uc(unsigned long addr, int numpages) { /* * for now UC MINUS. see comments in ioremap() * If you really need strong UC use ioremap_uc(), but note * that you cannot override IO areas with set_memory_*() as * these helpers cannot work with IO memory. */ return change_page_attr_set(&addr, numpages, cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS), 0); } int set_memory_uc(unsigned long addr, int numpages) { int ret; /* * for now UC MINUS. see comments in ioremap() */ ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE, _PAGE_CACHE_MODE_UC_MINUS, NULL); if (ret) goto out_err; ret = _set_memory_uc(addr, numpages); if (ret) goto out_free; return 0; out_free: memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); out_err: return ret; } EXPORT_SYMBOL(set_memory_uc); int _set_memory_wc(unsigned long addr, int numpages) { int ret; ret = change_page_attr_set(&addr, numpages, cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS), 0); if (!ret) { ret = change_page_attr_set_clr(&addr, numpages, cachemode2pgprot(_PAGE_CACHE_MODE_WC), __pgprot(_PAGE_CACHE_MASK), 0, 0, NULL); } return ret; } int set_memory_wc(unsigned long addr, int numpages) { int ret; ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE, _PAGE_CACHE_MODE_WC, NULL); if (ret) return ret; ret = _set_memory_wc(addr, numpages); if (ret) memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); return ret; } EXPORT_SYMBOL(set_memory_wc); int _set_memory_wt(unsigned long addr, int numpages) { return change_page_attr_set(&addr, numpages, cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0); } int _set_memory_wb(unsigned long addr, int numpages) { /* WB cache mode is hard wired to all cache attribute bits being 0 */ return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_CACHE_MASK), 0); } int set_memory_wb(unsigned long addr, int numpages) { int ret; ret = _set_memory_wb(addr, numpages); if (ret) return ret; memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); return 0; } EXPORT_SYMBOL(set_memory_wb); /* Prevent speculative access to a page by marking it not-present */ #ifdef CONFIG_X86_64 int set_mce_nospec(unsigned long pfn) { unsigned long decoy_addr; int rc; /* SGX pages are not in the 1:1 map */ if (arch_is_platform_page(pfn << PAGE_SHIFT)) return 0; /* * We would like to just call: * set_memory_XX((unsigned long)pfn_to_kaddr(pfn), 1); * but doing that would radically increase the odds of a * speculative access to the poison page because we'd have * the virtual address of the kernel 1:1 mapping sitting * around in registers. * Instead we get tricky. We create a non-canonical address * that looks just like the one we want, but has bit 63 flipped. * This relies on set_memory_XX() properly sanitizing any __pa() * results with __PHYSICAL_MASK or PTE_PFN_MASK. */ decoy_addr = (pfn << PAGE_SHIFT) + (PAGE_OFFSET ^ BIT(63)); rc = set_memory_np(decoy_addr, 1); if (rc) pr_warn("Could not invalidate pfn=0x%lx from 1:1 map\n", pfn); return rc; } /* Restore full speculative operation to the pfn. */ int clear_mce_nospec(unsigned long pfn) { unsigned long addr = (unsigned long) pfn_to_kaddr(pfn); return set_memory_p(addr, 1); } EXPORT_SYMBOL_GPL(clear_mce_nospec); #endif /* CONFIG_X86_64 */ int set_memory_x(unsigned long addr, int numpages) { if (!(__supported_pte_mask & _PAGE_NX)) return 0; return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0); } int set_memory_nx(unsigned long addr, int numpages) { if (!(__supported_pte_mask & _PAGE_NX)) return 0; return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0); } int set_memory_ro(unsigned long addr, int numpages) { return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW | _PAGE_DIRTY), 0); } int set_memory_rox(unsigned long addr, int numpages) { pgprot_t clr = __pgprot(_PAGE_RW | _PAGE_DIRTY); if (__supported_pte_mask & _PAGE_NX) clr.pgprot |= _PAGE_NX; return change_page_attr_clear(&addr, numpages, clr, 0); } int set_memory_rw(unsigned long addr, int numpages) { return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0); } int set_memory_np(unsigned long addr, int numpages) { return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0); } int set_memory_np_noalias(unsigned long addr, int numpages) { return change_page_attr_set_clr(&addr, numpages, __pgprot(0), __pgprot(_PAGE_PRESENT), 0, CPA_NO_CHECK_ALIAS, NULL); } int set_memory_p(unsigned long addr, int numpages) { return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_PRESENT), 0); } int set_memory_4k(unsigned long addr, int numpages) { return change_page_attr_set_clr(&addr, numpages, __pgprot(0), __pgprot(0), 1, 0, NULL); } int set_memory_nonglobal(unsigned long addr, int numpages) { return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_GLOBAL), 0); } int set_memory_global(unsigned long addr, int numpages) { return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_GLOBAL), 0); } /* * __set_memory_enc_pgtable() is used for the hypervisors that get * informed about "encryption" status via page tables. */ static int __set_memory_enc_pgtable(unsigned long addr, int numpages, bool enc) { pgprot_t empty = __pgprot(0); struct cpa_data cpa; int ret; /* Should not be working on unaligned addresses */ if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr)) addr &= PAGE_MASK; memset(&cpa, 0, sizeof(cpa)); cpa.vaddr = &addr; cpa.numpages = numpages; cpa.mask_set = enc ? pgprot_encrypted(empty) : pgprot_decrypted(empty); cpa.mask_clr = enc ? pgprot_decrypted(empty) : pgprot_encrypted(empty); cpa.pgd = init_mm.pgd; /* Must avoid aliasing mappings in the highmem code */ kmap_flush_unused(); vm_unmap_aliases(); /* Flush the caches as needed before changing the encryption attribute. */ if (x86_platform.guest.enc_tlb_flush_required(enc)) cpa_flush(&cpa, x86_platform.guest.enc_cache_flush_required()); /* Notify hypervisor that we are about to set/clr encryption attribute. */ if (!x86_platform.guest.enc_status_change_prepare(addr, numpages, enc)) return -EIO; ret = __change_page_attr_set_clr(&cpa, 1); /* * After changing the encryption attribute, we need to flush TLBs again * in case any speculative TLB caching occurred (but no need to flush * caches again). We could just use cpa_flush_all(), but in case TLB * flushing gets optimized in the cpa_flush() path use the same logic * as above. */ cpa_flush(&cpa, 0); /* Notify hypervisor that we have successfully set/clr encryption attribute. */ if (!ret) { if (!x86_platform.guest.enc_status_change_finish(addr, numpages, enc)) ret = -EIO; } return ret; } static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc) { if (cc_platform_has(CC_ATTR_MEM_ENCRYPT)) return __set_memory_enc_pgtable(addr, numpages, enc); return 0; } int set_memory_encrypted(unsigned long addr, int numpages) { return __set_memory_enc_dec(addr, numpages, true); } EXPORT_SYMBOL_GPL(set_memory_encrypted); int set_memory_decrypted(unsigned long addr, int numpages) { return __set_memory_enc_dec(addr, numpages, false); } EXPORT_SYMBOL_GPL(set_memory_decrypted); int set_pages_uc(struct page *page, int numpages) { unsigned long addr = (unsigned long)page_address(page); return set_memory_uc(addr, numpages); } EXPORT_SYMBOL(set_pages_uc); static int _set_pages_array(struct page **pages, int numpages, enum page_cache_mode new_type) { unsigned long start; unsigned long end; enum page_cache_mode set_type; int i; int free_idx; int ret; for (i = 0; i < numpages; i++) { if (PageHighMem(pages[i])) continue; start = page_to_pfn(pages[i]) << PAGE_SHIFT; end = start + PAGE_SIZE; if (memtype_reserve(start, end, new_type, NULL)) goto err_out; } /* If WC, set to UC- first and then WC */ set_type = (new_type == _PAGE_CACHE_MODE_WC) ? _PAGE_CACHE_MODE_UC_MINUS : new_type; ret = cpa_set_pages_array(pages, numpages, cachemode2pgprot(set_type)); if (!ret && new_type == _PAGE_CACHE_MODE_WC) ret = change_page_attr_set_clr(NULL, numpages, cachemode2pgprot( _PAGE_CACHE_MODE_WC), __pgprot(_PAGE_CACHE_MASK), 0, CPA_PAGES_ARRAY, pages); if (ret) goto err_out; return 0; /* Success */ err_out: free_idx = i; for (i = 0; i < free_idx; i++) { if (PageHighMem(pages[i])) continue; start = page_to_pfn(pages[i]) << PAGE_SHIFT; end = start + PAGE_SIZE; memtype_free(start, end); } return -EINVAL; } int set_pages_array_uc(struct page **pages, int numpages) { return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS); } EXPORT_SYMBOL(set_pages_array_uc); int set_pages_array_wc(struct page **pages, int numpages) { return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC); } EXPORT_SYMBOL(set_pages_array_wc); int set_pages_wb(struct page *page, int numpages) { unsigned long addr = (unsigned long)page_address(page); return set_memory_wb(addr, numpages); } EXPORT_SYMBOL(set_pages_wb); int set_pages_array_wb(struct page **pages, int numpages) { int retval; unsigned long start; unsigned long end; int i; /* WB cache mode is hard wired to all cache attribute bits being 0 */ retval = cpa_clear_pages_array(pages, numpages, __pgprot(_PAGE_CACHE_MASK)); if (retval) return retval; for (i = 0; i < numpages; i++) { if (PageHighMem(pages[i])) continue; start = page_to_pfn(pages[i]) << PAGE_SHIFT; end = start + PAGE_SIZE; memtype_free(start, end); } return 0; } EXPORT_SYMBOL(set_pages_array_wb); int set_pages_ro(struct page *page, int numpages) { unsigned long addr = (unsigned long)page_address(page); return set_memory_ro(addr, numpages); } int set_pages_rw(struct page *page, int numpages) { unsigned long addr = (unsigned long)page_address(page); return set_memory_rw(addr, numpages); } static int __set_pages_p(struct page *page, int numpages) { unsigned long tempaddr = (unsigned long) page_address(page); struct cpa_data cpa = { .vaddr = &tempaddr, .pgd = NULL, .numpages = numpages, .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW), .mask_clr = __pgprot(0), .flags = CPA_NO_CHECK_ALIAS }; /* * No alias checking needed for setting present flag. otherwise, * we may need to break large pages for 64-bit kernel text * mappings (this adds to complexity if we want to do this from * atomic context especially). Let's keep it simple! */ return __change_page_attr_set_clr(&cpa, 1); } static int __set_pages_np(struct page *page, int numpages) { unsigned long tempaddr = (unsigned long) page_address(page); struct cpa_data cpa = { .vaddr = &tempaddr, .pgd = NULL, .numpages = numpages, .mask_set = __pgprot(0), .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW), .flags = CPA_NO_CHECK_ALIAS }; /* * No alias checking needed for setting not present flag. otherwise, * we may need to break large pages for 64-bit kernel text * mappings (this adds to complexity if we want to do this from * atomic context especially). Let's keep it simple! */ return __change_page_attr_set_clr(&cpa, 1); } int set_direct_map_invalid_noflush(struct page *page) { return __set_pages_np(page, 1); } int set_direct_map_default_noflush(struct page *page) { return __set_pages_p(page, 1); } #ifdef CONFIG_DEBUG_PAGEALLOC void __kernel_map_pages(struct page *page, int numpages, int enable) { if (PageHighMem(page)) return; if (!enable) { debug_check_no_locks_freed(page_address(page), numpages * PAGE_SIZE); } /* * The return value is ignored as the calls cannot fail. * Large pages for identity mappings are not used at boot time * and hence no memory allocations during large page split. */ if (enable) __set_pages_p(page, numpages); else __set_pages_np(page, numpages); /* * We should perform an IPI and flush all tlbs, * but that can deadlock->flush only current cpu. * Preemption needs to be disabled around __flush_tlb_all() due to * CR3 reload in __native_flush_tlb(). */ preempt_disable(); __flush_tlb_all(); preempt_enable(); arch_flush_lazy_mmu_mode(); } #endif /* CONFIG_DEBUG_PAGEALLOC */ bool kernel_page_present(struct page *page) { unsigned int level; pte_t *pte; if (PageHighMem(page)) return false; pte = lookup_address((unsigned long)page_address(page), &level); return (pte_val(*pte) & _PAGE_PRESENT); } int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address, unsigned numpages, unsigned long page_flags) { int retval = -EINVAL; struct cpa_data cpa = { .vaddr = &address, .pfn = pfn, .pgd = pgd, .numpages = numpages, .mask_set = __pgprot(0), .mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)), .flags = CPA_NO_CHECK_ALIAS, }; WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP"); if (!(__supported_pte_mask & _PAGE_NX)) goto out; if (!(page_flags & _PAGE_ENC)) cpa.mask_clr = pgprot_encrypted(cpa.mask_clr); cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags); retval = __change_page_attr_set_clr(&cpa, 1); __flush_tlb_all(); out: return retval; } /* * __flush_tlb_all() flushes mappings only on current CPU and hence this * function shouldn't be used in an SMP environment. Presently, it's used only * during boot (way before smp_init()) by EFI subsystem and hence is ok. */ int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address, unsigned long numpages) { int retval; /* * The typical sequence for unmapping is to find a pte through * lookup_address_in_pgd() (ideally, it should never return NULL because * the address is already mapped) and change its protections. As pfn is * the *target* of a mapping, it's not useful while unmapping. */ struct cpa_data cpa = { .vaddr = &address, .pfn = 0, .pgd = pgd, .numpages = numpages, .mask_set = __pgprot(0), .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW), .flags = CPA_NO_CHECK_ALIAS, }; WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP"); retval = __change_page_attr_set_clr(&cpa, 1); __flush_tlb_all(); return retval; } /* * The testcases use internal knowledge of the implementation that shouldn't * be exposed to the rest of the kernel. Include these directly here. */ #ifdef CONFIG_CPA_DEBUG #include "cpa-test.c" #endif |