Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 | // SPDX-License-Identifier: MIT /* * Copyright © 2022 Intel Corporation */ #include "i915_selftest.h" #include "gem/i915_gem_internal.h" #include "gem/i915_gem_lmem.h" #include "gem/i915_gem_region.h" #include "gen8_engine_cs.h" #include "i915_gem_ww.h" #include "intel_engine_regs.h" #include "intel_gpu_commands.h" #include "intel_context.h" #include "intel_gt.h" #include "intel_ring.h" #include "selftests/igt_flush_test.h" #include "selftests/i915_random.h" static void vma_set_qw(struct i915_vma *vma, u64 addr, u64 val) { GEM_BUG_ON(addr < i915_vma_offset(vma)); GEM_BUG_ON(addr >= i915_vma_offset(vma) + i915_vma_size(vma) + sizeof(val)); memset64(page_mask_bits(vma->obj->mm.mapping) + (addr - i915_vma_offset(vma)), val, 1); } static int pte_tlbinv(struct intel_context *ce, struct i915_vma *va, struct i915_vma *vb, u64 align, void (*tlbinv)(struct i915_address_space *vm, u64 addr, u64 length), u64 length, struct rnd_state *prng) { const unsigned int pat_index = i915_gem_get_pat_index(ce->vm->i915, I915_CACHE_NONE); struct drm_i915_gem_object *batch; struct drm_mm_node vb_node; struct i915_request *rq; struct i915_vma *vma; u64 addr; int err; u32 *cs; batch = i915_gem_object_create_internal(ce->vm->i915, 4096); if (IS_ERR(batch)) return PTR_ERR(batch); vma = i915_vma_instance(batch, ce->vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto out; } err = i915_vma_pin(vma, 0, 0, PIN_USER); if (err) goto out; /* Pin va at random but aligned offset after vma */ addr = round_up(vma->node.start + vma->node.size, align); /* MI_CONDITIONAL_BATCH_BUFFER_END limits address to 48b */ addr = igt_random_offset(prng, addr, min(ce->vm->total, BIT_ULL(48)), va->size, align); err = i915_vma_pin(va, 0, 0, addr | PIN_OFFSET_FIXED | PIN_USER); if (err) { pr_err("Cannot pin at %llx+%llx\n", addr, va->size); goto out; } GEM_BUG_ON(i915_vma_offset(va) != addr); if (vb != va) { vb_node = vb->node; vb->node = va->node; /* overwrites the _same_ PTE */ } /* * Now choose random dword at the 1st pinned page. * * SZ_64K pages on dg1 require that the whole PT be marked * containing 64KiB entries. So we make sure that vma * covers the whole PT, despite being randomly aligned to 64KiB * and restrict our sampling to the 2MiB PT within where * we know that we will be using 64KiB pages. */ if (align == SZ_64K) addr = round_up(addr, SZ_2M); addr = igt_random_offset(prng, addr, addr + align, 8, 8); if (va != vb) pr_info("%s(%s): Sampling %llx, with alignment %llx, using PTE size %x (phys %x, sg %x), invalidate:%llx+%llx\n", ce->engine->name, va->obj->mm.region->name ?: "smem", addr, align, va->resource->page_sizes_gtt, va->page_sizes.phys, va->page_sizes.sg, addr & -length, length); cs = i915_gem_object_pin_map_unlocked(batch, I915_MAP_WC); *cs++ = MI_NOOP; /* for later termination */ /* * Sample the target to see if we spot the updated backing store. * Gen8 VCS compares immediate value with bitwise-and of two * consecutive DWORDS pointed by addr, other gen/engines compare value * with DWORD pointed by addr. Moreover we want to exercise DWORD size * invalidations. To fulfill all these requirements below values * have been chosen. */ *cs++ = MI_CONDITIONAL_BATCH_BUFFER_END | MI_DO_COMPARE | 2; *cs++ = 0; /* break if *addr == 0 */ *cs++ = lower_32_bits(addr); *cs++ = upper_32_bits(addr); vma_set_qw(va, addr, -1); vma_set_qw(vb, addr, 0); /* Keep sampling until we get bored */ *cs++ = MI_BATCH_BUFFER_START | BIT(8) | 1; *cs++ = lower_32_bits(i915_vma_offset(vma)); *cs++ = upper_32_bits(i915_vma_offset(vma)); i915_gem_object_flush_map(batch); rq = i915_request_create(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out_va; } err = rq->engine->emit_bb_start(rq, i915_vma_offset(vma), 0, 0); if (err) { i915_request_add(rq); goto out_va; } i915_request_get(rq); i915_request_add(rq); /* * Short sleep to sanitycheck the batch is spinning before we begin. * FIXME: Why is GSC so slow? */ if (ce->engine->class == OTHER_CLASS) msleep(200); else msleep(10); if (va == vb) { if (!i915_request_completed(rq)) { pr_err("%s(%s): Semaphore sanitycheck failed %llx, with alignment %llx, using PTE size %x (phys %x, sg %x)\n", ce->engine->name, va->obj->mm.region->name ?: "smem", addr, align, va->resource->page_sizes_gtt, va->page_sizes.phys, va->page_sizes.sg); err = -EIO; } } else if (!i915_request_completed(rq)) { struct i915_vma_resource vb_res = { .bi.pages = vb->obj->mm.pages, .bi.page_sizes = vb->obj->mm.page_sizes, .start = i915_vma_offset(vb), .vma_size = i915_vma_size(vb) }; unsigned int pte_flags = 0; /* Flip the PTE between A and B */ if (i915_gem_object_is_lmem(vb->obj)) pte_flags |= PTE_LM; ce->vm->insert_entries(ce->vm, &vb_res, pat_index, pte_flags); /* Flush the PTE update to concurrent HW */ tlbinv(ce->vm, addr & -length, length); if (wait_for(i915_request_completed(rq), HZ / 2)) { pr_err("%s: Request did not complete; the COND_BBE did not read the updated PTE\n", ce->engine->name); err = -EINVAL; } } else { pr_err("Spinner ended unexpectedly\n"); err = -EIO; } i915_request_put(rq); cs = page_mask_bits(batch->mm.mapping); *cs = MI_BATCH_BUFFER_END; wmb(); out_va: if (vb != va) vb->node = vb_node; i915_vma_unpin(va); if (i915_vma_unbind_unlocked(va)) err = -EIO; out: i915_gem_object_put(batch); return err; } static struct drm_i915_gem_object *create_lmem(struct intel_gt *gt) { struct intel_memory_region *mr = gt->i915->mm.regions[INTEL_REGION_LMEM_0]; resource_size_t size = SZ_1G; /* * Allocation of largest possible page size allows to test all types * of pages. To succeed with both allocations, especially in case of Small * BAR, try to allocate no more than quarter of mappable memory. */ if (mr && size > mr->io_size / 4) size = mr->io_size / 4; return i915_gem_object_create_lmem(gt->i915, size, I915_BO_ALLOC_CONTIGUOUS); } static struct drm_i915_gem_object *create_smem(struct intel_gt *gt) { /* * SZ_64K pages require covering the whole 2M PT (gen8 to tgl/dg1). * While that does not require the whole 2M block to be contiguous * it is easier to make it so, since we need that for SZ_2M pagees. * Since we randomly offset the start of the vma, we need a 4M object * so that there is a 2M range within it is suitable for SZ_64K PTE. */ return i915_gem_object_create_internal(gt->i915, SZ_4M); } static int mem_tlbinv(struct intel_gt *gt, struct drm_i915_gem_object *(*create_fn)(struct intel_gt *), void (*tlbinv)(struct i915_address_space *vm, u64 addr, u64 length)) { unsigned int ppgtt_size = RUNTIME_INFO(gt->i915)->ppgtt_size; struct intel_engine_cs *engine; struct drm_i915_gem_object *A, *B; struct i915_ppgtt *ppgtt; struct i915_vma *va, *vb; enum intel_engine_id id; I915_RND_STATE(prng); void *vaddr; int err; /* * Check that the TLB invalidate is able to revoke an active * page. We load a page into a spinning COND_BBE loop and then * remap that page to a new physical address. The old address, and * so the loop keeps spinning, is retained in the TLB cache until * we issue an invalidate. */ A = create_fn(gt); if (IS_ERR(A)) return PTR_ERR(A); vaddr = i915_gem_object_pin_map_unlocked(A, I915_MAP_WC); if (IS_ERR(vaddr)) { err = PTR_ERR(vaddr); goto out_a; } B = create_fn(gt); if (IS_ERR(B)) { err = PTR_ERR(B); goto out_a; } vaddr = i915_gem_object_pin_map_unlocked(B, I915_MAP_WC); if (IS_ERR(vaddr)) { err = PTR_ERR(vaddr); goto out_b; } GEM_BUG_ON(A->base.size != B->base.size); if ((A->mm.page_sizes.phys | B->mm.page_sizes.phys) & (A->base.size - 1)) pr_warn("Failed to allocate contiguous pages for size %zx\n", A->base.size); ppgtt = i915_ppgtt_create(gt, 0); if (IS_ERR(ppgtt)) { err = PTR_ERR(ppgtt); goto out_b; } va = i915_vma_instance(A, &ppgtt->vm, NULL); if (IS_ERR(va)) { err = PTR_ERR(va); goto out_vm; } vb = i915_vma_instance(B, &ppgtt->vm, NULL); if (IS_ERR(vb)) { err = PTR_ERR(vb); goto out_vm; } err = 0; for_each_engine(engine, gt, id) { struct i915_gem_ww_ctx ww; struct intel_context *ce; int bit; ce = intel_context_create(engine); if (IS_ERR(ce)) { err = PTR_ERR(ce); break; } i915_vm_put(ce->vm); ce->vm = i915_vm_get(&ppgtt->vm); for_i915_gem_ww(&ww, err, true) err = intel_context_pin_ww(ce, &ww); if (err) goto err_put; for_each_set_bit(bit, (unsigned long *)&RUNTIME_INFO(gt->i915)->page_sizes, BITS_PER_TYPE(RUNTIME_INFO(gt->i915)->page_sizes)) { unsigned int len; if (BIT_ULL(bit) < i915_vm_obj_min_alignment(va->vm, va->obj)) continue; /* sanitycheck the semaphore wake up */ err = pte_tlbinv(ce, va, va, BIT_ULL(bit), NULL, SZ_4K, &prng); if (err) goto err_unpin; for (len = 2; len <= ppgtt_size; len = min(2 * len, ppgtt_size)) { err = pte_tlbinv(ce, va, vb, BIT_ULL(bit), tlbinv, BIT_ULL(len), &prng); if (err) goto err_unpin; if (len == ppgtt_size) break; } } err_unpin: intel_context_unpin(ce); err_put: intel_context_put(ce); if (err) break; } if (igt_flush_test(gt->i915)) err = -EIO; out_vm: i915_vm_put(&ppgtt->vm); out_b: i915_gem_object_put(B); out_a: i915_gem_object_put(A); return err; } static void tlbinv_full(struct i915_address_space *vm, u64 addr, u64 length) { intel_gt_invalidate_tlb_full(vm->gt, intel_gt_tlb_seqno(vm->gt) | 1); } static int invalidate_full(void *arg) { struct intel_gt *gt = arg; int err; if (GRAPHICS_VER(gt->i915) < 8) return 0; /* TLB invalidate not implemented */ err = mem_tlbinv(gt, create_smem, tlbinv_full); if (err == 0) err = mem_tlbinv(gt, create_lmem, tlbinv_full); if (err == -ENODEV || err == -ENXIO) err = 0; return err; } int intel_tlb_live_selftests(struct drm_i915_private *i915) { static const struct i915_subtest tests[] = { SUBTEST(invalidate_full), }; struct intel_gt *gt; unsigned int i; for_each_gt(gt, i915, i) { int err; if (intel_gt_is_wedged(gt)) continue; err = intel_gt_live_subtests(tests, gt); if (err) return err; } return 0; } |