Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
// SPDX-License-Identifier: Apache-2.0 OR MIT

//! API to safely and fallibly initialize pinned `struct`s using in-place constructors.
//!
//! It also allows in-place initialization of big `struct`s that would otherwise produce a stack
//! overflow.
//!
//! Most `struct`s from the [`sync`] module need to be pinned, because they contain self-referential
//! `struct`s from C. [Pinning][pinning] is Rust's way of ensuring data does not move.
//!
//! # Overview
//!
//! To initialize a `struct` with an in-place constructor you will need two things:
//! - an in-place constructor,
//! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`],
//!   [`UniqueArc<T>`], [`Box<T>`] or any other smart pointer that implements [`InPlaceInit`]).
//!
//! To get an in-place constructor there are generally three options:
//! - directly creating an in-place constructor using the [`pin_init!`] macro,
//! - a custom function/macro returning an in-place constructor provided by someone else,
//! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer.
//!
//! Aside from pinned initialization, this API also supports in-place construction without pinning,
//! the macros/types/functions are generally named like the pinned variants without the `pin`
//! prefix.
//!
//! # Examples
//!
//! ## Using the [`pin_init!`] macro
//!
//! If you want to use [`PinInit`], then you will have to annotate your `struct` with
//! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for
//! [structurally pinned fields]. After doing this, you can then create an in-place constructor via
//! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is
//! that you need to write `<-` instead of `:` for fields that you want to initialize in-place.
//!
//! ```rust
//! # #![allow(clippy::disallowed_names)]
//! use kernel::{prelude::*, sync::Mutex, new_mutex};
//! # use core::pin::Pin;
//! #[pin_data]
//! struct Foo {
//!     #[pin]
//!     a: Mutex<usize>,
//!     b: u32,
//! }
//!
//! let foo = pin_init!(Foo {
//!     a <- new_mutex!(42, "Foo::a"),
//!     b: 24,
//! });
//! ```
//!
//! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like
//! (or just the stack) to actually initialize a `Foo`:
//!
//! ```rust
//! # #![allow(clippy::disallowed_names)]
//! # use kernel::{prelude::*, sync::Mutex, new_mutex};
//! # use core::pin::Pin;
//! # #[pin_data]
//! # struct Foo {
//! #     #[pin]
//! #     a: Mutex<usize>,
//! #     b: u32,
//! # }
//! # let foo = pin_init!(Foo {
//! #     a <- new_mutex!(42, "Foo::a"),
//! #     b: 24,
//! # });
//! let foo: Result<Pin<Box<Foo>>> = Box::pin_init(foo);
//! ```
//!
//! For more information see the [`pin_init!`] macro.
//!
//! ## Using a custom function/macro that returns an initializer
//!
//! Many types from the kernel supply a function/macro that returns an initializer, because the
//! above method only works for types where you can access the fields.
//!
//! ```rust
//! # use kernel::{new_mutex, sync::{Arc, Mutex}};
//! let mtx: Result<Arc<Mutex<usize>>> = Arc::pin_init(new_mutex!(42, "example::mtx"));
//! ```
//!
//! To declare an init macro/function you just return an [`impl PinInit<T, E>`]:
//!
//! ```rust
//! # #![allow(clippy::disallowed_names)]
//! # use kernel::{sync::Mutex, prelude::*, new_mutex, init::PinInit, try_pin_init};
//! #[pin_data]
//! struct DriverData {
//!     #[pin]
//!     status: Mutex<i32>,
//!     buffer: Box<[u8; 1_000_000]>,
//! }
//!
//! impl DriverData {
//!     fn new() -> impl PinInit<Self, Error> {
//!         try_pin_init!(Self {
//!             status <- new_mutex!(0, "DriverData::status"),
//!             buffer: Box::init(kernel::init::zeroed())?,
//!         })
//!     }
//! }
//! ```
//!
//! ## Manual creation of an initializer
//!
//! Often when working with primitives the previous approaches are not sufficient. That is where
//! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a
//! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure
//! actually does the initialization in the correct way. Here are the things to look out for
//! (we are calling the parameter to the closure `slot`):
//! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so
//!   `slot` now contains a valid bit pattern for the type `T`,
//! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so
//!   you need to take care to clean up anything if your initialization fails mid-way,
//! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of
//!   `slot` gets called.
//!
//! ```rust
//! # #![allow(unreachable_pub, clippy::disallowed_names)]
//! use kernel::{prelude::*, init, types::Opaque};
//! use core::{ptr::addr_of_mut, marker::PhantomPinned, pin::Pin};
//! # mod bindings {
//! #     #![allow(non_camel_case_types)]
//! #     pub struct foo;
//! #     pub unsafe fn init_foo(_ptr: *mut foo) {}
//! #     pub unsafe fn destroy_foo(_ptr: *mut foo) {}
//! #     pub unsafe fn enable_foo(_ptr: *mut foo, _flags: u32) -> i32 { 0 }
//! # }
//! # // `Error::from_errno` is `pub(crate)` in the `kernel` crate, thus provide a workaround.
//! # trait FromErrno {
//! #     fn from_errno(errno: core::ffi::c_int) -> Error {
//! #         // Dummy error that can be constructed outside the `kernel` crate.
//! #         Error::from(core::fmt::Error)
//! #     }
//! # }
//! # impl FromErrno for Error {}
//! /// # Invariants
//! ///
//! /// `foo` is always initialized
//! #[pin_data(PinnedDrop)]
//! pub struct RawFoo {
//!     #[pin]
//!     foo: Opaque<bindings::foo>,
//!     #[pin]
//!     _p: PhantomPinned,
//! }
//!
//! impl RawFoo {
//!     pub fn new(flags: u32) -> impl PinInit<Self, Error> {
//!         // SAFETY:
//!         // - when the closure returns `Ok(())`, then it has successfully initialized and
//!         //   enabled `foo`,
//!         // - when it returns `Err(e)`, then it has cleaned up before
//!         unsafe {
//!             init::pin_init_from_closure(move |slot: *mut Self| {
//!                 // `slot` contains uninit memory, avoid creating a reference.
//!                 let foo = addr_of_mut!((*slot).foo);
//!
//!                 // Initialize the `foo`
//!                 bindings::init_foo(Opaque::raw_get(foo));
//!
//!                 // Try to enable it.
//!                 let err = bindings::enable_foo(Opaque::raw_get(foo), flags);
//!                 if err != 0 {
//!                     // Enabling has failed, first clean up the foo and then return the error.
//!                     bindings::destroy_foo(Opaque::raw_get(foo));
//!                     return Err(Error::from_errno(err));
//!                 }
//!
//!                 // All fields of `RawFoo` have been initialized, since `_p` is a ZST.
//!                 Ok(())
//!             })
//!         }
//!     }
//! }
//!
//! #[pinned_drop]
//! impl PinnedDrop for RawFoo {
//!     fn drop(self: Pin<&mut Self>) {
//!         // SAFETY: Since `foo` is initialized, destroying is safe.
//!         unsafe { bindings::destroy_foo(self.foo.get()) };
//!     }
//! }
//! ```
//!
//! For the special case where initializing a field is a single FFI-function call that cannot fail,
//! there exist the helper function [`Opaque::ffi_init`]. This function initialize a single
//! [`Opaque`] field by just delegating to the supplied closure. You can use these in combination
//! with [`pin_init!`].
//!
//! For more information on how to use [`pin_init_from_closure()`], take a look at the uses inside
//! the `kernel` crate. The [`sync`] module is a good starting point.
//!
//! [`sync`]: kernel::sync
//! [pinning]: https://doc.rust-lang.org/std/pin/index.html
//! [structurally pinned fields]:
//!     https://doc.rust-lang.org/std/pin/index.html#pinning-is-structural-for-field
//! [stack]: crate::stack_pin_init
//! [`Arc<T>`]: crate::sync::Arc
//! [`impl PinInit<Foo>`]: PinInit
//! [`impl PinInit<T, E>`]: PinInit
//! [`impl Init<T, E>`]: Init
//! [`Opaque`]: kernel::types::Opaque
//! [`Opaque::ffi_init`]: kernel::types::Opaque::ffi_init
//! [`pin_data`]: ::macros::pin_data
//! [`pin_init!`]: crate::pin_init!

use crate::{
    error::{self, Error},
    sync::UniqueArc,
    types::{Opaque, ScopeGuard},
};
use alloc::boxed::Box;
use core::{
    alloc::AllocError,
    cell::UnsafeCell,
    convert::Infallible,
    marker::PhantomData,
    mem::MaybeUninit,
    num::*,
    pin::Pin,
    ptr::{self, NonNull},
};

#[doc(hidden)]
pub mod __internal;
#[doc(hidden)]
pub mod macros;

/// Initialize and pin a type directly on the stack.
///
/// # Examples
///
/// ```rust
/// # #![allow(clippy::disallowed_names)]
/// # use kernel::{init, macros::pin_data, pin_init, stack_pin_init, init::*, sync::Mutex, new_mutex};
/// # use core::pin::Pin;
/// #[pin_data]
/// struct Foo {
///     #[pin]
///     a: Mutex<usize>,
///     b: Bar,
/// }
///
/// #[pin_data]
/// struct Bar {
///     x: u32,
/// }
///
/// stack_pin_init!(let foo = pin_init!(Foo {
///     a <- new_mutex!(42),
///     b: Bar {
///         x: 64,
///     },
/// }));
/// let foo: Pin<&mut Foo> = foo;
/// pr_info!("a: {}", &*foo.a.lock());
/// ```
///
/// # Syntax
///
/// A normal `let` binding with optional type annotation. The expression is expected to implement
/// [`PinInit`]/[`Init`] with the error type [`Infallible`]. If you want to use a different error
/// type, then use [`stack_try_pin_init!`].
///
/// [`stack_try_pin_init!`]: crate::stack_try_pin_init!
#[macro_export]
macro_rules! stack_pin_init {
    (let $var:ident $(: $t:ty)? = $val:expr) => {
        let val = $val;
        let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
        let mut $var = match $crate::init::__internal::StackInit::init($var, val) {
            Ok(res) => res,
            Err(x) => {
                let x: ::core::convert::Infallible = x;
                match x {}
            }
        };
    };
}

/// Initialize and pin a type directly on the stack.
///
/// # Examples
///
/// ```rust,ignore
/// # #![allow(clippy::disallowed_names)]
/// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex};
/// # use macros::pin_data;
/// # use core::{alloc::AllocError, pin::Pin};
/// #[pin_data]
/// struct Foo {
///     #[pin]
///     a: Mutex<usize>,
///     b: Box<Bar>,
/// }
///
/// struct Bar {
///     x: u32,
/// }
///
/// stack_try_pin_init!(let foo: Result<Pin<&mut Foo>, AllocError> = pin_init!(Foo {
///     a <- new_mutex!(42),
///     b: Box::try_new(Bar {
///         x: 64,
///     })?,
/// }));
/// let foo = foo.unwrap();
/// pr_info!("a: {}", &*foo.a.lock());
/// ```
///
/// ```rust,ignore
/// # #![allow(clippy::disallowed_names)]
/// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex};
/// # use macros::pin_data;
/// # use core::{alloc::AllocError, pin::Pin};
/// #[pin_data]
/// struct Foo {
///     #[pin]
///     a: Mutex<usize>,
///     b: Box<Bar>,
/// }
///
/// struct Bar {
///     x: u32,
/// }
///
/// stack_try_pin_init!(let foo: Pin<&mut Foo> =? pin_init!(Foo {
///     a <- new_mutex!(42),
///     b: Box::try_new(Bar {
///         x: 64,
///     })?,
/// }));
/// pr_info!("a: {}", &*foo.a.lock());
/// # Ok::<_, AllocError>(())
/// ```
///
/// # Syntax
///
/// A normal `let` binding with optional type annotation. The expression is expected to implement
/// [`PinInit`]/[`Init`]. This macro assigns a result to the given variable, adding a `?` after the
/// `=` will propagate this error.
#[macro_export]
macro_rules! stack_try_pin_init {
    (let $var:ident $(: $t:ty)? = $val:expr) => {
        let val = $val;
        let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
        let mut $var = $crate::init::__internal::StackInit::init($var, val);
    };
    (let $var:ident $(: $t:ty)? =? $val:expr) => {
        let val = $val;
        let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
        let mut $var = $crate::init::__internal::StackInit::init($var, val)?;
    };
}

/// Construct an in-place, pinned initializer for `struct`s.
///
/// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use
/// [`try_pin_init!`].
///
/// The syntax is almost identical to that of a normal `struct` initializer:
///
/// ```rust
/// # #![allow(clippy::disallowed_names)]
/// # use kernel::{init, pin_init, macros::pin_data, init::*};
/// # use core::pin::Pin;
/// #[pin_data]
/// struct Foo {
///     a: usize,
///     b: Bar,
/// }
///
/// #[pin_data]
/// struct Bar {
///     x: u32,
/// }
///
/// # fn demo() -> impl PinInit<Foo> {
/// let a = 42;
///
/// let initializer = pin_init!(Foo {
///     a,
///     b: Bar {
///         x: 64,
///     },
/// });
/// # initializer }
/// # Box::pin_init(demo()).unwrap();
/// ```
///
/// Arbitrary Rust expressions can be used to set the value of a variable.
///
/// The fields are initialized in the order that they appear in the initializer. So it is possible
/// to read already initialized fields using raw pointers.
///
/// IMPORTANT: You are not allowed to create references to fields of the struct inside of the
/// initializer.
///
/// # Init-functions
///
/// When working with this API it is often desired to let others construct your types without
/// giving access to all fields. This is where you would normally write a plain function `new`
/// that would return a new instance of your type. With this API that is also possible.
/// However, there are a few extra things to keep in mind.
///
/// To create an initializer function, simply declare it like this:
///
/// ```rust
/// # #![allow(clippy::disallowed_names)]
/// # use kernel::{init, pin_init, prelude::*, init::*};
/// # use core::pin::Pin;
/// # #[pin_data]
/// # struct Foo {
/// #     a: usize,
/// #     b: Bar,
/// # }
/// # #[pin_data]
/// # struct Bar {
/// #     x: u32,
/// # }
/// impl Foo {
///     fn new() -> impl PinInit<Self> {
///         pin_init!(Self {
///             a: 42,
///             b: Bar {
///                 x: 64,
///             },
///         })
///     }
/// }
/// ```
///
/// Users of `Foo` can now create it like this:
///
/// ```rust
/// # #![allow(clippy::disallowed_names)]
/// # use kernel::{init, pin_init, macros::pin_data, init::*};
/// # use core::pin::Pin;
/// # #[pin_data]
/// # struct Foo {
/// #     a: usize,
/// #     b: Bar,
/// # }
/// # #[pin_data]
/// # struct Bar {
/// #     x: u32,
/// # }
/// # impl Foo {
/// #     fn new() -> impl PinInit<Self> {
/// #         pin_init!(Self {
/// #             a: 42,
/// #             b: Bar {
/// #                 x: 64,
/// #             },
/// #         })
/// #     }
/// # }
/// let foo = Box::pin_init(Foo::new());
/// ```
///
/// They can also easily embed it into their own `struct`s:
///
/// ```rust
/// # #![allow(clippy::disallowed_names)]
/// # use kernel::{init, pin_init, macros::pin_data, init::*};
/// # use core::pin::Pin;
/// # #[pin_data]
/// # struct Foo {
/// #     a: usize,
/// #     b: Bar,
/// # }
/// # #[pin_data]
/// # struct Bar {
/// #     x: u32,
/// # }
/// # impl Foo {
/// #     fn new() -> impl PinInit<Self> {
/// #         pin_init!(Self {
/// #             a: 42,
/// #             b: Bar {
/// #                 x: 64,
/// #             },
/// #         })
/// #     }
/// # }
/// #[pin_data]
/// struct FooContainer {
///     #[pin]
///     foo1: Foo,
///     #[pin]
///     foo2: Foo,
///     other: u32,
/// }
///
/// impl FooContainer {
///     fn new(other: u32) -> impl PinInit<Self> {
///         pin_init!(Self {
///             foo1 <- Foo::new(),
///             foo2 <- Foo::new(),
///             other,
///         })
///     }
/// }
/// ```
///
/// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`.
/// This signifies that the given field is initialized in-place. As with `struct` initializers, just
/// writing the field (in this case `other`) without `:` or `<-` means `other: other,`.
///
/// # Syntax
///
/// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with
/// the following modifications is expected:
/// - Fields that you want to initialize in-place have to use `<-` instead of `:`.
/// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`]
///   pointer named `this` inside of the initializer.
/// - Using struct update syntax one can place `..Zeroable::zeroed()` at the very end of the
///   struct, this initializes every field with 0 and then runs all initializers specified in the
///   body. This can only be done if [`Zeroable`] is implemented for the struct.
///
/// For instance:
///
/// ```rust
/// # use kernel::{macros::{Zeroable, pin_data}, pin_init};
/// # use core::{ptr::addr_of_mut, marker::PhantomPinned};
/// #[pin_data]
/// #[derive(Zeroable)]
/// struct Buf {
///     // `ptr` points into `buf`.
///     ptr: *mut u8,
///     buf: [u8; 64],
///     #[pin]
///     pin: PhantomPinned,
/// }
/// pin_init!(&this in Buf {
///     buf: [0; 64],
///     ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() },
///     pin: PhantomPinned,
/// });
/// pin_init!(Buf {
///     buf: [1; 64],
///     ..Zeroable::zeroed()
/// });
/// ```
///
/// [`try_pin_init!`]: kernel::try_pin_init
/// [`NonNull<Self>`]: core::ptr::NonNull
// For a detailed example of how this macro works, see the module documentation of the hidden
// module `__internal` inside of `init/__internal.rs`.
#[macro_export]
macro_rules! pin_init {
    ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
        $($fields:tt)*
    }) => {
        $crate::__init_internal!(
            @this($($this)?),
            @typ($t $(::<$($generics),*>)?),
            @fields($($fields)*),
            @error(::core::convert::Infallible),
            @data(PinData, use_data),
            @has_data(HasPinData, __pin_data),
            @construct_closure(pin_init_from_closure),
            @munch_fields($($fields)*),
        )
    };
}

/// Construct an in-place, fallible pinned initializer for `struct`s.
///
/// If the initialization can complete without error (or [`Infallible`]), then use [`pin_init!`].
///
/// You can use the `?` operator or use `return Err(err)` inside the initializer to stop
/// initialization and return the error.
///
/// IMPORTANT: if you have `unsafe` code inside of the initializer you have to ensure that when
/// initialization fails, the memory can be safely deallocated without any further modifications.
///
/// This macro defaults the error to [`Error`].
///
/// The syntax is identical to [`pin_init!`] with the following exception: you can append `? $type`
/// after the `struct` initializer to specify the error type you want to use.
///
/// # Examples
///
/// ```rust
/// # #![feature(new_uninit)]
/// use kernel::{init::{self, PinInit}, error::Error};
/// #[pin_data]
/// struct BigBuf {
///     big: Box<[u8; 1024 * 1024 * 1024]>,
///     small: [u8; 1024 * 1024],
///     ptr: *mut u8,
/// }
///
/// impl BigBuf {
///     fn new() -> impl PinInit<Self, Error> {
///         try_pin_init!(Self {
///             big: Box::init(init::zeroed())?,
///             small: [0; 1024 * 1024],
///             ptr: core::ptr::null_mut(),
///         }? Error)
///     }
/// }
/// ```
// For a detailed example of how this macro works, see the module documentation of the hidden
// module `__internal` inside of `init/__internal.rs`.
#[macro_export]
macro_rules! try_pin_init {
    ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
        $($fields:tt)*
    }) => {
        $crate::__init_internal!(
            @this($($this)?),
            @typ($t $(::<$($generics),*>)? ),
            @fields($($fields)*),
            @error($crate::error::Error),
            @data(PinData, use_data),
            @has_data(HasPinData, __pin_data),
            @construct_closure(pin_init_from_closure),
            @munch_fields($($fields)*),
        )
    };
    ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
        $($fields:tt)*
    }? $err:ty) => {
        $crate::__init_internal!(
            @this($($this)?),
            @typ($t $(::<$($generics),*>)? ),
            @fields($($fields)*),
            @error($err),
            @data(PinData, use_data),
            @has_data(HasPinData, __pin_data),
            @construct_closure(pin_init_from_closure),
            @munch_fields($($fields)*),
        )
    };
}

/// Construct an in-place initializer for `struct`s.
///
/// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use
/// [`try_init!`].
///
/// The syntax is identical to [`pin_init!`] and its safety caveats also apply:
/// - `unsafe` code must guarantee either full initialization or return an error and allow
///   deallocation of the memory.
/// - the fields are initialized in the order given in the initializer.
/// - no references to fields are allowed to be created inside of the initializer.
///
/// This initializer is for initializing data in-place that might later be moved. If you want to
/// pin-initialize, use [`pin_init!`].
///
/// [`try_init!`]: crate::try_init!
// For a detailed example of how this macro works, see the module documentation of the hidden
// module `__internal` inside of `init/__internal.rs`.
#[macro_export]
macro_rules! init {
    ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
        $($fields:tt)*
    }) => {
        $crate::__init_internal!(
            @this($($this)?),
            @typ($t $(::<$($generics),*>)?),
            @fields($($fields)*),
            @error(::core::convert::Infallible),
            @data(InitData, /*no use_data*/),
            @has_data(HasInitData, __init_data),
            @construct_closure(init_from_closure),
            @munch_fields($($fields)*),
        )
    }
}

/// Construct an in-place fallible initializer for `struct`s.
///
/// This macro defaults the error to [`Error`]. If you need [`Infallible`], then use
/// [`init!`].
///
/// The syntax is identical to [`try_pin_init!`]. If you want to specify a custom error,
/// append `? $type` after the `struct` initializer.
/// The safety caveats from [`try_pin_init!`] also apply:
/// - `unsafe` code must guarantee either full initialization or return an error and allow
///   deallocation of the memory.
/// - the fields are initialized in the order given in the initializer.
/// - no references to fields are allowed to be created inside of the initializer.
///
/// # Examples
///
/// ```rust
/// use kernel::{init::{PinInit, zeroed}, error::Error};
/// struct BigBuf {
///     big: Box<[u8; 1024 * 1024 * 1024]>,
///     small: [u8; 1024 * 1024],
/// }
///
/// impl BigBuf {
///     fn new() -> impl Init<Self, Error> {
///         try_init!(Self {
///             big: Box::init(zeroed())?,
///             small: [0; 1024 * 1024],
///         }? Error)
///     }
/// }
/// ```
// For a detailed example of how this macro works, see the module documentation of the hidden
// module `__internal` inside of `init/__internal.rs`.
#[macro_export]
macro_rules! try_init {
    ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
        $($fields:tt)*
    }) => {
        $crate::__init_internal!(
            @this($($this)?),
            @typ($t $(::<$($generics),*>)?),
            @fields($($fields)*),
            @error($crate::error::Error),
            @data(InitData, /*no use_data*/),
            @has_data(HasInitData, __init_data),
            @construct_closure(init_from_closure),
            @munch_fields($($fields)*),
        )
    };
    ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
        $($fields:tt)*
    }? $err:ty) => {
        $crate::__init_internal!(
            @this($($this)?),
            @typ($t $(::<$($generics),*>)?),
            @fields($($fields)*),
            @error($err),
            @data(InitData, /*no use_data*/),
            @has_data(HasInitData, __init_data),
            @construct_closure(init_from_closure),
            @munch_fields($($fields)*),
        )
    };
}

/// A pin-initializer for the type `T`.
///
/// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
/// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the
/// [`InPlaceInit::pin_init`] function of a smart pointer like [`Arc<T>`] on this.
///
/// Also see the [module description](self).
///
/// # Safety
///
/// When implementing this type you will need to take great care. Also there are probably very few
/// cases where a manual implementation is necessary. Use [`pin_init_from_closure`] where possible.
///
/// The [`PinInit::__pinned_init`] function
/// - returns `Ok(())` if it initialized every field of `slot`,
/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
///     - `slot` can be deallocated without UB occurring,
///     - `slot` does not need to be dropped,
///     - `slot` is not partially initialized.
/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
///
/// [`Arc<T>`]: crate::sync::Arc
/// [`Arc::pin_init`]: crate::sync::Arc::pin_init
#[must_use = "An initializer must be used in order to create its value."]
pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized {
    /// Initializes `slot`.
    ///
    /// # Safety
    ///
    /// - `slot` is a valid pointer to uninitialized memory.
    /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
    ///   deallocate.
    /// - `slot` will not move until it is dropped, i.e. it will be pinned.
    unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E>;

    /// First initializes the value using `self` then calls the function `f` with the initialized
    /// value.
    ///
    /// If `f` returns an error the value is dropped and the initializer will forward the error.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # #![allow(clippy::disallowed_names)]
    /// use kernel::{types::Opaque, init::pin_init_from_closure};
    /// #[repr(C)]
    /// struct RawFoo([u8; 16]);
    /// extern {
    ///     fn init_foo(_: *mut RawFoo);
    /// }
    ///
    /// #[pin_data]
    /// struct Foo {
    ///     #[pin]
    ///     raw: Opaque<RawFoo>,
    /// }
    ///
    /// impl Foo {
    ///     fn setup(self: Pin<&mut Self>) {
    ///         pr_info!("Setting up foo");
    ///     }
    /// }
    ///
    /// let foo = pin_init!(Foo {
    ///     raw <- unsafe {
    ///         Opaque::ffi_init(|s| {
    ///             init_foo(s);
    ///         })
    ///     },
    /// }).pin_chain(|foo| {
    ///     foo.setup();
    ///     Ok(())
    /// });
    /// ```
    fn pin_chain<F>(self, f: F) -> ChainPinInit<Self, F, T, E>
    where
        F: FnOnce(Pin<&mut T>) -> Result<(), E>,
    {
        ChainPinInit(self, f, PhantomData)
    }
}

/// An initializer returned by [`PinInit::pin_chain`].
pub struct ChainPinInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, Box<T>)>);

// SAFETY: The `__pinned_init` function is implemented such that it
// - returns `Ok(())` on successful initialization,
// - returns `Err(err)` on error and in this case `slot` will be dropped.
// - considers `slot` pinned.
unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainPinInit<I, F, T, E>
where
    I: PinInit<T, E>,
    F: FnOnce(Pin<&mut T>) -> Result<(), E>,
{
    unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
        // SAFETY: All requirements fulfilled since this function is `__pinned_init`.
        unsafe { self.0.__pinned_init(slot)? };
        // SAFETY: The above call initialized `slot` and we still have unique access.
        let val = unsafe { &mut *slot };
        // SAFETY: `slot` is considered pinned.
        let val = unsafe { Pin::new_unchecked(val) };
        (self.1)(val).map_err(|e| {
            // SAFETY: `slot` was initialized above.
            unsafe { core::ptr::drop_in_place(slot) };
            e
        })
    }
}

/// An initializer for `T`.
///
/// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
/// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the
/// [`InPlaceInit::init`] function of a smart pointer like [`Arc<T>`] on this. Because
/// [`PinInit<T, E>`] is a super trait, you can use every function that takes it as well.
///
/// Also see the [module description](self).
///
/// # Safety
///
/// When implementing this type you will need to take great care. Also there are probably very few
/// cases where a manual implementation is necessary. Use [`init_from_closure`] where possible.
///
/// The [`Init::__init`] function
/// - returns `Ok(())` if it initialized every field of `slot`,
/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
///     - `slot` can be deallocated without UB occurring,
///     - `slot` does not need to be dropped,
///     - `slot` is not partially initialized.
/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
///
/// The `__pinned_init` function from the supertrait [`PinInit`] needs to execute the exact same
/// code as `__init`.
///
/// Contrary to its supertype [`PinInit<T, E>`] the caller is allowed to
/// move the pointee after initialization.
///
/// [`Arc<T>`]: crate::sync::Arc
#[must_use = "An initializer must be used in order to create its value."]
pub unsafe trait Init<T: ?Sized, E = Infallible>: PinInit<T, E> {
    /// Initializes `slot`.
    ///
    /// # Safety
    ///
    /// - `slot` is a valid pointer to uninitialized memory.
    /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
    ///   deallocate.
    unsafe fn __init(self, slot: *mut T) -> Result<(), E>;

    /// First initializes the value using `self` then calls the function `f` with the initialized
    /// value.
    ///
    /// If `f` returns an error the value is dropped and the initializer will forward the error.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # #![allow(clippy::disallowed_names)]
    /// use kernel::{types::Opaque, init::{self, init_from_closure}};
    /// struct Foo {
    ///     buf: [u8; 1_000_000],
    /// }
    ///
    /// impl Foo {
    ///     fn setup(&mut self) {
    ///         pr_info!("Setting up foo");
    ///     }
    /// }
    ///
    /// let foo = init!(Foo {
    ///     buf <- init::zeroed()
    /// }).chain(|foo| {
    ///     foo.setup();
    ///     Ok(())
    /// });
    /// ```
    fn chain<F>(self, f: F) -> ChainInit<Self, F, T, E>
    where
        F: FnOnce(&mut T) -> Result<(), E>,
    {
        ChainInit(self, f, PhantomData)
    }
}

/// An initializer returned by [`Init::chain`].
pub struct ChainInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, Box<T>)>);

// SAFETY: The `__init` function is implemented such that it
// - returns `Ok(())` on successful initialization,
// - returns `Err(err)` on error and in this case `slot` will be dropped.
unsafe impl<T: ?Sized, E, I, F> Init<T, E> for ChainInit<I, F, T, E>
where
    I: Init<T, E>,
    F: FnOnce(&mut T) -> Result<(), E>,
{
    unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
        // SAFETY: All requirements fulfilled since this function is `__init`.
        unsafe { self.0.__pinned_init(slot)? };
        // SAFETY: The above call initialized `slot` and we still have unique access.
        (self.1)(unsafe { &mut *slot }).map_err(|e| {
            // SAFETY: `slot` was initialized above.
            unsafe { core::ptr::drop_in_place(slot) };
            e
        })
    }
}

// SAFETY: `__pinned_init` behaves exactly the same as `__init`.
unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainInit<I, F, T, E>
where
    I: Init<T, E>,
    F: FnOnce(&mut T) -> Result<(), E>,
{
    unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
        // SAFETY: `__init` has less strict requirements compared to `__pinned_init`.
        unsafe { self.__init(slot) }
    }
}

/// Creates a new [`PinInit<T, E>`] from the given closure.
///
/// # Safety
///
/// The closure:
/// - returns `Ok(())` if it initialized every field of `slot`,
/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
///     - `slot` can be deallocated without UB occurring,
///     - `slot` does not need to be dropped,
///     - `slot` is not partially initialized.
/// - may assume that the `slot` does not move if `T: !Unpin`,
/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
#[inline]
pub const unsafe fn pin_init_from_closure<T: ?Sized, E>(
    f: impl FnOnce(*mut T) -> Result<(), E>,
) -> impl PinInit<T, E> {
    __internal::InitClosure(f, PhantomData)
}

/// Creates a new [`Init<T, E>`] from the given closure.
///
/// # Safety
///
/// The closure:
/// - returns `Ok(())` if it initialized every field of `slot`,
/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
///     - `slot` can be deallocated without UB occurring,
///     - `slot` does not need to be dropped,
///     - `slot` is not partially initialized.
/// - the `slot` may move after initialization.
/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
#[inline]
pub const unsafe fn init_from_closure<T: ?Sized, E>(
    f: impl FnOnce(*mut T) -> Result<(), E>,
) -> impl Init<T, E> {
    __internal::InitClosure(f, PhantomData)
}

/// An initializer that leaves the memory uninitialized.
///
/// The initializer is a no-op. The `slot` memory is not changed.
#[inline]
pub fn uninit<T, E>() -> impl Init<MaybeUninit<T>, E> {
    // SAFETY: The memory is allowed to be uninitialized.
    unsafe { init_from_closure(|_| Ok(())) }
}

/// Initializes an array by initializing each element via the provided initializer.
///
/// # Examples
///
/// ```rust
/// use kernel::{error::Error, init::init_array_from_fn};
/// let array: Box<[usize; 1_000]>= Box::init::<Error>(init_array_from_fn(|i| i)).unwrap();
/// assert_eq!(array.len(), 1_000);
/// ```
pub fn init_array_from_fn<I, const N: usize, T, E>(
    mut make_init: impl FnMut(usize) -> I,
) -> impl Init<[T; N], E>
where
    I: Init<T, E>,
{
    let init = move |slot: *mut [T; N]| {
        let slot = slot.cast::<T>();
        // Counts the number of initialized elements and when dropped drops that many elements from
        // `slot`.
        let mut init_count = ScopeGuard::new_with_data(0, |i| {
            // We now free every element that has been initialized before:
            // SAFETY: The loop initialized exactly the values from 0..i and since we
            // return `Err` below, the caller will consider the memory at `slot` as
            // uninitialized.
            unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) };
        });
        for i in 0..N {
            let init = make_init(i);
            // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`.
            let ptr = unsafe { slot.add(i) };
            // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init`
            // requirements.
            unsafe { init.__init(ptr) }?;
            *init_count += 1;
        }
        init_count.dismiss();
        Ok(())
    };
    // SAFETY: The initializer above initializes every element of the array. On failure it drops
    // any initialized elements and returns `Err`.
    unsafe { init_from_closure(init) }
}

/// Initializes an array by initializing each element via the provided initializer.
///
/// # Examples
///
/// ```rust
/// use kernel::{sync::{Arc, Mutex}, init::pin_init_array_from_fn, new_mutex};
/// let array: Arc<[Mutex<usize>; 1_000]>=
///     Arc::pin_init(pin_init_array_from_fn(|i| new_mutex!(i))).unwrap();
/// assert_eq!(array.len(), 1_000);
/// ```
pub fn pin_init_array_from_fn<I, const N: usize, T, E>(
    mut make_init: impl FnMut(usize) -> I,
) -> impl PinInit<[T; N], E>
where
    I: PinInit<T, E>,
{
    let init = move |slot: *mut [T; N]| {
        let slot = slot.cast::<T>();
        // Counts the number of initialized elements and when dropped drops that many elements from
        // `slot`.
        let mut init_count = ScopeGuard::new_with_data(0, |i| {
            // We now free every element that has been initialized before:
            // SAFETY: The loop initialized exactly the values from 0..i and since we
            // return `Err` below, the caller will consider the memory at `slot` as
            // uninitialized.
            unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) };
        });
        for i in 0..N {
            let init = make_init(i);
            // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`.
            let ptr = unsafe { slot.add(i) };
            // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init`
            // requirements.
            unsafe { init.__pinned_init(ptr) }?;
            *init_count += 1;
        }
        init_count.dismiss();
        Ok(())
    };
    // SAFETY: The initializer above initializes every element of the array. On failure it drops
    // any initialized elements and returns `Err`.
    unsafe { pin_init_from_closure(init) }
}

// SAFETY: Every type can be initialized by-value.
unsafe impl<T, E> Init<T, E> for T {
    unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
        unsafe { slot.write(self) };
        Ok(())
    }
}

// SAFETY: Every type can be initialized by-value. `__pinned_init` calls `__init`.
unsafe impl<T, E> PinInit<T, E> for T {
    unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
        unsafe { self.__init(slot) }
    }
}

/// Smart pointer that can initialize memory in-place.
pub trait InPlaceInit<T>: Sized {
    /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this
    /// type.
    ///
    /// If `T: !Unpin` it will not be able to move afterwards.
    fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E>
    where
        E: From<AllocError>;

    /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this
    /// type.
    ///
    /// If `T: !Unpin` it will not be able to move afterwards.
    fn pin_init<E>(init: impl PinInit<T, E>) -> error::Result<Pin<Self>>
    where
        Error: From<E>,
    {
        // SAFETY: We delegate to `init` and only change the error type.
        let init = unsafe {
            pin_init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e)))
        };
        Self::try_pin_init(init)
    }

    /// Use the given initializer to in-place initialize a `T`.
    fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E>
    where
        E: From<AllocError>;

    /// Use the given initializer to in-place initialize a `T`.
    fn init<E>(init: impl Init<T, E>) -> error::Result<Self>
    where
        Error: From<E>,
    {
        // SAFETY: We delegate to `init` and only change the error type.
        let init = unsafe {
            init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e)))
        };
        Self::try_init(init)
    }
}

impl<T> InPlaceInit<T> for Box<T> {
    #[inline]
    fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E>
    where
        E: From<AllocError>,
    {
        let mut this = Box::try_new_uninit()?;
        let slot = this.as_mut_ptr();
        // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
        // slot is valid and will not be moved, because we pin it later.
        unsafe { init.__pinned_init(slot)? };
        // SAFETY: All fields have been initialized.
        Ok(unsafe { this.assume_init() }.into())
    }

    #[inline]
    fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E>
    where
        E: From<AllocError>,
    {
        let mut this = Box::try_new_uninit()?;
        let slot = this.as_mut_ptr();
        // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
        // slot is valid.
        unsafe { init.__init(slot)? };
        // SAFETY: All fields have been initialized.
        Ok(unsafe { this.assume_init() })
    }
}

impl<T> InPlaceInit<T> for UniqueArc<T> {
    #[inline]
    fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E>
    where
        E: From<AllocError>,
    {
        let mut this = UniqueArc::try_new_uninit()?;
        let slot = this.as_mut_ptr();
        // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
        // slot is valid and will not be moved, because we pin it later.
        unsafe { init.__pinned_init(slot)? };
        // SAFETY: All fields have been initialized.
        Ok(unsafe { this.assume_init() }.into())
    }

    #[inline]
    fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E>
    where
        E: From<AllocError>,
    {
        let mut this = UniqueArc::try_new_uninit()?;
        let slot = this.as_mut_ptr();
        // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
        // slot is valid.
        unsafe { init.__init(slot)? };
        // SAFETY: All fields have been initialized.
        Ok(unsafe { this.assume_init() })
    }
}

/// Trait facilitating pinned destruction.
///
/// Use [`pinned_drop`] to implement this trait safely:
///
/// ```rust
/// # use kernel::sync::Mutex;
/// use kernel::macros::pinned_drop;
/// use core::pin::Pin;
/// #[pin_data(PinnedDrop)]
/// struct Foo {
///     #[pin]
///     mtx: Mutex<usize>,
/// }
///
/// #[pinned_drop]
/// impl PinnedDrop for Foo {
///     fn drop(self: Pin<&mut Self>) {
///         pr_info!("Foo is being dropped!");
///     }
/// }
/// ```
///
/// # Safety
///
/// This trait must be implemented via the [`pinned_drop`] proc-macro attribute on the impl.
///
/// [`pinned_drop`]: kernel::macros::pinned_drop
pub unsafe trait PinnedDrop: __internal::HasPinData {
    /// Executes the pinned destructor of this type.
    ///
    /// While this function is marked safe, it is actually unsafe to call it manually. For this
    /// reason it takes an additional parameter. This type can only be constructed by `unsafe` code
    /// and thus prevents this function from being called where it should not.
    ///
    /// This extra parameter will be generated by the `#[pinned_drop]` proc-macro attribute
    /// automatically.
    fn drop(self: Pin<&mut Self>, only_call_from_drop: __internal::OnlyCallFromDrop);
}

/// Marker trait for types that can be initialized by writing just zeroes.
///
/// # Safety
///
/// The bit pattern consisting of only zeroes is a valid bit pattern for this type. In other words,
/// this is not UB:
///
/// ```rust,ignore
/// let val: Self = unsafe { core::mem::zeroed() };
/// ```
pub unsafe trait Zeroable {}

/// Create a new zeroed T.
///
/// The returned initializer will write `0x00` to every byte of the given `slot`.
#[inline]
pub fn zeroed<T: Zeroable>() -> impl Init<T> {
    // SAFETY: Because `T: Zeroable`, all bytes zero is a valid bit pattern for `T`
    // and because we write all zeroes, the memory is initialized.
    unsafe {
        init_from_closure(|slot: *mut T| {
            slot.write_bytes(0, 1);
            Ok(())
        })
    }
}

macro_rules! impl_zeroable {
    ($($({$($generics:tt)*})? $t:ty, )*) => {
        $(unsafe impl$($($generics)*)? Zeroable for $t {})*
    };
}

impl_zeroable! {
    // SAFETY: All primitives that are allowed to be zero.
    bool,
    char,
    u8, u16, u32, u64, u128, usize,
    i8, i16, i32, i64, i128, isize,
    f32, f64,

    // SAFETY: These are ZSTs, there is nothing to zero.
    {<T: ?Sized>} PhantomData<T>, core::marker::PhantomPinned, Infallible, (),

    // SAFETY: Type is allowed to take any value, including all zeros.
    {<T>} MaybeUninit<T>,
    // SAFETY: Type is allowed to take any value, including all zeros.
    {<T>} Opaque<T>,

    // SAFETY: `T: Zeroable` and `UnsafeCell` is `repr(transparent)`.
    {<T: ?Sized + Zeroable>} UnsafeCell<T>,

    // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee).
    Option<NonZeroU8>, Option<NonZeroU16>, Option<NonZeroU32>, Option<NonZeroU64>,
    Option<NonZeroU128>, Option<NonZeroUsize>,
    Option<NonZeroI8>, Option<NonZeroI16>, Option<NonZeroI32>, Option<NonZeroI64>,
    Option<NonZeroI128>, Option<NonZeroIsize>,

    // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee).
    //
    // In this case we are allowed to use `T: ?Sized`, since all zeros is the `None` variant.
    {<T: ?Sized>} Option<NonNull<T>>,
    {<T: ?Sized>} Option<Box<T>>,

    // SAFETY: `null` pointer is valid.
    //
    // We cannot use `T: ?Sized`, since the VTABLE pointer part of fat pointers is not allowed to be
    // null.
    //
    // When `Pointee` gets stabilized, we could use
    // `T: ?Sized where <T as Pointee>::Metadata: Zeroable`
    {<T>} *mut T, {<T>} *const T,

    // SAFETY: `null` pointer is valid and the metadata part of these fat pointers is allowed to be
    // zero.
    {<T>} *mut [T], {<T>} *const [T], *mut str, *const str,

    // SAFETY: `T` is `Zeroable`.
    {<const N: usize, T: Zeroable>} [T; N], {<T: Zeroable>} Wrapping<T>,
}

macro_rules! impl_tuple_zeroable {
    ($(,)?) => {};
    ($first:ident, $($t:ident),* $(,)?) => {
        // SAFETY: All elements are zeroable and padding can be zero.
        unsafe impl<$first: Zeroable, $($t: Zeroable),*> Zeroable for ($first, $($t),*) {}
        impl_tuple_zeroable!($($t),* ,);
    }
}

impl_tuple_zeroable!(A, B, C, D, E, F, G, H, I, J);